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Abstract: Metal oxide nanoparticles have been widely utilized for the fabrication of functional gas
sensors to determine various flammable, explosive, toxic, and harmful gases due to their advantages
of low cost, fast response, and high sensitivity. However, metal oxide-based gas sensors reveal the
shortcomings of high operating temperature, high power requirement, and low selectivity, which
limited their rapid development in the fabrication of high-performance gas sensors. The combination
of metal oxides with two-dimensional (2D) nanomaterials to construct a heterostructure can hybridize
the advantages of each other and overcome their respective shortcomings, thereby improving the
sensing performance of the fabricated gas sensors. In this review, we present recent advances in
the fabrication of metal oxide-, 2D nanomaterials-, as well as 2D material/metal oxide composite-
based gas sensors with highly sensitive and selective functions. To achieve this aim, we firstly
introduce the working principles of various gas sensors, and then discuss the factors that could affect
the sensitivity of gas sensors. After that, a lot of cases on the fabrication of gas sensors by using
metal oxides, 2D materials, and 2D material/metal oxide composites are demonstrated. Finally, we
summarize the current development and discuss potential research directions in this promising topic.
We believe in this work is helpful for the readers in multidiscipline research fields like materials
science, nanotechnology, chemical engineering, environmental science, and other related aspects.

Keywords: two-dimensional materials; metal oxide; nanoparticles; composite materials; gas sensors

1. Introduction

In actual production and life, flammable, explosive, toxic, and harmful gases pose a
serious threat to environmental safety and human health. Therefore, devices with high
performance are urgently needed to detect those flammable, explosive, toxic, and harmful
gases. The gas sensors play great importance in determining various gases as they can
convert a certain gas volume fraction into electrical signals. They have the advantages of
low cost, fast response, high sensitivity, and high selectivity. In addition, in some cases, the
gas sensor device can be directly used in electronic interfaces. Therefore, gas sensors have
been widely used in environmental monitoring, air quality monitoring, vehicle exhaust
monitoring, medical diagnosis, food/cosmetics monitoring, and many other fields [1–8].

The fabrication of nanomaterial-based gas sensors has been the focus of research over
the past few decades. According to the working principle of the sensors, gas sensors can be
divided into several types, such as semiconductor type, polymer type, contact combustion
type, and solid electrolyte [9–12]. Among these gas sensors, the semiconductor gas sensors
have developed into one of the largest and most widely used sensors in the world due to
their large types of gases, high sensitivity, low price, and simple fabrication [13]. According
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to the different gas detection methods, semiconductor gas sensors can be divided into two
types: resistive and non-resistive, in which the resistive semiconductor gas sensor detects
gas concentration according to the change of the resistance value of the semiconductor
when it comes into contact with the gas [13]. Currently, gas-sensitive materials such as
semiconductor metal oxides, conductive polymers, and carbon materials have been used
for the fabrication of resistive semiconductor-type gas sensors [14–17].

Among these sensing materials for the fabrication of semiconductor gas sensors,
metal oxides, including zinc oxide (ZnO), indium oxide (In2O3), tin oxide (SnO2), and
tungsten oxide (WO3) have been proved to be the best candidates for the fabrication for
making resistive gas sensors due to their advantages of simple fabrication, low cost, easy
portability, and high sensitivity [18–21]. However, the high operating temperature, high
power, and low selectivity limited their rapid development [22,23]. Two-dimensional (2D)
nanomaterials, including graphene, transition metal chalcogenides, layered metal oxides,
black phosphorus, and others, have shown great potential in gas sensors due to their
unique single-atom-layer structure, high specific surface area, and many surface-active
sites [24,25].

2D material-based gas sensors have the advantages of high sensitivity, fast response
speed, low energy consumption, and room temperature operation [26–30]. However,
since 2D nanomaterials tend to form a dense stack structure during the formation of the
conductive network, it is not conducive to the full contact between the flakes inside the
conductive network and the gas molecules, making the sensitivity and response recovery
speed relatively low at room temperature. Combining metal oxides with 2D nanomaterials
to construct a heterostructure can combine the advantages of each other and overcome their
respective shortcomings, thereby improving the sensing performance of the fabricated gas
sensors. The combination of the metal oxide and 2D materials can drive transformations
in the design and performance of 2D nanoelectronics devices, such as the graphene/2D
indium oxide/SiC heterostructure [31,32]. Currently, the combination of metal oxides with
graphene, transition metal chalcogenide, and other 2D materials to form heterojunction
nanostructures for gas sensors have been studied widely, which have exhibited significantly
enhanced sensing performance at room temperature [33,34].

In this review, we present the advances in the fabrication and sensing mechanisms of
2D material- and metal oxide nanoparticle-based gas sensors. For this aim, we first intro-
duce the detection mechanism of the resistive semiconductor gas sensors and the factors
that can affect the sensitivity of the gas sensors. Then, various types of gas sensors based
on metal oxides, 2D materials, and 2D materials/metal oxides composites are introduced.
Special emphasis is placed on the recent progress of the combination of metal oxides and
2D nanomaterials for gas sensors. We believe that this review will be helpful for readers
to understand the synthesis of functional 2D material-based composites and promote the
fabrication of 2D material-based sensors for the high-performance determination of gases.

2. Working Principles of Gas Sensors
2.1. Mechanism of Oxygen Ion Adsorption on the Surface of Metal Oxide Nanoparticles

The sensing mechanism of traditional metal oxide-based gas sensors is related to the
resistance change of the sensing materials caused by the adsorption of oxygen ions on the
material surface [35,36]. When metal oxides are exposed to air, O2 in the air is adsorbed
onto the surface of metal oxides, which acts as electron acceptors to extract electrons from
the conduction band of oxides and dissociates into different forms of negative oxygen ions
(O2

−, O−, O2−). Since the electrons in the conduction band of the material are captured
by oxygen anions, a hole accumulation layer (also called electron depletion layer) rich in
hole carriers is formed on the surface of the material, thereby increasing the resistance of
the gas-sensing material. Various gases are adsorbed on the surface of metal oxides and
interact with oxygen anions to change the electrical conductivity of metal oxides. Taking
NiO as an example, when exposed to a reducing gas, the adsorbed oxygen undergoes a
redox reaction with the gas, and the captured electrons are released into the conduction
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band of the semiconductor, and these electrons combine with the holes present in the hole
accumulation layer of the sensor material [37]. Therefore, the number of carriers is reduced,
and the resistance value is increased, so as to achieve the purpose of gas detection, as
shown in Figure 1.
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Figure 1. Schematics of H2 sensing mechanism for NiO sensor. Hole accumulation of the NiO
sensor exposed in air (a) and hydrogen (b), respectively. Reprinted with permission from Ref. [37].
Copyright 2018 Elsevier.

2.2. Charge Transfer Mechanism of 2D Material-Based Gas Sensors

The sensing mechanism of gas sensors based on graphene and related 2D layered
materials is mainly related to the charge transfer process, in which the sensing material
acts as a charge acceptor or donor [38]. When exposed to different gases, a charge transfer
reaction occurs between the sensing material and the adsorbed gas, and the direction
and amount of charge transfer are different, resulting in different changes in the material
resistance. Taking layered MoS2 as an example, the charge transfer between different gas
molecules (including O2, H2O, NH3, NO, NO2, CO) and monolayer MoS2 is different [39],
as shown in Figure 2.

Before gas adsorption, some electrons already exist in the conduction band of the
n-type MoS2 monolayer. When MoS2 is exposed to O2, H2O, NO, NO2, and CO gases, the
electron charge is transferred from MoS2 to the gas atmosphere, resulting in a decrease
in the carrier density of MoS2 and an increase in the resistance of MoS2. On the contrary,
When MoS2 is exposed to NH3, the NH3 molecules adsorbed on MoS2 act as charge donors
to transfer electrons to the MoS2 monolayer, increasing the carrier density of the MoS2
monolayer and reducing its resistance (Figure 2).
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2.3. Gas Sensing Mechanism of 2D Material/Metal Oxide Composites

When one material is composited with another, the bonding between different ma-
terials forms p-n, n-n, p-p, and Schottky heterojunctions. Among them, the formation of
p-n heterojunction is beneficial for adjusting the thickness of the electron depletion layer,
thereby further improving the sensing performance of the fabricated gas sensors. For
example, when SnO2 is combined with graphene oxide (GO), the p-n heterojunction can
be formed to form a new energy-level structure, as shown in Figure 3 [40]. The electron
dissipation layer expands at the interface of SnO2 and GO, resulting in increased resistance.
When formaldehyde is introduced, the trapped electrons are released back into the conduc-
tion band, resulting in a reduction in the width of the dissipation layer, which reduces the
resistance of the sample. The porous and ultrathin structure of the SnO2/GO composite
increases the specific surface area and active sites, facilitates the reaction with HCHO gas,
and contributes to the ultrahigh response for gas sensing. It should be noted that the
ultrathin nanosheet structure of GO shortens the transport path and greatly improves the
response of the gas sensor. Meanwhile, the abundant pores in SnO2 are favorable for gas
diffusion and help to improve the response/recovery performance. In addition, GO can
act as a spacer, which reduced the agglomeration of SnO2 nanoparticles, and provided
abundant adsorption sites for HCHO gas, thereby enhancing the gas sensing response.
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3. Factors for Affecting the Sensitivity of Gas Sensors
3.1. Size, Morphology, and Porosity

The grain size, morphology, and porosity are important factors for affecting the
sensing performance of semiconductor-based gas sensors. In gas sensors, semiconductor
nanoparticles are connected to adjacent particles through grain boundaries to form larger
aggregates [41]. On the particle surface, the adsorbed oxygen molecules extract electrons
from the conduction band and capture electrons in the form of ions on the surface, resulting
in band bending and electron depletion layers, as shown in Figure 4 [42,43]. Since the
transport of electrons between grains needs to pass through the electron depletion layer,
the grain size has a great influence on the conductivity, which in turn affects the gas sensing
performance of the material-based gas sensor. When the particle size (D) is much larger
than twice the thickness (L) of the electron depletion layer (D >> 2L), there is a wide electron
channel between the grains, and the gas sensitivity of the material is mainly controlled by
the surface of the nanoparticles (boundary control). When D ≥ 2L, there is a constricted
conduction channel. The change in electrical conductivity depends not only on the particle
boundary barrier but also on the cross-sectional area of the channel, and the gas sensitivity
of the material is mainly controlled by the contact neck between nanoparticles (neck control).
When D < 2L, the electron depletion layer dominates, the entire nanoparticle is contained
in the electron depletion layer (grain control), and the sensitivity of the material is very
high. The energy bands are nearly flat throughout the interconnected grain structure, and
there is no significant impediment to the inter-grain charge transport. The small amount of
charge gained from the surface reaction results in a large change in the conductivity of the
entire structure. Therefore, the smaller grain size is beneficial to improving the sensitivity
of the gas sensor. When the grain size is small enough, the crystal becomes very sensitive to
the surrounding gas molecules. For example, Min et al. used SnO2 as the sensing material
to prepare SnO2 films with different particle sizes (8.4–18.5 nm) and different porosity
(70.8–99.5%), and found that in the gas sensors with porous structure, high porosity and
low average particle size exhibited quicker gas sensing response [44].



Nanomaterials 2022, 12, 982 6 of 40Nanomaterials 2022, 12, x FOR PEER REVIEW 6 of 40 
 

 

 
Figure 4. Schematic model of the effect of the crystallite size on the sensitivity of metal-oxide gas 
sensors: (a) D >> 2L, (b) D ≥ 2L, and (c) D < 2L. Reprinted with permission from Ref. [42]. Copyright 
1991 Elsevier. 

However, when the grain size is excessively reduced, the agglomeration between 
particles is serious. If the aggregates are relatively dense, only the particles on the surface 
of the aggregates could participate in the gas sensing reaction, and the internal materials 
are wasted because they are not in contact with the gas, resulting in a decrease in the 
utilization rate of the material. In addition, the agglomeration is not conducive to the dif-
fusion of gas inside the material and will reduce the gas sensing performance [45,46]. In-
creasing the specific surface area not only facilitates the adsorption of oxygen molecules 
in the air on the surface of the material, but also increases more effective active sites and 
more gas transmission channels to facilitate the diffusion and absorption of the test gas. 
Therefore, increasing the specific surface area of gas-sensing materials is an important 
way to modify the sensing properties of gas sensors. The regulation of both the morphol-
ogy (flower-like, sea urchin-like, etc.) and porous structure (macropores, mesopores, and 
micropores) of materials is an effective way to improve the specific surface area of mate-
rials. Nanomaterials with porous structures can increase the effective surface area and 
active sites of the material due to their special pore structure, so that the material has better 
permeability, making gas molecules easier to diffuse into the interior of the material, and 
increasing the contact between the material and the gas. It can accelerate the diffusion of 
gas, improve the response and recovery speed of the gas sensor, and thus improve its gas 
sensing performance. 

For example, Boudiba et al. synthesized WO3 materials with different morphologies 
by direct precipitation, ion exchange, and hydrothermal methods, and further used the 

Figure 4. Schematic model of the effect of the crystallite size on the sensitivity of metal-oxide gas
sensors: (a) D >> 2L, (b) D ≥ 2L, and (c) D < 2L. Reprinted with permission from Ref. [42]. Copyright
1991 Elsevier.

However, when the grain size is excessively reduced, the agglomeration between
particles is serious. If the aggregates are relatively dense, only the particles on the surface
of the aggregates could participate in the gas sensing reaction, and the internal materials
are wasted because they are not in contact with the gas, resulting in a decrease in the
utilization rate of the material. In addition, the agglomeration is not conducive to the
diffusion of gas inside the material and will reduce the gas sensing performance [45,46].
Increasing the specific surface area not only facilitates the adsorption of oxygen molecules
in the air on the surface of the material, but also increases more effective active sites and
more gas transmission channels to facilitate the diffusion and absorption of the test gas.
Therefore, increasing the specific surface area of gas-sensing materials is an important way
to modify the sensing properties of gas sensors. The regulation of both the morphology
(flower-like, sea urchin-like, etc.) and porous structure (macropores, mesopores, and
micropores) of materials is an effective way to improve the specific surface area of materials.
Nanomaterials with porous structures can increase the effective surface area and active
sites of the material due to their special pore structure, so that the material has better
permeability, making gas molecules easier to diffuse into the interior of the material, and
increasing the contact between the material and the gas. It can accelerate the diffusion of
gas, improve the response and recovery speed of the gas sensor, and thus improve its gas
sensing performance.

For example, Boudiba et al. synthesized WO3 materials with different morphologies
by direct precipitation, ion exchange, and hydrothermal methods, and further used the
as-prepared materials to fabricate gas sensors. Their results indicated that the greater the
porosity, the higher the sensitivity to SO2 gas [47]. In another case, Jia et al. prepared
WO3 semiconductor materials with different morphologies by hydrothermal method as
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sensitive materials. Under the same test conditions, they found that the sensitivity of
WO3 nanorods towards acetone was 19.52, while the sensitivity of WO3 nanospheres
towards acetone was 25.71. In addition, WO3 nanoshpheres exhibited better selectivity
than nanorods [48]. Lü et al. [49] successfully prepared porous materials with extremely
high specific surface area (120.9 m2·g−1) by simple chemical transformation of Co-based
metal-organic frameworks (Co-MOFs) template and controlling the appropriate calcination
temperature (300 ◦C). The prepared Co3O4 concave nanocubes were systematically tested
for their gas-sensing properties to volatile organic compounds (VOCs), including ethanol,
acetone, toluene, and benzene. to the fabricated sensors exhibited excellent performance
in gas sensing, such as high sensitivity, low detection limit (10 ppm), fast response and
recovery (<10 s), and high selectivity for ethanol. Wang et al. synthesized concave Cu2O
octahedral nanoparticles with a diameter of about 400 nm and performed gas-sensing tests
for benzene (C6H6) and NO2 [50]. It was found that the concave Cu2O octahedral nanopar-
ticles exhibited better gas sensing properties than Cu2O nanorods. Unlike conventional
octahedrons, Cu2O octahedral nanoparticles have a structure similar to icosahedral with
sharp boundaries. Therefore, compared with nanorods, the synthesized Cu2O octahedral
nanoparticles have a larger specific surface area, which can provide more reactive sites and
thus exhibit better gas sensing properties.

3.2. Doping of Metals

The doping of metal elements can effectively improve the gas recognition ability of
gas sensing materials, and is an important method to improve gas-sensing performance.
Different dopant species may lead to different types of crystallites, defects and electronic
properties [51,52]. Doping or surface modification by adding metal elements (such as Ag,
Au, Pt, Pd, etc.) on the surface of the gas-sensing materials can increase the number of
active sites, promote the adsorption/desorption reaction on the surface of the gas-sensing
materials, and reduce the reaction activation energy, and reduce the operating temperature,
thereby improving the gas-sensing performance [53].

For instance, Fedorenko et al. [54] prepared Pd-doped SnO2 semiconductor sensors by
a sol–gel method. The effect of Pd additives on methane sensitivity was studied, and it was
found that due to the catalytic activity of Pd, compared with undoped materials, the addi-
tion of Pd to SnO2 significantly improved the sensor response to methane (about 6–7 times).
Barbosa et al. [55] studied the sensing responses of SnO micro-sheets that modified with Ag
and Pd noble metal catalysts towards the gases such as NO2, H2, and CO, and found that
the Ag/Pd surface-modified SnO micro-sheets exhibited higher sensitivity to gases such
as H2 and CO. However, the catalyst particles reduced the sensing response to oxidizing
gases such as NO2. It is clear that the catalytic activity of Pd nanoparticles is related to
chemical sensitization, while the catalytic activity of Ag nanoparticles is related to electronic
sensitization. The Ag-modified samples showed high response to H2, and Pd-modified
samples showed high response and selectivity to CO. Zhang et al. synthesized Co-doped
sponge-like In2O3 cubes by a simple and environmentally friendly hydrothermal method
with the help of organic solvents, and studied their acetone gas-sensing properties [56]. It
was found that Co-doped In2O3 has good gas-sensing performance for acetone gas, and its
porous structure can create more adsorption sites for the adsorption of oxygen molecules
and the diffusion of the target gas, thereby significantly improving the sensing performance.
Compared with the undoped sample, the response value of the doped Co-In2O3 sample to
acetone was increased by 3.25 times, the response recovery time was fast (1.143 s/37.5 s),
the detection limit was low (5 ppm), the reproducibility was good, and the selectivity was
high. In another case, Ma et al. reported a Pt-modified WO3 mesoporous material with high
sensitivity to CO [57]. Pt acted as a chemical sensitizer, and gas molecules were adsorbed
and flowed into the gas-sensitive material through the spillover effect. In addition, the PtO
formed on the surface of Pt further increased the electron depletion layer, and enhanced
the electron sensitivity. The synergistic effects of both components further improved the
gas-sensing performance.
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Compound doping is another important method to improve the sensing performance
of gas sensors. When a metal oxide is combined with other metal oxides, a heterojunction
structure is constructed. Since the two materials each have their own Fermi energy levels,
there will be a mutual transfer of carriers between the two materials to form a space charge
layer, so as to achieve the purpose of enhancing the gas-sensing properties of the compound
materials. For example, Ju et al. [58] prepared SnO2 hollow spheres by a template-assisted
hydrothermal method and successfully implanted p-type NiO nanoparticles onto the
surface of SnO2 hollow spheres by the pulsed laser deposition (PLD) to prepare NiO/SnO2
p-n hollow spheres. The gas-sensing performance test indicated that its response to 10 ppm
triethylamine (TEA) gas could reach 48.6, which was much higher than that of the original
SnO2 hollow spheres, and the detection limit was as low as 2 ppm. The optimal operating
temperature dropped to 220 ◦C, which was 40 ◦C lower than that of the original SnO2
hollow sphere sensor. Compared with the pristine SnO2 sensor, the enhanced response of
NiO/SnO2 sensor to TEA is mainly attributed to the formation of a depletion layer by the
p-n heterojunction interface, which makes the resistance of hybrid materials in air and TEA
gas change a lot.

In addition, when the gas-sensing materials of different dimensions are compounded,
the stacking of the gas-sensing materials can be prevented, the porosity can be increased,
and the gas-sensing performance can be improved. For example, Kida et al. [59] introduced
monodispersed SnO2 nanoparticles (about 4 nm) into WO3 nanosheet-based films, which
could improve its porosity, prevent the aggregation of flakes, and increase the diffusion
paths and adsorption sites of gas molecules. The response sensitivity of the composites
to NO2 was enhanced when the concentration in air was 20–1000 ppb, indicating the
effectiveness of the microstructure control of the WO3-based film on high-sensitivity NO2
detection. In another case, Mishra et al. [60] prepared nanocubic In2O3@RGO composites by
combining In2O3 with reduced graphene oxide (RGO), and the sensor based on nanocubic
In2O3@RGO heterostructures exhibited high resistance to acetone (~85%) and formaldehyde
(~88%) with good selectivity, long-term stability, and fast response/recovery rates

4. 2D Material-Based Gas Sensors

With the successful preparation of graphene materials, its unique structure and excel-
lent properties have attracted widespread attention, thus setting off a research upsurge
in 2D materials. 2D nanomaterials have a large specific surface area and special electrical
properties due to their nanoscale thin-layer structure. After the gas is adsorbed on the
surface, it will affect the conductivity of the surface, so it can be used as a gas-sensing
material to adsorb and capture certain single species of gas molecules, with excellent gas-
sensing properties. Gas sensors based on 2D nanomaterials exhibit many advantages, such
as high sensitivity, fast response speed, low energy consumption, and the ability to work at
room temperature.

4.1. 2D Graphene-Based Gas Sensors

Graphene is a honeycomb 2D carbon nanomaterial composed of a single layer of sp2

carbon atoms. It is currently the thinnest 2D material in the world, with a thickness of
only 0.35 nm. Graphene has many excellent properties due to its special structure, such as
good electrical conductivity, high carrier mobility, transparency, and mechanical strength.
As a typical 2D material, every atom in the graphene structure can be considered as a
surface atom, so ideally every atom can interact with the gas, which makes graphene
promising as a kind of gas sensor with ultrahigh sensitivity. In the process of adsorption
and desorption of gas molecules, graphene nanosheets will affect the change of local carrier
concentration in the material, thus showing the transition of electrical signal in the detection
of electrochemical performance, and has a good development prospect in gas adsorption. In
2007, Novoselov’s group first reported a graphene-based gas sensor, which confirmed that
a graphene-based nanoscale gas sensor can be used to detect the adsorption or desorption



Nanomaterials 2022, 12, 982 9 of 40

of single gas molecules on the graphene surface [61]. This study opens the door to research
on 2D graphene-based gas sensors.

Single-layer graphene nanosheets, RGO, chemically modified graphene, and GO
have been proven to be good gas sensing materials [62–64]. Since the main advantage of
graphene nanostructures is the low temperature response, this sensor can greatly reduce
the energy consumption of the sensing device. Various graphene-based gas sensors have
been used to detect various harmful gases such as NO2, NH3, CO2, SO2, and H2S. For
example, Ricciardella et al. developed a graphene film-based room temperature gas sensor
with a sensitivity of up to 50 ppb (parts-per-billion) to NO2 [65]. Various methods, such as
mechanical exfoliation, chemical vapor deposition (CVD), and epitaxy, have been used to
prepare graphene for gas sensing applications. For example, Balandin et al. [66] prepared
monolayer graphene using a mechanical exfoliation method and reported a monolayer
intrinsic graphene transistor, which can utilize low-frequency noise in combination with
other sensing parameters to realize selective gas sensing of monolithic graphene transistors.
Choi et al. [67] prepared graphene by CVD and transferred it onto flexible substrates, and
demonstrated a gas sensor using graphene as a sensing material on a transparent (Tr > 90%)
flexible substrate. Nomani et al. demonstrated that epitaxial growth of graphene on Si and
C surfaces of semi-insulating 6H-SiC substrates can provide very high NO2 detection sensi-
tivity and selectivity, as well as fast response times [68]. Yang et al. directly grew multilayer
graphene on various substrates through the thermal annealing process of catalytic metal
encapsulation, and tested it as a gas sensor for NO2 and NH3 gas molecules to detect its
response sensitivity to NO2 and NH3 [69]. The schematic diagram of the graphene sensor
is shown in Figure 5a. The NO2 molecules are electron acceptors (p-type dopant), which ex-
tract electrons from graphene, while the NH3 molecules are electron donors (n-type dopant),
which donate electrons to graphene. Therefore, when NO2 molecules are adsorbed, the
conductivity of graphene is enhanced, while when NH3 molecules are adsorbed on the
graphene surface, the conductivity decreases due to the compensation effect (Figure 5b).
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GO is suitable for gas sensors due to its multiple properties, such as easy processing,
high solubility in various solvents, and containing oxygen functional groups or defects.
Since the defects or functional groups in GO can act as reaction sites for gas adsorption,
making the gas easily adsorbed on the surface of GO and improving the selectivity and
sensitivity of the GO-based sensor, the response of the GO-based sensor can be tuned by
functionalization. Shen et al. [70] prepared edge-trimmed GO nanosheets by periodically
acid-treating GO, and then fabricated field effect transistors (FETs) for gas sensing testing
of SO2 at room temperature (Figure 5c,d). Compared with pristine GO nanosheets, edge-
clipped GO nanosheets were found to have a significant response enhancement effect to
SO2 gas, and the detection concentration range was 5–1100 ppm. Meanwhile, the edge-
trimmed GO device also exhibited a fast response time, which was mainly attributed
to the hygroscopic properties of the GO nanosheets, which can trap water molecules
and react with SO2 to generate sulfuric acid to facilitate their fast protonation process.
By utilizing different reducing agents to remove oxygen from GO and recover aromatic
double-bonded carbons, the selectivity of RGO-based gas sensors could be improved
significantly. For example, Guha et al. [71] developed a gas sensor for NaBH4 reduction
of GO on a ceramic substrate and reported its performance for detecting NH3 at room
temperature. The response to NH3 can be optimized by the reduction time of GO. Through
chemical modification, RGO can introduce some foreign groups or atoms to change its
surface properties, which can enhance its sensing performance. For example, the response
of RGO reduced with p-phenylenediamine (PPD) to dimethyl methylphosphonate (DMMP)
was 4.7 times higher than that of RGO reduced by ordinary methods [72]. The RGO-based
gas sensor reduced by ascorbic acid has high selectivity for corrosive NO2 and Cl2, and the
detection limit can reach 100 and 500 ppb, respectively [73].

4.2. 2D Transition Metal Sulfide-Based Gas Sensors

As a typical p-type inorganic 2D material with a hexagonal filled layered structure
of TMDs, it has received extensive attention in energy conversion and storage, especially
in room temperature gas sensors, which have unique advantages and are widely used in
various gas detection. Similar to graphene, MoS2 consists of vertically stacked layers, each
formed by covalently bonded Mo-S atoms, with adjacent layers connected by relatively
weak van der Waals forces. The weak van der Waals interactions allow gas molecules
to permeate and diffuse freely between the layers, so the resistance of MoS2 can change
dramatically with the adsorption and diffusion of gas molecules within the layers. Various
methods for gas sensing using few-layer MoS2 have been reported in the literature, includ-
ing detectors for many kinds of chemical vapors such as H2, NO2, and ethanol [74–76].
For example, Li et al. [77] found for the first time that mechanically exfoliated multilayer
MoS2 exhibited high sensitivity to NO gas, while monolayer MoS2 had an unstable re-
sponse to NO gas. They used a mechanical lift-off technique to deposit monolayer and
multilayer MoS2 films on Si/SiO2 surfaces for the fabrication of FETs. The FET acted as a
gas sensor, which realized gas detection by monitoring the change of the conductance of
the FET channel during the adsorption of target gas molecules. Since the mechanically cut
MoS2 sheet is an n-type semiconductor, when the MoS2 channel was exposed to NO gas,
it would result in p-doping of the channel, resulting in an increase in channel resistance
and a decrease in current flow. It was found that although the single-layer MoS2 device
exhibited a fast response after exposure to NO, the current was unstable; the two-layered,
three-layered, and four-layered MoS2 devices all exhibited stable and sensitive responses
to NO at a concentration of 0.8 ppm. Late et al. [78] systematically studied the relationship
between the number of MoS2 layers and gas sensing performance, and found that the
sensitivity and recovery time of 5-layered MoS2 to NH3 and NO2 gases were better than
those of double-layered MoS2 (Figure 6a–d). These findings suggest that a small amount of
layered MoS2 has great potential to detect various polar gas molecules.
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At present, 2D Sn-based sulfide materials (SnS and SnS2) are also used in the field of
gas sensors due to their unique performance advantages. For example, Wang et al. [79]
successfully synthesized free-standing large-scale ultrathin SnS crystalline materials by
utilizing the 2D directional attachment growth of colloidal quantum dots in a high-pressure
solvothermal reaction. The SnS ultrathin crystals were rectangular with uniform shape,
the lateral dimension was between 20 and 30 µm, and the thickness was less than 10 nm
(Figure 7a,b). The obtained material was used to fabricate a gas sensor, which exhibited
excellent sensitivity and selectivity for NO2 at room temperature with a detection limit
of 100 ppb (Figure 7c–e). Xiong et al. [80] synthesized 3D flower-like SnS2 nanomaterials
assembled from nanosheets and fabricated them into gas sensors by a simple solvothermal
method, As shown in Figure 7f–h. When 100 ppm NH3 was detected at 200 ◦C, the
response value was 7.4, the response time was 40.6 s, and the recovery time was 624 s.
The prepared nanoflowers have good selectivity to NH3 with a detection limit of 0.5 ppm.
This study attributes the excellent performance of the SnS2 sensor for NH3 to the unique
thin-layer flower-like nanostructure, which is beneficial to the carrier transfer process and
gas adsorption/desorption process [23].
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In order to further improve the gas sensing performance of TMD materials, people
have improved the gas-sensing performance through external energy strategies (ultraviolet-
assisted irradiation or applying a bias voltage, etc.) or composite strategies with other
materials. For example, Late et al. found that 5-layer MoS2 has a more sensitive response
to both NH3 and NO2 than 2-layer MoS2 with the assistance of a bias voltage (+15 V). The
photoconverted radiation of 4 mW/cm2 can increase the sensitivity of NO2 gas sensing,
while the light intensity of 15 mW/cm2 can reduce the recovery time [78]. Wu et al. [81]
prepared MoTe2 nanosheets by mechanical exfoliation, and the sensitivity to NO2 under
254 nm UV light was significantly improved by one order of magnitude compared with the
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dark condition, and the detection limit was significantly reduced to 252 ppt. Gu et al. [82]
synthesized 2D SnS2 nanosheets by a solvothermal method, and after irradiation with a
520 nm green LED lamp, realized NO2 detection at room temperature, with good repeata-
bility and selectivity for 8 ppm NO2 in a dry environment and the response value was 10.8.
Cheng et al. [83] combined the excellent sensing performance and gas adsorption capacity
of 2D SnS2 hexagonal nanosheets with the good electrical properties of graphene, and used
the excellent electrical conductivity of graphene to make up for the shortcoming of the poor
conductivity of SnS2 at room temperature and prepared a high-performance RGO/SnS2
heterojunction-based NO2 sensor. Compared with the single SnS2 gas sensor, the graphene-
doped sensor exhibited better selectivity to NO2, while effectively reducing the optimal
operating temperature of the device, and its response to 5 ppm NO2 gas increased by nearly
one order of magnitude, and the response recovery time was reduced to less than a minute.
Compared with the single SnS2 gas sensor, the graphene-doped sensor exhibited good
selectivity to NO2, while effectively reducing the optimal operating temperature of the
device, and its response to 5 ppm NO2 gas increased by nearly one order of magnitude,
and the response recovery time was shortened to less than one minute.

4.3. 2D Metal Oxide Based Gas Sensors

2D semiconductor oxide nanosheets are also commonly used 2D materials in the
field of gas sensors. Among them, layered MoO3, WO3 and SnO2 have attracted much
attention due to their stability in high-temperature air [84–86]. For example, Cho et al. [87]
reported the preparation of MoO3 nanosheets by ultrasonic spray pyrolysis, and studied
their gas-sensing properties, and found that there was still a response even when the gas
concentration of trimethylamine was lower than 45 ppb. The super sensitivity to trimethy-
lamine gas is inseparable from its larger specific surface area, as ultrathin nanosheets with
the larger specific surface area can provide a larger electron depletion layer and a faster gas
diffusion rate across the nanosheets. In addition, MoO3 is an acidic oxide, which is more
likely to react with basic gas preferentially, so it has super selective properties for basic gas
trimethylamine. Wang et al. [88] prepared WO3 porous nanosheet arrays by chemical bath
deposition, and found that WO3 arrays composed of 20 nm ultrathin porous nanosheets
had better low-temperature NO2 gas sensing properties. At an operating temperature of
100 ◦C, the response to 10 ppm NO2 was as high as 460.

For 2D metal oxide nanomaterials, the difference in exposed crystal planes will affect
their gas sensing properties. For example, Kaneti et al. used a simple and effective
hydrothermal method to prepare ZnO nanosheets. By simulating the adsorption of gas
molecules on the surfaces of different ZnO crystals, it was found that the enhanced gas-
sensing performance of ZnO nanosheets is related to the exposed surface, the (1010) face of
ZnO possesses better adsorption capacity for n-butanol than the (1120) face and (0001) face,
showing higher responsiveness, better selectivity, and higher stability [89]. In addition,
Wang et al. [90] used a two-step method to synthesize ultrathin porous In2O3 nanosheets
with uniform mesopores and found that they exhibited an ultra-high response to 10 ppb
NOx at a lower operating temperature (120 ◦C), its sensitivity response value was 213,
and the response time was 4 s. The thickness of the ultrathin nanosheets is about 3.7 nm,
with a large number of active reaction sites, which can enhance the response to NOx, and
the porous structure can shorten the gas transmission path and enhance the gas diffusion
efficiency, thereby improving the gas sensing performance. Wang et al. synthesized
Co3O4 mesh nanosheet arrays for the detection of NH3 [91]. The porous mesh structure
promoted gas diffusion and provided a larger active reactive surface to react with the
target gas, thereby improving the gas sensing performance. Therefore, even when the
NH3 concentration is 0.2 ppm, the sensor still has obvious response characteristics. The
response/recovery time of Co3O4 nanosheet arrays to 0.2 ppm NH3 is 9 s/134 s, showing
good reproducibility and long-term room temperature stability.

2D nanostructures have shown great potential in the field of gas sensing due to their
high specific surface area and highly efficient active sites on exposed surfaces. To further en-
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hance the gas-sensing properties of 2D metal oxides, ion doping or surface modification on
them is a valuable approach to enhance the response and recovery properties. For example,
Chen et al. [92] prepared 2D Cd-doped porous Co3O4 nanosheets by microwave-assisted
solvothermal method and in situ annealing process, and investigated their sensing perfor-
mance for NO2 at room temperature. It was found that 5% Cd-doped Co3O4 nanosheets
significantly improved the response to NO2 at room temperature (3.38), decreased the
recovery time (620 s), and lowered the detection limit to 154 ppb. The reason for the
performance improvement is that Cd doping mainly promotes the adsorption of NO2
through a series of factors such as enhancing the electronic conductivity, increasing the
concentration of oxygen vacancies, and forming Co2+ - O2−, thus promoting its excellent
room temperature sensing performance.

4.4. Other 2D Material-Based Gas Sensors

MXene is a new type of 2D material with layered structure discovered in recent years,
which is generally transition metal carbide or carbon-nitrogen compound, and is a MAX
ternary phase material. Its general structural formula is Mn+1AXn (n = 1, 2 or 3), where
M is one of transition metal elements, A is one of the main group elements (mainly III,
IV group elements), X It is carbon or nitrogen, and there are more than 70 kinds of MAX
materials. MXene materials are 2D materials formed by extracting element A in MAX. The
general formula is Mn+1Xn (n = 1, 2 or 3) [93,94]. Due to the characteristics of conventional
semiconductor materials and the fact that a large number of functional groups and other
active sites remain on the surface after etching, which facilitates subsequent modification,
such materials have great application potential in the field of sensing [94,95].

Xiao et al. applied MXene nanomaterials to the detection of NH3 gas in 2015 [83]. Since
the successful synthesis of 2D compound MXenes by Gogotsi et al. in 2011, the application
of 2D MXene nanomaterials in gas sensing has been continuously developed [96–98]. For
example, Lee et al. [99] reported a Ti3C2Tx-based gas sensor. After studying the room-
temperature gas sensing performance of Ti3C2Tx nanosheets on flexible polyimide, it was
found that the Ti3C2Tx sensor exhibited p-type sensing behavior for reduced gases, with a
theoretical detection limit of 9.27 ppm for acetone. Based on the charge interaction between
gas molecules and Ti3C2Tx surface functional groups -O and -OH, the sensing mechanism
of Ti3C2Tx is proposed. Chae et al. [100] investigated the dominant factors affecting the
oxidation rate of Ti3C2Tx flakes and their corresponding sensing properties. In order to
improve the sensing performance of MXenes, the gas sensing performance of MXene-based
sensors has been realized by surface chemistry and composite structure. Yang et al. [101]
prepared organic-like Ti3C2Tx by HF acid etching, added the prepared powder to NaOH
solution, and used alkali treatment to demonstrate the effect of surface groups on its sensing
performance. It was found that the response of the alkali-treated Ti3C2Tx sensor to 100 ppm
NH3 at room temperature was two times higher than that of the untreated one. This is
due to the adsorption of N atoms in NH3 molecules on top of Ti atoms in Ti3C2Tx to form
strong N-Ti bonds. Alkaline treatment increased the -O end, increased N-Ti bond, and
promoted the increase of NH3 adsorption. Furthermore, after oxygen functionalization,
Ti3C2Tx increased the resistance by transitioning to a semiconductor, thereby increasing
the gas response signal. Besides Ti3C2Tx, 2D MXenes such as V2CTx and Mo2C have also
been investigated for gas sensors [102,103]. The 2D V2CTx sensor composed of monolayer
or multilayer 2D V2CTx on polyimide film fabricated by Lee et al. [102] can measure polar
gases (hydrogen sulfide, ammonia, acetone, and ethanol) and non-polar gases at room
temperature (hydrogen and methane). The V2CTx sensor shows ultrahigh sensitivity for
non-polar gases, with minimum detection limits of 2 ppm and 25 ppm for hydrogen and
methane, respectively.

5. Metal Oxide Nanomaterials-Based Gas Sensors

Because of its large specific surface area, high surface activity, many active sites
and sensitive to the surrounding environment, the gas sensor prepared by metal oxide
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nanomaterials has high response sensitivity and fast response-recovery speed. According
to the semiconductor type, metal oxide semiconductors can be divided into n-type and
p-type. In n-type semiconductors, including SnO2, ZnO, TiO2, In2O3, etc., the carriers are
mainly free electrons. However, in p-type semiconductors, such as CuO, NiO, Co3O4, etc.,
the carriers are mainly holes. When n-type semiconductors are exposed to reducing gases
(such as ethanol, NH3, H2, etc.), the resistance of the materials will decrease, while when
exposed to oxidizing gases (such as NO3), the resistance of the materials will increase. In
contrast to n-type semiconductors, the resistance of p-type semiconductors is higher when
exposed to reducing gas and decreases when exposed to oxidizing gas. At present, the
most studied metal oxide materials for gas sensing are SnO2, ZnO, TiO2, CuO, WO3 and so
on [57,104–107].

5.1. SnO2-Based Gas Sensors

SnO2 is a kind of direct band gap wide band gap n-type semiconductor (band gap
~ 3.6 eV), whose carriers are free electrons. The interaction with the reducing gas will
increase the electrical conductivity. However, the oxidized gas will consume the sensing
layer of charged electrons, resulting in a decrease in electrical conductivity [108]. SnO2
nanomaterials are widely used in the field of gas sensing because of their simple preparation,
low cost, easy control of morphology, and microstructure, good thermal/chemical stability,
shallow donor energy level (0.03–0.15 eV), potential barrier of oxygen adsorption on
the surface is 0.3–0.6 eV, oxygen vacancy and excellent gas-sensing properties [109–111].
Thanks to its high sensitivity to different gases, SnO2 sensor can detect low concentration
gases, but its selectivity is low.

In order to improve the sensitivity, stability, and selectivity of SnO2-based gas sensors
and reduce the working temperature, researchers modified SnO2 materials by a variety of
methods. One method is to control the morphology and size of SnO2 materials to prepare
zero-dimensional (0D), one-dimensional (1D), 2D, three-dimensional (3D) and porous
hollow SnO2 nanomaterials for the detection of various gases [112–117]. For example,
Zhang et al. successfully synthesized leaf-like SnO2 hierarchical architectures by using a
simple template-free hydrothermal synthesis method. The sensor based on this unique
leaf-like SnO2 hierarchical structure had a high response and good selectivity to NO2 at
low operating temperature [118]. Feng et al. synthesized mesoporous SnO2 nanomaterials
with different pore sizes (4.1, 6.1, 8.0 nm) by carbon-assisted synthesis. The gas sensing
properties of the three materials showed high sensitivity and ideal response recovery time
to ethanol gas, and the detection limit was as low as ppb [119].

Using doping modification technology, SnO2 nanomaterials are used as the matrix
materials of gas sensors, which are modified by doping precious metals (such as Pt, Pd and
Au) or other metal ions (such as Ni, Fe and Cu). It is another important means to improve
the gas sensing properties of SnO2 to CO, CH4, NO2 and other gases. For example, Dong
et al. prepared SnO2 nanofibers and Pt-doped SnO2 nanofibers by electrospinning, which
were used to test the sensitivity to H2S. It was found that the response of Pt-doped SnO2
nanofibers to H2S gas was significantly improved. The response of 0.08 wt% Pt-doped
SnO2 nanofibers to 4–20 ppm H2S was 25.9–40.6 times higher than that of pure SnO2
nanofibers [120]. Chen et al. prepared Pd-doped SnO2 nanoparticles by the coprecipitation
method. Compared with pure SnO2 nanoparticles, the response characteristics of SnO2
to CO were significantly improved [121]. Lee et al. used Pd nanoparticles to modify the
surface of SnO2 nanorod thin films, and studied their sensing properties for H2 and ethanol
gas [122]. It was found that compared with the undoped samples, the responsiveness of
Pd-doped SnO2 nanorod thin films to 1000 ppm H2 and ethanol at 300 ◦C was increased by
6 and 2.5 times, respectively. They assumed that the improved gas sensing properties are
due to the formation of the electron depletion layer and the enhanced catalytic dissociation
of molecular adsorbates on the surface of Pd nanoparticles. Shen et al. also studied the
gas-sensing properties of SnO2 by Pd doping [123]. SnO2 nanowires with a tetragonal
structure were synthesized by thermal evaporation. The morphology, crystal structure,
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and H2 gas-sensing properties of undoped and Pd-doped SnO2 nanowires were studied.
It was found that with the increase of Pd doping concentration, the working temperature
decreased and the response of the sensor to H2 increased. Similarly, doping Au into SnO2
thin films can change the morphology of SnO2 thin films, reduce the grain size of SnO2
thin films, decrease the working temperature of the sensor, and improve the sensitivity and
selectivity of SnO2 to reducing gases such as CO [124]. Zhao et al. carried out Cu doping
on SnO2 nanowires. Compared with undoped SnO2 nanoscale arrays, the sensitivity and
selectivity of the sensor to SO2 in a dry environment were improved significantly [125].

In addition, the researchers synthesized composite nanomaterials containing two
different energy band structure materials to form heterostructures to improve the gas
sensing performance of SnO2-based gas sensors. For example, Chen et al. prepared
Fe2O3@SnO2 composite nanorods with multi-stage structure by a two-step hydrothermal
method and found that the composite structure has good selectivity for ethanol [126].
Xue et al., using SnO2 nanorods synthesized by hydrothermal method as carriers, obtained
SnO2 composite nanorods loaded with CuO nanoparticles by ultrasonic and subsequent
calcination in Cu (NO3)2 solution. The gas sensing properties of the materials for the
detection of H2S were studied. It is found that the sensitivity of the sensor to 10 ppm H2S
can reach 9.4 × 106 at 60 ◦C [127]. The ultra-high sensitivity of the composite is attributed to
the p-n junction formed between CuO and SnO2. In the air, the formation of heterojunction
increases the height of the energy barrier, hinders the flow of electrons, resulting in an
increase in the resistance of the material. When the material is in contact with H2S and
reacts, it can form CuS, which is similar to metal conductivity, which greatly enhances the
electrical conductivity of the material. Fu et al. prepared NiO-modified SnO2 nanoparticles,
which increased the thickness of the electron depletion layer on the surface of SnO2 through
the formation of p-n heterojunction in air. While in the SO2 atmosphere, NiO reacted with
SO2 to form NiS, which promoted the release of electrons from the surface adsorbed O−

to SnO2, thus enhancing the response of the device to SO2 gas and improving the gas
sensitivity of SnO2 materials to SO2 [128].

5.2. ZnO-Based Gas Sensors

ZnO is an n-type metal oxide semiconductor material with a wide band gap (3.3 eV).
ZnO is widely used in the field of gas sensors because of its good chemical stability and low
resistivity. Yuliarto et al. successfully synthesized ZnO nanorod thin films on Al2O3 sub-
strates by chemical bath deposition (CBD) [129]. ZnO thin films with different thicknesses
were prepared by different times of CBD processes. By optimizing the thickness of ZnO
thin films, the response performance of ZnO-based gas sensors to SO2 was improved. The
gas sensing response of the ZnO film of two CBD to 70 ppm SO2 at 300 ◦C is 93%, which is
15% higher than that of the ZnO film of one CBD. At different operating temperatures, the
response of ZnO nanorods prepared by two CBD deposition is 20–40% higher than that
of ZnO nanorods deposited by one CBD deposition. Wang et al. successfully prepared
three kinds of ZnO nanostructures (nanorods, flowers, and spheres) with different mor-
phologies by a simple hydrothermal and water-bath method, and studied their sensing
properties of NO2 at room temperature under UV (365 nm LED) excitation, as shown in
Figure 8 [130]. It was found that ZnO nanospheres have the highest response (29.4) to
5 ppm NO2 (Figure 8d,e), which was mainly due to the largest specific surface area and the
largest number of oxygen ions adsorbed on the surface of ZnO nanospheres. However, due
to the high crystallinity, few surface defects and unidirectional electron transfer path, the
response speed and recovery speed of ZnO nanorods are the fastest (9 s and 18 s, respec-
tively) (Figure 8f,g). For ZnO nanoflowers, the gas sensing response, response and recovery
rate are between ZnO nanorods and ZnO nanospheres. All three kinds of ZnO have good
selectivity and repeatability for NO2 (Figure 8h,i). The good selectivity of ZnO to NO2 is
attributed to the following two points: (1) NO2 molecule has an unpaired electron, which
is beneficial to its chemisorption on ZnO surface; (2) NO2 molecule has the smallest bond
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energy, which is about 312.7 kJ/mol. The smaller the bond energy is, the more favorable
the sensing reaction is, especially for the sensors working at room temperature.
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Reprinted with permission from Ref. [130]. Copyright 2021 Elsevier.

Similar to the SnO2-based gas sensor, researchers changed the cell parameters of the
original ZnO by element doping, making it produce lattice deformation, cause the surface
defects of the gas sensing materials, and increase the surface active sites, so as to improve
the gas sensing properties of the sensitive materials [131,132]. For example, Chaitra et al.
prepared Al-doped ZnO thin films by the sol–gel method and spin-coating technique [133].
It was found that 2 at.% Al-doped ZnO thin films have the highest sensitivity to 3 ppm SO2
gas at 300 ◦C, which was lower than the threshold limit. Kolhe et al. prepared Al-doped
ZnO thin films by chemical spray pyrolysis [134]. It was found that the doping of Al
in ZnO led to the fracture of thin nanofilms, resulting in more active sites. Al doping
also leads to the increase of oxygen vacancy-related defects and the change of crystal size
due to the difference of ion radius between Al3+ and Zn2+ ions. The doped sensor has
enhanced sensing characteristics, which also leads to the decrease of the optimal operating
temperature. Xiang et al. used the photochemical method to embed Ag nanoparticles
into ZnO nanorods and studied their gas-sensing properties [135]. It was found that Ag
nanoparticles embedded on the surface of ZnO nanorods could improve the performance
of the sensor. The response of ZnO nanorods to 50 ppm ethanol was almost three times that
of pure ZnO nanorods, and had long-term stability. After 100 days of exposure to ethanol
in 30 ppm, the response of the sensor had no obvious degradation.
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The heterostructure is an important means to improve the gas sensing properties of
semiconductor oxides, which usually includes two kinds of semiconductor oxides with
different Fermi levels. When two kinds of semiconductor oxides come into contact with
each other, the free electrons will change from the oxidation stream with a higher Fermi
level to the oxide with a lower Fermi level. Compared with the single semiconductor
oxide, the electron transfer efficiency of the two semiconductor oxides is higher, and a
thicker electron depletion layer and higher resistance can be formed at the contact interface.
Therefore, the introduction of heterojunction can effectively improve the performance
of the semiconductor gas sensor. For example, Kim et al. synthesized p-n CuO/ZnO
core–shell nanowires by thermal oxidation and atomic layer deposition, and studied their
sensing properties to reduce gas by controlling the thickness of the ZnO shell [136]. When
the shell thickness is less than or equal to Debye wavelength (λD), a complete electron
depletion layer will be formed. When exposed to the reducing gas (CO), the desorption
of surface oxygen releases electrons back into the conduction band of the shell, returning
the conduction band to its original state and significantly improving the conductivity
(Figure 9a). When the thickness of the shell is higher than λD, only part of the electron loss
will be caused. When reducing gases are introduced, they are adsorbed on the partially
depleted shell, and the resistance changes only slightly, as shown in Figure 9b. Therefore,
for p-n heterostructure nanowires, controlling the shell thickness plays an important role
in improving the performance of gas sensors. Zhou et al. prepared NiO/ZnO nanowires
by one-step hydrothermal method and tested their gas sensing properties to SO2 [137]. It
was found that at the optimum operating temperature of 240 ◦C, the response of NiO/ZnO
nanowires to 50 ppm SO2 was 28.57, and the gas detection range was 5–800 ppm. The
response time, response time and recovery time of the prepared NiO-ZnO nanowires gas
sensor to 20 ppm SO2 gas were 16.25, 52, and 41 s, respectively.
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5.3. CuO-Based Gas Sensors

CuO is a typical p-type semiconductor oxide material with a band gap of 1.2–1.9 eV.
Because of its good electrical properties, chemical stability, catalytic activity and other
physical and chemical properties, CuO has been widely studied in the fields of catalysis,
optoelectronic devices, gas sensors and so on. CuO can respond to reducing gases at
lower operating temperatures, which attracts researchers to prepare different morphologies
of CuO, doped CuO and heterostructure CuO for gas sensors to study their gas sensing
properties. For example, Li et al. prepared porous CuO nanosheets on alumina tubes by
hydrothermal method, which were used to make gas sensors to detect H2S [138]. It was
found that when the concentration of H2S is as low as 10 ppb, the response sensitivity of
the sensor was 1.25, and the response and recovery time were 234 and 76 s, respectively.
Navale et al. synthesized CuO thin films that composed of CuO nanocubes on quartz
substrates by simple and catalyst-free thermal evaporation technique, and studied their
gas sensing properties [139]. It was found that CuO thin films have strong selectivity for
NO2 gas, and the response speed and recovery time are fast. At 150 ◦C, the maximum
response value of CuO sensor film to NO2 of 100 ppm was 76, the detection limit was
1 ppm, and the response time was only 6 s, but the recovery time was 1200 s. Huang et al.
prepared CuO hollow microspheres by precipitation annealing at 270 ◦C using CuSO4,
Na2CO3, and cetyltrimethyl ammonium bromide (CTAB) as raw materials [140]. The CuO
hollow microspheres showed good gas sensitivity to ethanol. The response sensitivity
to ethanol at 250 ◦C was 5.6 and the response and recovery times were 17.0 and 11.9 s,
respectively. Hu et al. fabricated CuO nanoneedle arrays directly on commercial ceramic
tubes by magnetron sputtering, wet chemical etching and annealing, which have good
selectivity, reproducibility and long-term stability for low concentration H2S (10 ppm) [141].
For metal oxide semiconductors, high specific surface area and exposed crystal plane are
two key factors that determine their gas sensing properties. In order to study the effect
of surface structure on gas sensing properties, Huo et al. obtained CuO nanotubes on
(111) exposed surfaces and CuO nanocubes on (110) exposed surfaces in Cu nanowires and
Cu2O nanocubes, respectively, which were used to detect the gas sensing properties of CO
gas, as shown in Figure 10 [142]. The results indicated that compared with CuO nanocubes,
CuO nanotubes have lower optimal operating temperatures and higher sensitivity for CO
gas detection.
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Although pure CuO as a sensitive material can be used to detect a variety of toxic and
harmful gases. However, it still faces some problems in practical applications, such as low
sensitivity, high working temperature, poor selectivity, long response/recovery time and so
on. For this reason, researchers use doping, recombination and other methods to improve
the gas sensing performance of CuO-based gas sensors, and achieved some remarkable
results. The doping of precious metals or rare earth elements can greatly increase the active
sites of CuO gas-sensing reaction, which is beneficial to the adsorption of gas molecules
on the sensitive material surface, and most of the dopants have strong catalytic activity,
which can further enhance the gas sensing reaction. For example, Hu et al. prepared
CuO nanoflowers with different Pd-doping concentrations by simple water-bath heating
method [143]. Compared with pure CuO, the specific surface area of CuO nanoflowers
with a size of about 400 nm prepared when the mass fraction of Pd was 1.25% increased by
1.8 times, and the response (Rg/Ra) to 50 ppm H2S at 80 ◦C was 123.4, which was 7.9 times
that of pure CuO. In addition, the gas sensor has good stability and repeatability. Tang et al.
prepared Pt-doped CuO nanoflowers by the same method, which significantly improved
the gas sensing performance of the sensor to H2S gas [144]. When the amount of Pt doping
was 1.25 wt.%, the response of the sensor to 10 ppm H2S at 40 ◦C was 135.1, which was
13.1 times that of pure CuO. The researchers also selected other metal elements to dope
CuO, and achieved excellent results. For example, Mnethu et al. reported a highly sensitive
and selective Zn-doped CuO nano-chip-based sensor [145]. At 150 ◦C, the response of 0.1
at.% Zn-doped CuO samples to 100 ppm xylene gas was 53. Bhuvaneshwari et al. reported
a Cr-doped CuO nanoboat, which significantly improves the sensing performance of NH3
in the concentration range of 100–600 ppm at room temperature [146]. The gas sensing test
results show that the sensitivity of CuO nanospheres doped with atomic fraction 6% Cr to
NH3 at room temperature was 2.5 times higher than that of undoped nanospheres. The
enhanced gas sensing performance is attributed to the increase of oxygen vacancy caused
by chromium doping, which makes the nanospheres absorb more surface oxygen, and
chromium doping also reduces the activation energy of the sensor at low temperatures.
Al-doped CuO [147], In-doped CuO [148], and Ag-doped CuO [149] also showed excellent
gas sensing properties for target gases.

The composite gas sensor can integrate the unique properties of the material and
improve the performance of the sensor through complementary enhancement. Researchers
have designed a variety of CuO-based composite gas sensors to improve the selectivity of
target gases, enhance gas sensing properties, shorten response/recovery time and reduce
the optimal operating temperature, especially semiconductor oxides with heterostructures.
For example, Sui et al. used the template-free hydrothermal method to grow multi-layer
heterogeneous CuO/NiO nanowires on ceramic tubes for the detection of H2S gas [150].
The CuO/NiO-based sensor has a wide linear range in the 50~1000 ppb range and has good
repeatability, selectivity and long-term stability. At 133 ◦C, the 2.84 at.% CuO modified
NiO showed good sensing properties, and the response to 5 ppm H2S was 36.9, which
was 5.6 times higher than that of NiO. The detection limit of H2S is further reduced
from 1 ppb of pure NiO sensor to 0.5 ppb. Park et al. synthesized SnO2-CuO hollow
nanofibers by electrospinning and thermal processing, which can be used in the field
of H2S gas sensing [151]. The electrospun nanofiber materials have the advantages of
large surface area, high porosity and permeability to air or moisture, which is conducive
to ionic diffusion and suitable for applications in gas sensors, lithium-ion batteries and
wound healing [152,153]. SnO2-CuO nanotubes increase the specific surface area, decrease
the working temperature and improve the sensing performance of H2S. At the working
temperature of 200 ◦C, the sensitivity of hollow SnO2-CuO nanotubes to 5 ppm H2S was
1395 and the response time was 5.27 s. Liang et al. also prepared the heterostructure of
In2O3 nanofibers supported on CuO by electrospinning and studied the sensing properties
of H2S [154]. The gas sensor based on the heterostructure had a high sensitivity to 5 ppm
H2S gas at 150 ◦C, which was 225 times higher than that based on pure In2O3, even at
room temperature. The above research results show that the construction of heterojunction
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composites can effectively improve the sensitivity and selectivity of the gas sensor, reduce
the working temperature, accelerate the response/recovery speed and prolong the life of
the sensor.

5.4. Other Metal Oxide-Based Gas Sensors

WO3 is a kind of n-type wide band gap semiconductor oxide, which has the advantages
of photoelectric conversion, electrochromism, photocatalysis, and gas sensitivity, so it is
used in a variety of optoelectronic devices. WO3 is more likely to form oxygen defects and
unsaturated coordination bonds. When WO3 is heated in the air, it is easy for O2 to seize
e− to form O−. The formed O− is chemically adsorbed on the surface of WO3 and forms an
electron depletion layer. When operating at a low temperature, it is easy to form O2−. when
it is at a higher operating temperature, it is easy to form O− and O2− [155,156]. Therefore,
WO3 is an effective gas sensing material, especially more sensitive to reducing gas. For
example, Hu et al. synthesized WO3 nanorods with needle-shape via a hydrothermal
mehod and subsequent calcination, which showed high performance for triethylamine gas
sensing [157]. By comparison, it was found that WO3 nanosheet devices showed the highest
response and the shortest response time to 1–10 ppm SO2. Li et al. proposed a method
for the synthesis of WO3 particles assisted by ionic liquids. The hollow sphere structure
composed of WO3 nanorods, nanoparticles and nanosheets was synthesized. Their gas
sensing properties for various organic compounds (methanol, ethanol, isopropanol, ethyl
acetate and toluene) were studied. It was found that it has remarkable sensitivity, low
detection limit and fast response/recovery time [158]. Li et al. prepared SnO2-WO3
hollow nanospheres with a diameter of about 550 nm and a thickness of about 30 nm
by hydrothermal method, and studied the temperature dependence of humidity sensors
prepared at different relative humidity and temperature. It is found that compared with
the original WO3 nanoparticles and SnO2 nanoparticles, SnO2-WO3 hollow nanospheres
have excellent sensing properties [159].

α-Fe2O3 is also a typical n-type semiconductor with a narrow band gap (2.2 eV), low
cost, high stability, high corrosion resistance, and non-toxicity, so it has attracted great
attention as a gas sensing material [160,161]. Liang et al. successfully synthesized ultrafine
and highly monodisperse α-Fe2O3 nanoparticles with an average particle size of 3 nm by a
simple reverse microemulsion method, which showed high sensitivity, high selectivity and
good stability to acetone [162]. Shoorangiz et al. synthesized α-Fe2O3 nanoparticles by a
sol–gel method and evaluated their gas-sensing properties for ethanol and other gases [163].
At the optimal sensing temperature of 150 ◦C, it has good selectivity to ethanol gas, and
the response to 100 ppm ethanol gas was 14.5%. Qu et al. reported high-performance
gas sensors based on MoO3 nanoribbons that were modified by Fe2O3 nanoparticles [164].
Compared with the original MoO3 nanoribbons, the reaction of p-xylene in the Fe2O3
nanoribbons modified by Fe2O3 nanoparticles increased by 2–4 times due to the formation
of heterojunction between Fe2O3 and MoO3.

As a p-type single metal oxide semiconductor, Co3O4 is also used to test gas sensitivity.
It has been found to have a good gas sensing response to H2S in some studies [91,165].
Among different types of metal oxides, p-type Co3O4 is also considered to be the best
candidate for ethanol gas sensing. For example, Li et al. reported that Co3O4 nanotubes
are sensitive to ethanol gas at room temperature, and Co3O4 sensors show excellent re-
peatability after more than 50 tests [166]. Sun et al. obtained monodisperse porous Co3O4
microspheres by solvothermal method and thermal decomposition [167]. The gas sensing
properties of these Co3O4 microspheres were compared with those of commercial Co3O4
nanoparticles. These Co3O4 microspheres showed higher ethanol sensitivity and selectivity
at relatively low temperatures. In addition, Zhang et al. synthesized three kinds of Co3O4
with different morphologies (cube, rod, and sheet) by a hydrothermal method, and studied
their sensing properties to toluene [168]. It was found that the sensor based on the Co3O4
flake structure had better sensing performance for toluene than the other two sensors. At



Nanomaterials 2022, 12, 982 22 of 40

the working temperature of 180 ◦C, the fabricated sensor showed higher sensitivity, faster
response and recovery speed, as well as better selectivity.

6. 2D Materials/Metal Oxide-Based Gas Sensors

As a class of important materials for various sensors, semiconducting metal oxides
have been widely used in various redox gas sensing due to their high sensitivity, simple
preparation, and low price. However, disadvantages such as high temperature and easy
agglomeration can also be found. Especially the disadvantage of high working temperature
makes it extremely demanding on the working conditions of the environment, which greatly
affects the service life. 2D materials such as graphene have unique physical and chemical
properties, which can generate gas-sensitive responses at room temperature and have good
selectivity. 2D materials can not only provide active sites for catalysts and sensors, but also
serve as flat building blocks for forming complex nanostructures. Using 2D materials as
a matrix to support semiconducting metal oxides can reduce the agglomeration of metal
oxides and expose more adsorption and reaction sites. Due to the large specific surface
area and high porosity of 2D materials, the response sensitivity and selectivity of metal
oxides to specific gases can be further improved, and the working temperature can be
reduced. Meanwhile, the synergistic effect and heterostructure of layered 2D materials
and metal oxides can not only bring out the greatest advantages of both components but
also overcome their respective defects, thereby improving the comprehensiveness of gas
sensing performance. Therefore, the combination of 2D materials and metal oxides has
become an important research direction in the field of gas sensors.

6.1. Synthesis of 2D Materials/Metal Oxide Composites

The properties of a material have a great relationship with its morphology, structure,
and its composition. Single-component nanomaterials are far from meeting the develop-
ment and application needs of modern nanotechnology, while multi-component composite
materials combine the characteristics of different materials show better performance than
their single components. It is of great significance in developing new materials, studying
novel properties of materials, and constructing functional gas sensors. The preparation
methods of 2D materials/metal oxide composites mainly include hydrothermal synthesis,
microwave-assisted synthesis, self-assembly, chemical reduction method, and others. In
this section, we would like to present a brief introduction to these potential synthesis
methods for 2D materials/metal oxide composites.

Hydrothermal synthesis is a common method for the preparation of 2D materi-
als/metal oxide nanocomposites, which has the advantages of simple operation, mild
conditions, and low cost. Usually, the precursor solution is put into a high-pressure reactor,
hydrothermally reacted under high temperature and high pressure, and then the composite
material is prepared by post-processing methods such as separation, washing, and drying.
Many 2D materials/metal oxide nanocomposites have been synthesized and used for the
fabrication of gas sensors. For example, Chen et al. [169] prepared a core–shell structure
composed of TiO2 nanoribbons and Sn3O4 nanosheets by a two-step hydrothermal reaction.
Sn3O4 nanosheets were uniformly immobilized onto the surface of porous TiO2 nanorib-
bons. It was found that the structural morphology of the products in the hydrothermal
process is affected by the reaction time. Chen et al. [170] investigated the effect of hy-
drothermal reaction temperature on the morphology of oxide materials. At a relatively high
temperature, they obtained SnO2-decorated TiO2 nanoribbons. Wang et al. [171] obtained a
composite structure based on SnO2 nanoparticles and TiO2 nanoribbons by controlling the
precursor solution. Precise control of the hydrothermal synthesis conditions is a key factor
for the preparation of high-quality and diversely shaped metal oxide nanostructures. In
addition to metal oxide-based 2D composites, the composites of metal oxides and other 2D
materials such as graphene have also been prepared by hydrothermal methods. For exam-
ple, Chen et al. [172] prepared Co3O4/rGO composites by the hydrothermal method, and
studied their gas-sensing properties to NO2 and methanol at room temperature. Chen and



Nanomaterials 2022, 12, 982 23 of 40

co-workers [173] synthesized SnO2 nanorods/rGO composite nanostructures by hydrother-
mal method and investigated their NH3 sensing properties. Liu et al. [174] fabricated a
layered flower-like In2O3/rGO composites by a one-step hydrothermal method. The syn-
thesized materials were further utilized for the fabrication of gas sensors, which exhibited
improved sensing performance for 1 ppm NO2 at room temperature compared with pure
In2O3-based gas sensors. The hydrothermal synthesis usually reacts at high temperatures
(>150 ◦C). When the metal oxide is coupled with 2D materials for gas sensing, the operation
temperature will be decreased, which is lower than the materials preparation temperature.
Thus, the thermal stability and applicability of the heterostructures for gas sensors can
be improved.

The microwave-assisted synthesis of materials uses microwaves to provide energy for
the reaction, and it is different from the traditional heating method. It uses microwaves
to make the reactants generate heat by themselves to promote the reaction. It has the
characteristics of uniform heating and high heating efficiency. For example, Pienutsa et al.
synthesized SnO2 decorated RGO and further used the created SnO2-RGO composite for
the real-time monitoring of ethanol vapor [175]. In another similar study, Kim et al. [176]
obtained SnO2/graphene heterostructured composites by microwave-treating graphene/SnO2
nanocomposites, in which graphene-enhanced efficient transmission of microwave energy and
facilitated the evaporation and redeposition of SnOx nanoparticles.

Chemical reduction has been often used to synthesize composite nanostructures of
RGO and metal oxides. Usually, a metal salt solution is used as a precursor to be mixed with
a graphene oxide dispersion solution, and a chemical reducing agent is used to reduce it in
one step to obtain RGO. This method usually relies on a microwave, hydrothermal reaction,
and other sources to provide energy. For example, Russo et al. [177] synthesized SnO2/rGO
composites using SnCl4 and GO as precursors. Under the irradiation of microwave, GO
and SnCl4 were reduced to form SnO2/rGO composites, which were further reacted
with H2PtCl6 to form Pt-SnO2/rGO composites. The created composites exhibited high
sensitivity to hydrogen at room temperature.

Besides the above-introduced methods, other techniques such as self-assembly can
also be utilized for the synthesis of 2D materials/metal oxide composites. For instance,
Zhang et al. fabricated rGO/TiO2 multilayer composite films using a layer-by-layer self-
assembly process, and the fabrication process is shown in Figure 11 [178]. The rGO/TiO2
multilayer composite films were fabricated by alternately depositing TiO2 nanospheres
and GO via the layer-by-layer self-assembly technique to form nanostructures, and then
thermally reducing GO to rGO. Since p-type rGO and n-type TiO2 form a p-n heterojunction
at the interface, the depletion layer generated by the built-in electric field will be beneficial
to control the carrier transport process inside the material. It is clear that SO2 acts as
an electron donor, which increases the electron concentration of the composite material,
resulting in a decrease in device resistance. The device could be used to detect SO2 gas at
as low as 1 ppb at room temperature with good selectivity and stability. The response of
the fabricated gas sensor to 1 ppm SO2 was 10.08%, and the response and recovery times
were 95 and 128 s, respectively.
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6.2. Graphene/Metal Oxide Composite-Based Gas Sensors

Metal oxide-based gas sensors have the advantages of low production cost, good stability,
wide application range, and easy integration with portable devices, and have been widely used
in the measurement and monitoring of toxic and harmful gases [128,130,148,163]. However,
since metal oxide-based sensors are limited by the required high operating temperature,
they often bring additional energy consumption. In order to reduce the temperature for
gas detection, composite materials are used as gas sensing materials. Taking advantage of
the excellent gas sensing properties of metal oxides and the unique electrical, mechanical
and thermodynamic properties of graphene, the formed graphene/metal oxide composites
revealed high potential in the field of gas sensing.

Compared with traditional semiconductor gas sensing materials, graphene/metal
oxide composite materials combine the advantages of the two materials and can produce
synergistic effects for gas sensing, often with higher sensitivity, faster response/recovery
speed, and lower noise signal. For example, Li et al. [179] prepared the rGO/ZnO hollow
spheres by a one-step solvothermal method, in which the ZnO hollow spheres were uni-
formly immobilized on the surface of rGO nanosheets. When used as a material for the gas
sensor to detect NO2, the composite material exhibited fast response and high sensitivity to
NO2 at room temperature. In another case, Liu et al. synthesized rGO/ZnO composites by
a redox method, and the prepared gas sensor had a response value of 25.6% to 5 ppm NO2
with a response time of 165 s and a recovery time of 499 s [180]. Sun et al. used PVP to assist
the synthesis of the composite material rGO/ZnO nanowires. The gas-sensing performance
test indicated that the rGO/ZnO composite material can respond to 500 ppb NH3 at room
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temperature, which is helpful for achieving the ultra-sensitive and high-accuracy detection
of harmful gases [181]. Wang et al. used a one-step hydrothermal method to synthesize
rGO/CuO/ZnO ternary composites to form nanoscale p-n junctions on rGO substrates.
The gas sensors prepared by using the created materials showed excellent response charac-
teristics and good selectivity to acetone, which was almost 1.5 and 2.0 times higher than
those of CuO/ZnO and rGO/ZnO-based gas sensors, respectively [182]. It has become
a research hotspot in the field of gas sensing to improve the performance of gas sensing
materials by combining metal oxide semiconductor materials with 2D graphene materials.

Wang et al. successfully assembled SnO2 onto the surface of GO, and studied the gas-
sensing properties of formaldehyde. It was found that SnO2 can be assembled on the surface
of GO in a large area, and has good gas-sensing response properties to formaldehyde [183].
Wang et al. synthesized SnO2 nanoparticles onto RGO through a hydrothermal reduction to
form SnO2-RGO composites, which exhibited promising application for room-temperature
gas sensing of NO2 [184]. Yin et al. [185] synthesized SnO2/rGO nanocomposites with
the SnO2 particle sizes of 3–5 nm uniformly immobilized on rGO nanosheets through a
heteronuclear growth process by a simple redox reaction under microwave irradiation.
The SnO2/rGO nanostructure on the surface has a sesame cake-like layered structure and
an ultra-high specific surface area of 2110.9 m2·g−1. Compared with SnO2 nanocrystals
(5–10 nm), the designed SnO2/rGO nanostructures have stronger gas-sensing behavior
due to the unique hierarchical structure, high specific surface area, and synergistic effect of
SnO2 nanoparticles and rGO nanosheets. At the optimal operating temperature of 100 ◦C,
the SnO2/rGO-based gas sensor has a sensitivity as high as 78 and a response time as short
as 7 s when exposed to 10 ppm H2S. In a similar study, Kim et al. [176] also synthesized a
graphene/SnO2 composite material by the microwave-assisted method, and then sprayed
the material onto SiO2 substrate to fabricate a NO2 gas sensor. At the optimal operating
temperature of 150 ◦C, the response value of 1 ppm NO2 was 24.7. Its excellent gas-sensing
response may be related to the homojunction between SnO2, the heterojunction between
SnO2 and graphene, and the interstitial defects of Sn atoms in the SnO2 lattice.

Using the novel properties of SnO2, multi-walled carbon nanotubes (MWCNTs), and
rGO, Tyagi et al. developed a hybrid nanocomposite sensor for efficient detection of SO2
gas [186]. The rGO-SnO2 and MWCNT-SnO2 composites were prepared by physical mixing
and spin-coated onto the surface of Pt interdigital electrodes for SO2 gas detection. The
sensing response of the bare SnO2 sensor to 500 ppm SO2 gas at 220 ◦C was 1.2. However,
for the same concentration of SO2 gas, the enhanced sensing response of the MWCNT-SnO2
sensor was 5 at 60 ◦C, while the maximum sensing response of the rGO-SnO2 sensor was
22 at 60 ◦C. The enhanced SO2 gas sensing performance of these composites is mainly
attributed to the p-n heterojunction formed at the interface between n-type SnO2 and p-type
rGO or MWCNT.

Yu et al. [187] successfully synthesized α-Fe2O3@graphene nanocomposites using a
simple low-temperature hydrolysis and calcination process, and fabricated the synthesized
materials into gas sensors to detect different gases. Their prepared α-Fe2O3@graphite
nanocomposites consist of porous α-Fe2O3 nanorods stably and orderly grown on graphitic
nanosheets, as shown in Figure 12a,b. The length of α-Fe2O3 nanorods is related to the
reaction time. When the reaction time was 12 h, the length reached a maximum value of
about 200–300 nm, and the pore size was about 3.7 nm. Compared with pure α-Fe2O3, the
α-Fe2O3@graphite nanocomposite-based sensor exhibited higher sensing performance for
acetone. At the optimal temperature of 260 ◦C, the response of α-Fe2O3@graphite nanocom-
posites to 50 ppm acetone reaches a maximum value of 16.9, which was 2.2 times that
of α-Fe2O3, as shown in Figure 12c. The high sensing performance was attributed to the
porous structure, high specific surface area, and p-n heterostructure of α-Fe2O3@graphite
nanocomposites and the high temperature stability of graphite. When α-Fe2O3 was re-
combined with graphite, due to the large gradient of the same carrier concentration, the
electrons in α-Fe2O3 and the holes in graphite diffuse in opposite directions, so that a built-
in electric field is formed between the interfaces, and the electrons in the depletion layer.
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The energy bands bend until the system reaches equilibrium at the Fermi level (EF), leading
to the formation of a p-n heterojunction. Once the α-Fe2O3@graphite heterojunction sensor
is exposed to acetone gas, the oxygen anions adsorbed on the sample surface undergo a
redox reaction with acetone molecules and release electrons back into α-Fe2O3, resulting
in a decrease in the resistance of the sensor. At the same time, acetone releases electrons
to combine with holes in p-type graphite, resulting in a decrease in hole concentration.
The reduction of holes in graphite leads to an increase in electrons and reduces the con-
centration gradient of the same carriers on both sides of the p-n heterojunction. Therefore,
the diffusion of carriers was weakened and the barrier height of the depletion layer was
reduced, which further reduced the resistance of the α-Fe2O3@graphite sensor, as shown in
Figure 12e.
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of α-Fe2O3@graphite. (c) The responses to 50 ppm acetone of sensor based on α-Fe2O3 and α-
Fe2O3@graphite (with different reaction times) operated at different operating temperatures. (d) The
response of α-Fe2O3 and α-Fe2O3@graphite (with different reaction times) sensors to 50 ppm of
different gases at 260 ◦C. (e) Reaction mechanism diagram of α-Fe2O3@graphite based gas sensor
(Oδ− means O−, O2− and O2

−). Reprinted with permission from Ref. [187]. Copyright 2019 Elsevier.

Co3O4, as a direct bandgap p-type metal oxide semiconductor material, has also re-
ceived extensive attention in gas sensors and other fields due to its outstanding advantages
such as strong corrosion resistance and non-toxicity. For instance, Zhou et al. [188] studied
the performance of a Co3O4-based gas sensor and found that it can only work at tempera-
tures over 200 ◦C. Zhang et al. [189] proposed that the rGO/Co3O4 nanocomposite-based
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sensor can realize the detection of NO2 gas at room temperature. Srirattanapibul et al. [190]
prepared a Co3O4-modified rGO (rGO/Co3O4) nanocomposite-based gas sensor by a
solvothermal method. Co3O4 nanoparticles were distributed on and between the rGO
flakes, and their dosage changed the bandgap and gas sensing properties of rGO. Deco-
rating rGO with Co3O4 nanoparticles promoted the formation of the Co-C bridges, which
enable the exchange of charge carriers between Co3O4 nanoparticles and rGO flakes,
thereby increasing the number of sites for gas reactions to occur and improving gas sensing
performance. The as-prepared 25% rGO/Co3O4-based gas sensor has a sensitivity of 1.78%
and a response time of 351 s towards 20 ppm NH3.

Many studies on the synthesis of the composites by combing graphene with other
metal oxides have also been carried out. For example, Hao et al. [191] synthesized
WO3/rGO porous nanocomposites using a simple hydrothermal and annealing process.
The material-based gas sensor showed good sensitivity to NO2 and some volatile organic
compounds. In another study, Ye et al. [192] fabricated uniform TiO2/rGO membranes
with enhanced NH3 responsiveness by stepwise deposition of GO and TiO2 layers followed
by simple thermal treatment. To make it more clear, here we summarize the gas sensing
properties of the above graphene/metal oxide nanocomposite-based gas sensors, as shown
in Table 1.

Table 1. Sensors based on MOS modified with graphene/GO/rGO gas sensing performances.

Sensor Materials Analyte Response Working
Temperature Refs.

ZnO/rGO NO2 17.4% (100 ppm) RT [179]
ZnO/rGO NO2 25.6% (5 ppm) RT [180]
ZnO/rGO NH3 7.2% (1 ppm) RT [181]
SnO2/GO HCHO 32 (100 ppm) 120 ◦C [183]
SnO2/rGO H2S 78 (10 ppm) 100 ◦C [185]

Graphite/SnO2 NO2 24.7 (1 ppm) 150 ◦C [176]
rGO/SnO2 SO2 22 (500 ppm) 60 ◦C [186]

α-Fe2O3@graphite C3H6O 16.9 (50 ppm) 260 ◦C [187]
rGO/Co3O4 NO2 26.8% (5 ppm) RT [189]
rGO/Co3O4 NH3 1.78% (20 ppm) RT [190]
WO3/rGO NO2 4.3 (10 ppm) 90 ◦C [191]
TiO2/rGO NH3 0.62 (10 ppm) RT [192]

6.3. 2D TMD/Metal Oxide Composite-Based Gas Sensors

Compared with graphene with a zero-band gap, the electronic structure of 2D transi-
tion metal dichalcogenides (TMDs) almost spans the whole range of the electronic structure,
showing richer physical properties and a good application potential in gas sensing. How-
ever, TMD nanosheets are easy to form a dense stack structure in the process of forming a
conductive network, which is not conducive to the full contact between the thin sheet and
gas molecules in the conductive network, so its sensitivity and response recovery speed
at room temperature need to be improved. TMDs and other metal oxide semiconductor
materials form p-n heterojunction as a new type of electronic device, which can improve
its gas sensing performance. The unique characteristics of TMDs make the composites an
ideal choice for high-performance sensing materials at low temperatures.

In the research of gas sensing applications, SnO2 has been the most widely used n-type
semiconductor, so the combination of SnO2 and MoS2 is an effective way to improve the
sensing performance of MoS2. For instance, Qiao et al. loaded MoS2 nanosheets onto SnO2
nanofibers by hydrothermal synthesis. Through the optimal regulation of MoS2/SnO2
heterostructure, they achieved high-performance detection of trimethylamine at 230 ◦C,
showing excellent sensing selectivity and long-term stability [193]. In the field of room
temperature gas sensors, Cui et al. reported a new hybrid material by decorating MoS2
nanosheets with SnO2 nanocrystals, which achieved high-performance sensing of NO2
at room temperature, and the loaded SnO2 nanoparticles could significantly enhance
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the stability of MoS2 nanosheets in the air (Figure 13) [194]. In the composite, SnO2
nanocrystals acted as a strong p-type dopant at the top of MoS2, resulting in the formation
of p-type channels in MoS2 nanosheets. In terms of sensing mechanism, they believed
that SnO2 nanocrystals may be the main gas adsorption center, while MoS2 acted as a
conductive channel at room temperature. The close electrical contact between two different
semiconductor materials led to the formation of charge transfer and charge depletion
layer. Because the work function of SnO2 (5.7 eV) was larger than that of MoS2 (5.2 eV),
electrons are transferred from MoS2 to SnO2, resulting in a depletion layer and a Schottky
barrier (Figure 13f). These electron depletion regions can be connected to each other on
the surface of MoS2 nanosheets and act as a passivation layer to prevent the interaction
between oxygen and MoS2, thus enhancing the stability of MoS2 nanosheets in dry air.
The fabricated gas sensor exhibited high sensitivity, excellent repeatability, and excellent
selectivity to NO2 in the actual dry air environment, and the detection limit could reach
0.5 ppm.
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Figure 13. (a) Schematic illustration of the preparation process for MoS2/SnO2 nanohybrids. The
inset photographs show the MoS2 suspension in water before and after adding the SnCl4 solution.
(b) TEM images, (c) SAED pattern and (d) HRTEM images of the MoS2/SnO2 nanohybrids. The inset
of (d) shows a typical SnO2 nanocrystal on the MoS2 surface. (e) The room temperature dynamic
sensing response of MoS2 nanosheets with and without SnO2 NC decoration against 10 ppm NO2

in a dry air environment, indicating the SnO2 NCs significantly enhanced the stability of MoS2 in
the dry air. (f) Band diagram of the MoS2/SnO2 nanohybrid. The EF, SnO2 and EF, MoS2 are Fermi
levels of SnO2 and MoS2, respectively. The CB and VB are the conductance and valance band edges
of MoS2, respectively. d is the thickness of the electron depletion zone, and ΦB is the Schottky barrier
height. Reprinted with permission from Ref. [194]. Copyright 2015 John Wiley & Sons, Inc.

In addition to SnO2, ZnO is another wide band gap n-type semiconductor for the
fabrication of high-performance gas sensors. Yan et al. synthesized the ZnO/MoS2 com-
posite structure by coating ZnO nanoparticles onto MoS2 nanosheets through a two-step
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hydrothermal method [195]. Among the composites, MoS2 is a multi-stage structure com-
posed of nanosheets with a thickness of 5~10 nm, and the size of ZnO particles was about
8 nm. The response value of the composite-based gas sensor to 50 ppm ethanol reached 42.8
at the operating temperature of 260 ◦C Han et al. designed a MoS2/ZnO heterostructure on
the MoS2 nanosheets obtained by liquid phase exfoliation by a wet chemical method, and
achieved efficient detection of NO2 gas at room temperature [196]. After surface modifica-
tion, ZnO nanoparticles had a good response to 5 ppm NO2, and the response value reached
3050%, which was 11 times higher than that of pure phase MoS2 nanoparticles. In addition,
the recoverability of the heterostructure was improved to more than 90% without auxiliary
means, and the sensor also had the characteristics of fast response speed (40 s), reliable
long-term stability within 10 weeks, good selectivity, and a low detection concentration of
50 ppb. The enhanced sensing performance of MoS2/ZnO heterostructure can be attributed
to the unique 2D/0D heterostructure, synergistic effect and the p-n heterojunction between
ZnO nanoparticles and MoS2 nanosheets.

Besides, Zhao et al. reported the hydrothermal synthesis of MoS2-modified TiO2
nanotube composites and studied their gas sensing properties [76]. TiO2 nanotubes are
filled and covered by 1–3 layers of flake MoS2 nanosheets. The formed MoS2-TiO2 com-
posites revealed excellent sensing properties and high sensitivity to ethanol vapor at low
operating temperatures, and their sensitivity was almost 11 times that of TiO2 nanotubes.
The response to 100 ppm ethanol gas was ~14.2 and the optimum working temperature was
as low as 150 ◦C. Zhang et al. prepared CuO/MoS2 heterostructure sensing films on the
substrate by layer-by-layer self-assembly technique [197]. Compared with the pure phase
CuO and MoS2, the formed CuO/MoS2 composite structure exhibited higher response,
shorter response/recovery time, better repeatability, higher selectivity, and longer-term
stable H2S detection performance. The excellent H2S sensing properties are mainly due to
the existence of a large number of oxygen and sulfur vacancies in the composite structure
of CuO nanorods and MoS2 nanosheets, which brings a large number of active sites for gas
adsorption. In addition, the synergistic effect of binary nanostructures and the modulation
of electron transfer by the formation of p-n heterojunction at the material interface between
p-type CuO semiconductors and n-type MoS2 semiconductors promoted the performance
of the composite structure. Ikram et al. prepared MoO2/MoS2 nanonetworks by control-
lable vulcanization and successfully applied them to the efficient detection of NO2 gas at
room temperature [198]. The response value of the composite structure to 100 ppm NO2
gas was 19.4, and it had ultra-fast response speed and recovery speed, and the response and
recovery time were 1.06 s and 22.9 s, respectively. The excellent gas-sensing performance of
the sensor can be attributed to the synergistic effect between MoS2 nanosheets and MoO2
nanoparticles. The defects in the synthesis process provided more active sites for NO2 gas
molecules, and the formation of p-n heterojunction accelerated the charge transfer between
NO2 and gas molecules.

In addition to MoS2, other transition metal dichalcogenides and metal oxide com-
posites have been also often used as sensitive materials for gas detection. For example,
Qin et al. prepared 2D WS2 nanosheets/TiO2 quantum dots composites by chemical strip-
ping method, which have been successfully used in room temperature NH3 sensing. The
fabricated gas sensors exhibited a quicker sensing response to 250 ppm NH3, which was
almost 17 times that of the original WS2 [199]. Gu et al. prepared SnO2/SnS2 heterojunc-
tion nanocomposites by the in situ high-temperature oxidizer SnS2, which significantly
improved the response to NO2 and decreased the working temperature [200]. To make it
more clear, the gas sensing properties of the transition metal dichalcogenides/metal oxide
composite-based gas sensors are shown in Table 2.
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Table 2. Sensors based on MOS modified with TMDs gas sensing performances.

Sensor
Materials Analyte Response Working

Temperature Refs.

SnO2/MoS2 C3H9N 106.3 (200 ppm) 230 ◦C [193]
SnO2/MoS2 NO2 28% (10 ppm) RT [194]
ZnO/MoS2 C2H6O 42.8 (50 ppm) 260 ◦C [195]
ZnO/MoS2 NO2 3050% (5 ppm) RT [196]
MoS2/TiO2 C2H6O 14.2 (100 ppm) 150 ◦C [76]
CuO/MoS2 H2S 61 (30 ppm) RT [197]

MoO2/MoS2 NO2 19.4 (100 ppm) RT [198]
TiO2 QDs/WS2 NH3 43.7% (250 ppm) RT [199]

SnO2/SnS2 NO2 5.3 (8 ppm) 80 ◦C [200]

6.4. Other 2D Material/Metal Oxide Composites-Based Gas Sensors

As an important wide band gap and semiconductor gas sensing material with a special
layered structure, MoO3 is easy to form metal phase MoS2 in the process of reacting with
H2S, which makes MoO3 have unique response characteristics to H2S gas. However, single-
phase MoO3 has some shortcomings, such as high working temperature and poor limit
detection ability [201,202], so it needs to be compounded with other materials to improve
its gas-sensing performance. For example, Gao et al. used graphene as a sacrificial template
and prepared porous MoO3/SnO2 composite nanosheets with n-n heterostructure by hy-
drothermal method, and studied their gas sensing properties, as shown in Figure 14 [203].
The TEM characterizations indicated that the composite is a porous structure composed
of MoO3 and SnO2 nanoparticles, and the lattice distortion at the interface indicates the
existence of MoO3-SnO2 n-n heterojunction (Figure 14a,b). The gas-sensing performance
test showed that compared with SnO2 nanosheets, the introduction of MoO3 and the forma-
tion of heterojunctions lead to the change of energy band structure and carrier separation
transfer rate, and the optimum operating temperature of MoO3/SnO2 nanosheet sensor is
lower and the sensitivity is higher. The detection limit of MoO3/SnO2 nanoparticles for
H2S was as low as 100 ppb at 115 ◦C, and the response and recovery times were 22 s and
10 s, respectively (Figure 14c–e). The excellent gas-sensing performance of the MoO3/SnO2
composite nanosheet gas sensor was attributed to the following aspects.

Firstly, in the composites, the n-n heterojunction formed at the interface between MoO3
and SnO2, and the charge accumulation layer and charge consumption layer are formed on
both sides of the heterojunction, respectively, thus forming an internal electric field and
hindering the free transport of free electrons in the semiconductor. The sensing mechanism
of the composite material is shown in Figure 14f,g. When the material is exposed to air, the
electrons in the semiconductor MoO3 and SnO2 conduction bands adsorb the oxygen in the
air to the surface of the semiconductor gas sensing material to form the adsorbed oxygen.
This leads to the loss of electrons in the conduction bands of semiconductors MoO3 and
SnO2 (Figure 14f). On the energy band diagram, the energy bands of semiconductors MoO3
and SnO2 bend upward, and the barrier height increases. In the atmosphere of H2S, when
H2S reacts with the adsorbed oxygen on the surface of semiconductor sensitive materials,
the electrons captured by adsorbed oxygen are released back into the semiconductor MoO3
and SnO2 conduction bands, which leads to a significant decrease in the barrier height at
the n-n heterojunction and a significant decrease in the resistance of the sensor (Figure 14g).
The electrical conductivity of composite semiconductor materials is inversely proportional
to the barrier height, and the barrier height can effectively control the gas sensing response
characteristics of sensitive materials with heterojunctions. Therefore, a large change of
barrier height has a significant contribution to the H2S performance of the MoO3/SnO2
gas sensor. Secondly, the large specific surface area of MoO3/SnO2 composite nanosheets
means that when exposed to H2S gas, the MoO3/SnO2 sensor with a large specific surface
area can contact more H2S gas molecules and react with them, resulting in greater resistance
change and higher sensitivity response. Thirdly, the composite has high porosity, and the
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larger pore volume can not only promote the adsorption of H2S gas molecules to the
sensitive material surface more quickly, but also provide a shorter gas conduction path
and promote the gas molecules to break away from the sensitive material surface and then
achieve the ideal state of rapid response and rapid recovery.
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Figure 14. (a,b) Low-magnification TEM images and HRTEM images of MoSn-S2 nanoflakes. Red
circles in (b) shows the lattice distortions at the interfaces between MoO3 and SnO2. (c) Sensor
responses of as-prepared samples as a function of different operating temperatures to 10 ppm of
H2S concentration. (d) Typical sensor responses of SnO2, MoSn-S1, MoSn-S2, and MoSn-S3 toward
100 and 500 ppb of H2S gas at optimal working temperature, and (e) response and recovery times
curve of MoSn-S2 NFs to 10 ppm of H2S at 115 ◦C. (f,g) Diagram of energy band structure of
MoSn−nanocomposites in (f) air and (g) H2S. Reprinted with permission from Ref. [203]. Copyright
2019 ACS.
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Yin et al. [204] synthesized hierarchical Fe2O3/WO3 nanocomposites with ultra-high
specific surface area composed of Fe2O3 nanoparticles and single-crystal WO3 nanosheets
through microwave heating and in situ growth. The BET specific surface area of the sample
that prepared with 5 wt.% Fe2O3/WO3 by this process was as high as 1207 m2·g−1, which
was 5.9 times that of the corresponding WO3 nanosheets (203 m2·g−1). The significant
enhancement of the specific surface area of the Fe2O3@WO3 samples was attributed to the
hierarchical structure of the prepared composite materials, in which the monolayer and
unconnected Fe2O3 nanoparticles are tightly anchored to the surface of the WO3 nanosheets,
so that the inner surface or interface of the aggregated polycrystal is entirely the outer
surface. The gas-sensing performance tests indicated that Fe2O3@WO3 nanocomposites
exhibited high response and selectivity towards H2S at low operating temperatures due to
the synergistic effect of the components of Fe2O3@WO3 nanocomposites and the hierarchi-
cal microstructure with ultra-high specific surface area. At 150 ◦C, the fabricated gas sensor
showed a response to 10 ppm H2S of as high as 192, which was four times that of the WO3
nanosheet-based gas sensor.

7. Conclusions and Future Perspectives

In this paper, we summarize the research progress of gas sensors using 2D materials,
metal oxides, and their composites as sensitive materials. The gas sensing mechanism,
main factors affecting sensing performance, and the applications of various gas sensors are
presented and discussed in detail. It can be concluded that the 2D material/metal oxide-
based gas sensor can efficiently identify and detect toxic and harmful gases. Compared
with pure metal oxide semiconductors, composite materials have higher carrier rates, larger
high mechanical strength, and large specific surface area, and the synergistic effect of the
two components can further enhance the gas sensing performance. The -OH, -O, and
other functional groups on the surface of 2D materials not only provide chemical bonds
to form composite metal oxide materials during the composite process of the material,
but also give more active sites for the gas sensing process, thereby further improving the
gas sensing performance. In addition, the composite materials can effectively reduce the
working temperature.

Although nanomaterial-based gas sensors have made great progress in the past few
decades, the operating temperature of metal oxides is too high, and the selectivity of
2D materials is still unsatisfactory. In the future, effective strategies such as building
composite structures are highly needed to improve the selectivity, reduce the operating
temperature, and improve the sensitivity and other properties. In addition, the research on
the combination of metal oxides with 2D materials is still at an early stage, and its sensing
mechanisms of the composite-based gas sensors should be further studied. Only when the
mechanism and process are clear, the preparation and assembly of nanomaterial-based gas
sensors can be achieved purposefully. In addition, it is necessary for researchers to develop
new design strategies to further optimize metal oxide nanomaterials with 2D nanomaterials
to make them more suitable for gas sensing. Finally, it is expected that facile assembly and
fabrication processes will be developed to enable batch fabrication of gas sensors with high
stability, selectivity, sensitivity, reproducibility, and quick response in the future.
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