
����������
�������

Citation: Yan, M.; Qin, Y.; Wang, L.;

Song, M.; Han, D.; Jin, Q.; Zhao, S.;

Zhao, M.; Li, Z.; Wang, X.; et al.

Recent Advances in Biomass-Derived

Carbon Materials for Sodium-Ion

Energy Storage Devices.

Nanomaterials 2022, 12, 930.

https://doi.org/10.3390/

nano12060930

Academic Editors: Diego

Cazorla-Amorós and Carlos

Miguel Costa

Received: 6 February 2022

Accepted: 10 March 2022

Published: 11 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Review

Recent Advances in Biomass-Derived Carbon Materials for
Sodium-Ion Energy Storage Devices
Mengdan Yan , Yuchen Qin *, Lixia Wang, Meirong Song, Dandan Han, Qiu Jin, Shiju Zhao, Miaomiao Zhao,
Zhou Li , Xinyang Wang, Lei Meng * and Xiaopeng Wang *

College of Science, Henan Agricultural University, Zhengzhou 450001, China; yan024711@163.com (M.Y.);
wanglixia@henau.edu.cn (L.W.); smr770505@henau.edu.cn (M.S.); handd@henau.edu.cn (D.H.);
jinqiukl@henau.edu.cn (Q.J.); zhaoshiju008@henau.edu.cn (S.Z.); zmm2581472022@163.com (M.Z.);
lizhou_1995@163.com (Z.L.); wxy1656135@163.com (X.W.)
* Correspondence: qinyuchen@henau.edu.cn (Y.Q.); menglei@henau.edu.cn (L.M.);

xpwang@henau.edu.cn (X.W.)

Abstract: Compared with currently prevailing Li-ion technologies, sodium-ion energy storage devices
play a supremely important role in grid-scale storage due to the advantages of rich abundance and
low cost of sodium resources. As one of the crucial components of the sodium-ion battery and
sodium-ion capacitor, electrode materials based on biomass-derived carbons have attracted enormous
attention in the past few years owing to their excellent performance, inherent structural advantages,
cost-effectiveness, renewability, etc. Here, a systematic summary of recent progress on various
biomass-derived carbons used for sodium-ion energy storage (e.g., sodium-ion storage principle,
the classification of bio-microstructure) is presented. Current research on the design principles of
the structure and composition of biomass-derived carbons for improving sodium-ion storage will
be highlighted. The prospects and challenges related to this will also be discussed. This review
attempts to present a comprehensive account of the recent progress and design principle of biomass-
derived carbons as sodium-ion storage materials and provide guidance in future rational tailoring of
biomass-derived carbons.

Keywords: biomass-derived carbon; energy storage; sodium-ion battery; sodium-ion capacitor

1. Introduction

In recent years, the increasing demand for renewable and cleaner energy re-sources
such as wind, solar, and wave, to replace traditional fossil energy, has required the develop-
ment of cost-effective, high-performance, large-scale energy-storage systems. Lithium-ion
batteries (LIBs) with the advantages of high energy density have been widely used in the
field of energy-storage systems. However, global lithium resources are limited and un-
evenly distributed, which will make the cost of LIBs dramatically increase shortly. Therefore,
low-cost energy-storage systems using naturally abundant raw materials have attracted
extensive attention. Na-ion energy storage devices (SESDs), including sodium-ion batteries
(SIBs) and sodium ion capacitors (SICs), are recognized as alternatives to LIBs due to the
high overall abundance of precursors and better cycle stability and power density [1,2].

The sodium resource is rich in terms of reserves (2.74% of the earth’s crust) and ranks
fourth among metal elements, has an even geographical distribution, and has a distinctly
lower cost than lithium. Sodium and lithium, located in the same main group, have similar
physical and chemical properties [3]. Therefore, sodium has attracted increasing attention
as a potential alternative to lithium in electrochemical energy-storage systems, especially
for grid storage [4–9]. Many fundamental understandings of LIBs and Li-ion capacitors
(LICs) provide much experience for the research of sodium-ion energy storage devices.
Although sodium and lithium are chemically similar, they still have some differences. For
example, Na+ ions are larger and heavier than Li+ ions (ion radius 1.02 Å vs. 0.76 Å, weight

Nanomaterials 2022, 12, 930. https://doi.org/10.3390/nano12060930 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12060930
https://doi.org/10.3390/nano12060930
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0003-4153-2313
https://orcid.org/0000-0003-0984-558X
https://orcid.org/0000-0002-2351-080X
https://doi.org/10.3390/nano12060930
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12060930?type=check_update&version=1


Nanomaterials 2022, 12, 930 2 of 19

23 g mol−1 vs. 7 g mol−1) [2,10–12], resulting in worse diffusion kinetics in most host
materials and inferior gravimetric/volumetric capacity. The redox potential of Na+/Na is
0.3 V above that of Li+/Li, which reduced operating voltage and energy density [13,14].
Thus, promising electrode materials with suitable working voltage and sodium storage
performance can be one of the potential solutions to make up for the loss. In previous
studies, great progress was made in the exploration of cathode materials. A large variety of
cathode materials (e.g., oxides and polyanionic compounds) can effectively store sodium
ions [15,16], although there is the problem of the bottleneck at the anode. Present anode
materials used for sodium-ion storage mainly include alloys, metal oxides/sulphides,
organic compounds, titanium-based materials, and carbonaceous materials [1]. Among
many anode materials, carbon-based materials offer multiple advantages such as higher
capacity, lower average sodium storage potential, good conductivity, being non-toxic, and
having a low price and hence are recognized as competitive candidates for SESDs [17,18].

Unlike lithium-ion storage, graphite is unfavorable for hosting sodium-ion in graphene
layers [19,20]. Various types of amorphous carbon, including soft carbon and hard carbon,
have been examined that can be used as potential anode materials for SESDs [19,21–23].
Amorphous carbons with a large interlayer spacing of 0.36–0.4 nm make it a suitable Na
hosting. However, soft carbon generally exhibits low initial coulombic efficiency (ICE) and
a specific capacity. Hard carbon contains random stacked graphitic layers and a tortuous
structure, which allow it to effectively store Na-ion in the micropores and exhibit high
reversible capacity and good kinetic performance [24–26]. Owing to the renewability,
low cost, and diverse inherent structure of biomass, its use as a precursor for producing
amorphous carbon to reduce costs and improve electrochemical performance has become
an important research direction to satisfy the requirements for its practical application in
the SESDs field.

Biomass refers to widely distributed living and growing organic materials, such as
plants [27–29], microorganisms, and animals [30], that have been pyrolyzed at high tem-
peratures to become biomass-derived carbon materials. Reasonable utilization of biomass
will realize “turning waste into treasure”. Most importantly, biomasses have their unique
microstructures and compositions, and the resultant biomass-derived carbons usually
retain the diversity of their structures and compositions after pyrolysis (Figure 1) [31–35].
Different structures (e.g., hard carbons, soft carbons, and hybrid carbons), different compo-
sitions (e.g., N-doped carbons and other atom doped carbons), and different morphologies
(e.g., 1D, 2D and 3D hierarchical structures) of biomass-derived carbons greatly affect their
electrochemical performance in SESDs. Table 1 shows the application potential of different
types of carbon materials in the field of Na-ion storage. The various morphology, structure,
and electrochemical performances of carbonaceous materials have been compared [36–56].
The influence of different types of biomass-based carbon materials on the electrochemical
performance of SESDs should be further systematically summarized. The understanding
of the biomass-derived carbons and their storage mechanism can be reviewed to guide a
rational design for effective electrode materials for SESDs.

Herein, we attempt to provide a comprehensive summary of the latest developments
of various biomass-derived carbons used in SESDs, including the principle of sodium ion
storage in SIBs and SICs, and the classification of biomass carbon with different structures
and compositions. The recent progress and electrochemical performance of different
types of biomass-derived carbons will be introduced in detail. This review focuses on the
influence of different micromorphology and compositions of biomass-derived carbon on
electrochemical performance. Finally, the challenges and perspectives for SESDs have also
been proposed. We hope that this literature review can provide references for the rational
design of carbon materials toward high-performance SESDs.
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Figure 1. The schematic diagram of biomass-based electrode materials from different precursors, and
their inherent advantages.

Table 1. Physical and electrochemical properties of various carbons.

Classification Precursor Yield
[%] Morphology Application Capacity [mAh g−1]

/Current density [mA g−1]
ICE [a]

[%] Refs.

Graphite
/ / sheets SIB 284/20 49.53 [36]
/ / spherical SIC 221 [b]/500 / [37]

Graphene

Graphite / sponges SIB 372.0/50 67.4 [38]
Graphite / nanosheets SIB 240/200 52 [39]

Cellulose/chitosan/GO / Layers SIB 395/100 / [40]
Graphite / folded texture SIC 115.6/100 / [41]
Graphite / porous SIC 420/100 / [42]

Soft carbon Coal / porous SIB 267/500 34.0 [43]
Pitch 70 porous SIB 268.3/100 82 [44]

Hard Carbon

Kapok <10 tube SIB 290/30 80 [45]
Cucumber stems / porous SIB 337.9/50 64.9 [46]

Cherry petals / nanosheets SIB 310/20 67.3 [47]
Pine pollen / porous SIB 370/100 59.8 [48]

Longan shell / porous SIB 345/100 73 [49]
Leonardite humic acid 60.73 flakes SIB 345/100 73 [50]

gelatin / nanosheets SIB 309/200 84.1 [51]
Mushroom stalk / porous SIB 305/100 33.8 [5]

Samara / porous SIB 333.2/100 35.7 [52]

Chlorella / nanoparticle SIB 436/100 51 [53]
Carrageenan / double-helix SIB 380/100 56.3 [54]

Enteromorpha / sponge SIC 362/100 / [55]
Carboxymethyl cellulose / porous SIC 322/50 / [56]

[a] ICE = initial Coulombic efficiency. [b] F g−1.

2. Sodium-Ion Storage Mechanism in Carbonaceous Materials for SESDs
2.1. Configuration and Mechanism of Sodium-Ion Batteries

Sodium-ion batteries have come back into the spotlight, due to their potential cost
advantages, since 2010. SIBs consist of cathode materials and anode materials separated
by the electrolyte. The energy storage of SIBs is realized through sodium ions shuttling
between cathode and anode materials in the charge/discharge process. During the charging
process, sodium ions are extracted from cathodes and accommodated into anodes transport
through the electrolyte. The reverse reaction occurs in the discharge process. The widely-
accepted theory suggests that SIBs operate on a similar intercalation mechanism to LIBs.
However, sodium ion storage mechanism in anode materials is more complex than that of
lithium insertion in graphite. Graphite is usually not suitable for sodium intercalation in
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traditional ester-based electrolytes, which leads to unsatisfactory capacity and cyclability
of SIBs [57]. Thus, many new materials such as carbonaceous materials, alloys, metal
oxides/sulfides, and titanium-based compounds have received widespread attention as
anodes for SIBs [58–62]. Amorphous carbons, especially hard carbons, exhibited greatly
improved performance and industrial feasibility for SIBs. They are competitive enough for
practical application in large-scale grids, compared with other non-carbonaceous materials.

The current carbonaceous materials that have been widely investigated for SIBs mainly
include graphite-based carbon materials, soft-carbons, and hard-carbons (Figure 2a–c). The-
oretically, it is difficult to intercalate Na ions into graphite interlayer (Figure 2d). The
formation energies of sodium-graphite intercalation compounds are not stable [63]. How-
ever, taking advantage of the co-intercalation effect of solvated Na ions, natural graphite in
some linear ether-based electrolytes exhibited unexpected rate capability and cyclability
(100 mAh g−1 at 10 A g−1, and 95% capacity retention after 6000 cycles) [64]. The mech-
anism of Na-ions storage has been proposed so that solvated ions might be adsorbed in
graphite lattice rather than atomically bonded to carbon. The expanded graphite with en-
larged interlayer distance showed reversible capacity of 284 mA g−1 [36]. The experiment
confirmed the efficient Na-ions insertion/extraction mechanism in lattice of expanded
graphite, which is different from other carbonaceous materials. Reduced graphene oxide
has been studied as the anode materials showed a reversible capacity ~450 mAh g−1 at
a current density of 25 mA g−1 [65]. An adsorption mechanism of graphene has been
demonstrated for Na-ions storage [56,66]. The structure engineering of graphene to control
the defect and surface area is an effective strategy for Na-ions storage.
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Figure 2. TEM image of hard carbon (a) and soft carbon (b). Reprinted with permission from Ref. [67].
Copyright 2017 American Chemical Society. (c) Schematic of the atomic structure of graphene and near-
neighbor interatomic distances. Reprinted with permission from Ref. [68]. Copyright 2019 American
Chemical Society. (d) Theoretical energy cost for Na (red curve) and Li (blue curve) ions insertion
into carbon as a function of carbon interlayer distance. Reprinted with permission from Ref. [69].
Copyright 2012 American Chemical Society. (e) Schematic illustration of the mechanism for Na storage
in hard carbon. Reprinted with permission from Ref. [68]. Copyright 2019 American Chemical Society.
(f) Schematic of SIBs. Reprinted with permission from Ref. [70]. Copyright 2017 Wiley-VCH.
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Soft carbon is non-graphitic carbon that can be graphitized at high temperatures,
whose graphitizable degrees and interlayer distance can be tuned by thermal treatment.
Soft carbon, similar to graphite, is always smooth and exhibits less curvature in the graphitic
layer. The Na-ion storage capacity of soft carbon was first demonstrated by Doeff and
colleagues to show about 90 mAh g−1. The improved capacities and good rate perfor-
mance have been reported by many groups. For instance, using anthracite and aromatic
compounds as precursors, the prepared soft carbons showed high reversible capacities
above 200 mAh g−1 [43]. However, the Na-storage mechanism of soft carbon revealed that
Na-ions adsorption on isolated graphene sheets of soft carbon contributes to the general
sloping potential profile and the lack of low-potential plateau, which could cause negative
effects on energy density and potential safety of SIBs.

Compared with soft carbon, hard carbon has received more attention as anode in
SIBs due to its good kinetic performance [24,46,71]. Hard carbon is non-graphitizable
carbon that has curved and unaligned graphitic layers. The crosslink graphitic layers and
disordered structures are generally considered to be favorable for Na-storage performance.
The typical charge-discharge curves of hard carbon include high-potential sloping region
and low-potential plateau region (Figure 2e). These potential regions indicate the reaction
of Na-ions with different structures. In 2000, Stevens and Dahn [72] underly the mechanism
of Na-ions insertion into hard carbon, suggesting that the high-potential sloping region
corresponded to the insertion of Na ions inside graphitic layers and adsorption on the
defect sites, whereas Na ions were inserted into nanopores along the low-potential plateau.
The alternative storage mechanism is also proposed by Cao and colleagues [69]. They
conclude that Na-ions are stored at defect sites of the surface in the sloping part of the
potential curve and inserted into graphitic layers and pores in the low-potential plateau
region. Based on the understanding of existing sodium storage mechanisms, rational,
structural, and defect engineering will be effective strategies for the design of hard carbon
with higher performance.

2.2. Configuration and Mechanism of Sodium-Ion Capacitors

Among the sodium-ions based energy storage devices, SIBs and SICs are currently
prominent. The battery utilizes intercalation mechanism, leading to high energy density and
limited power density. Supercapacitor with adsorption-desorption mechanism provides
high power density but limited energy density. SICs have attracted much attention due to
their combined advantages of battery and supercapacitor [73,74]. A typical SIC is generally
composed of a capacitive cathode and battery-type anode and is the most commonly used
type. On the contrary, other configurations of SICs include a battery-type cathode and
capacitive anode. The configuration of SICs determines the charge-storage mechanism.
This section will focus on the charge-storage behavior of carbonaceous materials in the first
widely used configuration.

Dual-carbon SICs were first reported by Kuratanni and colleagues [75]. This SIC
includes a battery-type anode of hard carbon and a capacitive cathode of activated carbon.
In the case of dual-carbon SICs, the capacitive cathode of activated carbon stores charges
through a non-faradaic surface ion adsorption mechanism on the interface of electrode and
electrolyte. The faradaic reaction on the surface or near-surface of battery-type anodes,
such as hard carbon, provided a higher capacity for SICs. In general, the two kinds of
energy storage mechanisms, including electrochemical double-layer capacitance (EDLC)
and pseudocapacitive behavior, are responsible for electrochemical reactions of SICs. The
EDLC operates on the mechanism of electrolyte ions’ adsorption/desorption on the surface
of the electrodes. In the case of pseudocapacitive behavior, charge storage mainly originates
from the electron-transfer rather than the adsorption of ions. Different from the storage
mechanism of SIBs, when carbonaceous materials are used as anode in SICs, the faradaic
redox reaction occurs only on the surface of the electrode, and pseudocapacitive intercala-
tion does not produce phase transition. Therefore, SICs based on this hybrid mechanism
provide an effective route for integrating high energy and power performance.
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3. Diverse Morphology of Biomass-Derived Carbons for SESDs

An in-depth understanding of sodium-ion storage mechanisms in SESDs, especially
using carbon-based materials as electrodes, can greatly improve the rational design of
better electrode materials. Exciting theoretical studies suggest that morphological and
composition engineering (such as defect sites, nano-porosity, and heteroatom doping) are
the potential strategies to develop effective electrode materials. Biomass-derived carbons
have attracted much attention for application in SESDs in recent years. Different treatment
methods and precursor materials will achieve different carbonaceous materials with in-
herent macroscopic morphologies and structures, resulting in a variety of electrochemical
behaviors [76,77]. This section mainly introduces the recent advances of diverse morpholo-
gies and structures of biomass-derived carbons used for SESDs. The relationship between
the structure/morphology and electrochemical performance of different biomass-derived
carbons will be discussed in detail.

Biomass materials naturally possess abundant and diverse macrostructures rang-
ing from zero to three dimensions that can be inherited and evolved by corresponding
biomass-derived carbon materials. So far, various nanostructured carbon materials with
zero-dimensional (0D) spherical structures, one-dimensional (1D) nanofibers/nanotubes,
two-dimensional (2D) nanosheets, and three-dimensional (3D) hierarchical structures have
been synthesized. The main motivations to create electrode materials with different dimen-
sional nanostructures are to enlarge exposed active surface areas, broaden activated ionic
channels, and accelerate electron conductivity, all of which can significantly promote the
electrochemical performance of SESDs. The recent progress and simple classification of
biomass-derived carbons based on dimensions are shown below.

3.1. Tubular and Fiber-Shaped Biomass-Derived Carbons

As 1D nanostructures, tubular and fiber-shaped carbon precursors are widely dis-
tributed in nature, such as plant tissues [45,78] and bacterial secretions [53]. 1D carbon
materials have high aspect ratio to provide fast channels for electron and ion transport.
Especially, the tubular structure of carbon also forms an effective permeable inner surface
structure that is conducive to Na+ adsorption, shortening ion diffusion. The path accel-
erates the diffusion and migration of electrolyte ions from the electrolyte to the inside
of the surface of the electrode during charge and discharge [46]. Carbon materials with
tubular structures are considered as viable structures for high-performance sodium-ion
energy-storage applications.

Li and co-workers [46] reported the preparation of hard carbon materials that main-
tain uniform microtubule shapes using renewable natural cotton biomass as a precursor
(Figure 3a,b). The hollow tubular structure of the hard carbon material is beneficial to
the migration of the electrolyte, reduces the diffusion distance of Na+ ions, and improves
the electrochemical performance of the hard carbon. Yu et al. [47] prepared the carbon
with micro/nanotubular structure from low-cost kapok fibers. During the carbonization
process, the kapok fibers underwent aromatization, polycondensation, and the formation
of short graphite layers, maintaining good morphology with a highly specific surface
area. The gradual reduction of carbon micro-nanotubes with the increase of carbonization
temperature is expected to reduce the formation of SEI; improve the initial Coulombic
efficiency; and finally yield carbon micro-nanotube samples with high reversible capacity,
high initial Coulombic efficiency, and excellent rate performance at a carbonization temper-
ature of 1400 ◦C. Tubular biomass carbon is considered one of the most promising anode
candidates for sodium-ion batteries (SIBs) due to its abundant natural resources, low cost,
and sustainability, to prepare high-performance sodium storage media with excellent mi-
crostructure and morphology. Liu and co-workers [79] proposed to prepare interconnected
porous carbon frameworks that maintain a good tubular hierarchical porous structure
through KOH activation and Co2+-assisted graphitization (Figure 3c). The interconnected
macropores improve the mass transfer between the electrolyte and the active material
and shorten the diffusion distance of Na+ to the inner surface of the carbon framework
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and improve the excellent electrochemical performance of carbonaceous materials. The
above studies provided a reference for fully exploiting the advantages of the inherent 1D
morphology of biomass precursors and highlighted the importance of tubular structures in
sodium-ion storage.
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Figure 3. (a) SEM image and photograph of cotton. (b)The magnified SEM images of the carbonized
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right 2017 Wiley-VCH. (c) Illustration of the preparation process of the cross-linked porous sample.
Reprinted with permission from Ref. [79]. Copyright 2021 American Chemical Society.

3.2. Sheet-Shaped, Biomass-Derived Carbons

Different precursors and pretreatment methods often have a serious impact on the
properties of hard carbons (Figure 4). Using cucumber stems as precursor [51], the car-
bonization temperature was adjusted to 1000 ◦C to prepare sheet-like hard carbon anode
materials. A reversible capacity of 337.9 mAh g−1 and Coulombic efficiency of 99–100%
after 500 cycles were obtained. The coiled hard carbon materials were successfully prepared
by a two-step method of hydrothermal treatment and pyrolysis at different temperatures
using biomass templates. Flake-like hard carbon extracted from pistachio shell precursors
were prepared with coiled hard carbon materials at different temperatures [80]. The anode
provided a high capacity of 317 mAh g−1 with larger interlayer spacing when carbonized
at 1000 ◦C. It showed that carbonization temperature and morphology control have a great
influence on the electrochemical performance of hard carbon materials. A hard carbon
nanosheet anode made of cherry petal [81] precursor was synthesized at 1000 ◦C. At a
current density of 20 mA g−1, its relatively stable capacity is 300.2 mAh g−1 and the initial
Coulombic efficiency is 67.3%. The synergistic effects of the mesoporous structure and the
increased interlayer distance during the pyrolysis of the precursor of cherry petals enhanced
the storage capacity of sodium ions. In addition, sheet-like structured hard carbon anode
materials were prepared using oat flakes [82], biomass-based gelatin [83], and maple [84], as
precursors to study their sodium storage properties.
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Figure 4. (a) Scanning electron microscopy (SEM) image and (b) N2 adsorption–desorption isothermal
curves of hard-carbon nanosheets from the pyrolysis of oat flakes. Reprinted with permission from
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specific surface areas, continuous electron conduction paths, and ability to maintain volume changes
during charge and discharge, have attracted much attention for Na-ion storage.

Using oat flakes as the precursor [82], two-dimensional hard carbon was obtained by
carbonization (Figure 4a). According to the BET in Figure 4b, the hard carbon contained a
large number of mesopores. Compared with other carbon materials with highly specific sur-
face area, the formation of SEI film is limited, thereby improving the Coulombic efficiency.
Jin synthesized N, B co-doped carbon nanosheets [83] using biomass-based gelatin as the
precursor and boronic acid as the template (Figure 4c). The synergistic effect of heteroatom
doping and 2D structure with highly specific surface area enhances the capacity and rate
performance of Na-ion batteries. Wang et al. [84] developed a hard carbon extracted from
maple tree as the anode of the battery, as shown in Figure 4d, which achieved a capacity of
337 mAh g−1 at 0.1 C. The initial Coulombic efficiency was as high as 88.0%. The capacity
remained at 92.3% after 100 cycles at 0.5 C. Again, it is proved that biomass-derived hard
carbon has the advantages of large capacity and high Coulombic efficiency. The hard carbon
materials showed interlayer spacing suitable for Na ion insertion, with highly defective
sites and specific surface area, which can effectively improve the weight/volume capacity
and superior cycling stability.

3.3. 3D Hierarchical Structures of Biomass-Derived Carbon

3D carbons have highly interconnected network, abundant active edges, defects,
shortened ion/electron channels, accelerated dynamic ion transfer, and good electrical
contacts, thus generally possessing excellent electrochemical performance [85,86]. The 3D
structure can not only provide a continuous electron path but also allows the electrolyte
to penetrate the whole structure and facilitate the sodium ion transport between the
electrode/electrolyte interface by shortening the diffusion path to ensure good electrical
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contact to facilitate ion transport [87]. However, due to the natural hydrophobicity of the
carbon matrix surface, its effective specific surface area is greatly limited by the highly
developed single microporous structure. Therefore, improving the accessible specific
surface area is an effective way to improve the electrochemical performance.

Hierarchical porous structures including macropores, mesopores, and micropores
can increase the contact area of the electrolyte with the electrode material [48,88]. Among
them, macropores (pore size > 50 nm) act as ion buffer reservoirs during the charging and
discharging process, which is conducive to the transport of substances and the proximity
of ions to adsorption sites, effectively shortening the diffusion path of electrolyte ions
and ensuring the rapid transmission and diffusion of electrolyte ions. The mesopores
(50 nm > pore size > 2 nm) increase the contact area between the electrode and the elec-
trolyte, which can act as a reservoir for the electrolyte, reducing the ion diffusion resistance
and speeding up the ion transfer pathway. Micropores (pore size < 2 nm) can generate a
higher surface area, provide a large number of active sites, and thus increase the specific
capacitance. This unique hierarchical pore structure carbon with a highly specific surface
area provides an efficient route for the penetration and transport of electrolyte ions and is
expected to be an excellent anode material for Na-ion energy-storage systems.

Zhang synthesized a unique “honeycomb” structure carbon (Figure 5a) that used
pine pollen as a precursor [89]. Their hollow structure and robust framework reduced
volumetric strain during Na-ions intercalation/deintercalation and rapidly accommo-
dated ions/electrons for better rate performance. The initial discharge capacity can reach
370 mA h g−1 at a current density of 0.1 Ag−1. After cycling 200 times, the reversible ca-
pacity also stabilized at 203.3 mA h g−1 with a retention rate of 98%. The high capacity and
long lifetime of SIBs mainly benefit from the biomimetic honeycomb structure and robust
carbon framework. These properties can accelerate ion transport, shorten charge diffusion
paths, and effectively buffer volume expansion. In addition, the carbon film prepared by
carbonization of Osmanthus fragrans leaves provided a conductive framework and provided
better nucleation conditions for the in-situ growth of transition metal phosphides. The Fe-
doped CoP has a flower-like structure composed of intersecting nanoflakes of 200–300 nm
(Figure 5b). Due to the large surface area of the flower shape, which provided more active
sites for the intercalation of Na ions and the strong coupling between Fe-doped CoP and
the carbon film, the Na ion storage performance was significantly improved. During the
electrochemical reaction, the carbon film with high conductivity was beneficial to electron
transfer. Fe-doped CoP/C maintained a specific capacity of 324 mAh g−1 after 500 cycles,
with a Coulombic efficiency of about 99%.

Lang and co-workers [52] constructed a novel sodium-ion hybrid battery (SHB) by
introducing adsorption-type hierarchical porous amorphous carbon (HPAC) as the anode
material. SHB has good rate performance and long-cycle cycling performance at 2C, and
the capacity retention is 87% after 1000 cycles at 10C. Qin et al. [90] studied the pore size
distribution of wheat straw after carbonization at different temperatures. At 900 ◦C, the pore
size distribution was mainly about 3.8 nm, and the specific surface area was 1295.21 m2 g−1.
Pore-rich biochar facilitates electrolyte diffusion and Na ion transport and can expand the
interlayer spacing of graphite to de/intercalate Na ions, improving battery performance
with higher stable reversible capacity. In addition, Luo and colleagues [88] prepared a novel
hierarchically structured porous carbon material (Figure 5c–e) with macropores, mesopores,
and micropores by activating longan shells. The highly specific surface area and excellent
porous structure ensure its good sodium-ion storage and cycling performance.

Biochar has a variety of microstructures, and different microstructures largely affect
the electrochemical properties of electrochemically active sites and surfaces [91]. The
performance of Na-ion batteries can be tuned by increasing the specific surface area by
controlling the microstructure of biomass carbon [30,68,92–94]. Hu et al. [95] prepared
carbon nanosheets with pinecone shells as a precursor. Under the synergistic effect of
KOH and melamine, discrete carbon nanosheets with large specific surface area and rich
porosity can be prepared. This structure ensures its excellent energy storage, showing
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excellent rate performance and excellent cycle performance. A porous tubular carbon
material was synthesized by using sycamore single villi as a precursor [96]. This electrode
material had a specific capacitance of 836.4 F g−1 at a current density of 0.2 A g−1 and
retained a specific capacitance of 92.96% after 10,000 cycles at a current density of 10 A g−1.
Wang et al. prepared a hierarchical porous carbon material containing a large number of
micropores and a small number of mesopores using Paulownia husk as a raw material. The
obtained biomass char has a surface area of 1914.4 m2 g−1. The porous structure exhibits
excellent rate capability, with a discharge capacitance of 100 mAh g−1 at a current density of
1 A g−1 after 100 cycles. Junke Ou and co-workers [97] used human hair as raw material to
prepare nitrogen-doped porous carbon, which can provide a high capacity of 308 mAhg−1

at a current density of 100 mAg−1. In conclusion, the unique hierarchical microstructure
increases the electrode-electrolyte contact area, modulates the volume expansion during
cycling, and significantly improves the electrochemical performance.
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4. Different Structures and Components of Biomass-Derived Carbons for SESDs
4.1. Degree of Graphitization

Carbon materials are mainly divided into graphite, graphene, soft carbon, and hard
carbon. Graphite is electrochemically less active for Na storage due to thermodynamic prob-
lems. To further improve electrochemical sodium-storage properties, graphene was applied
as the anode material and performed better than graphite. Nitrogen-doped 3D graphene
foams have been prepared to deliver a high initial reversible capacity of 852.6 mAh g−1

at 1 C [98]. However, the low initial Coulombic efficiency (~18.5%) of graphene owing to
the irreversible Na2O formation on graphene surface limits its practical application [46].
Non-graphitic carbon materials, including soft carbon and hard carbon, have been widely
used as anode materials for SIBs. However, the capacity of soft carbon is lower than that
of hard carbon. Among the many carbon materials, hard carbon has attracted extensive
attention. Amorphous regions in hard carbon materials are often embedded in graphite
layers, forming a strong cross-linked network that makes the structure more rigid. With
pores between randomly arranged graphite crystallites, the structure affects storage sites,
and diffusion kinetics. So, the electrochemical performance can be changed by the degree of
graphitization [99–101]. Many studies have reported that with the increase of carbonization
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temperature [28,102–106], the degree of graphitization will increase, the defects of hard
carbon will decrease, and the structure will gradually become ordered.

In 2019, Stevanus [105] carbonized fir wood under different high-temperature con-
ditions in Figure 6. With the increase of carbonization temperature, the hard carbon
gradually became ordered from high defects, and the spacing became smaller, which was
not conducive to the insertion of Na+ and was not thermodynamically stable. In addition,
biomass-derived carbon contains randomly arranged graphite layers and disordered lay-
ered nanodomains, which cannot be fully graphitized even at temperatures above 3000 ◦C.
Even if the carbonization temperature is increased, the material will have defects, but the
number of defects will decrease. Cao [93] prepared rapeseed into layered hard carbon.
When the spacing is 0.39 nm, it can ensure the insertion and extraction of Na+ when it is
used as a negative electrode material for SIBs, so it has excellent electrochemical perfor-
mance. With the increase of temperature, the capacity increases first, because the carbon
particles are gradually connected tightly, which is conducive to the transport of electrons.
However, the capacity starts to drop after 700 ◦C, mainly because of the formation of
stacked blocks, which hinder the electron transport. Although the partial carbonization
of hard carbon can effectively improve the reversible capacity of Na ion intercalation, an
overly high temperature will further reduce the interlayer spacing, reduce the pore volume,
and cannot accommodate Na ion insertion or adsorption to the pore surface, resulting in a
decrease in capacity [107,108].
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4.2. Heteroatom Doping

In order to improve the Na storage of carbon materials to meet the needs of energy stor-
age in various aspects, using carbon materials doped with heteroatoms (N, S, P, B, O, etc.) is
an effective strategy [48,88,92,109]. Heteroatom doping usually can improve conductivity,
increase active sites, and expand interlayer spacing. The intercalation/deintercalation of
sodium ions in the electrochemical process is promoted, and the reversible capacity of
bio-based carbon is several times larger than the theoretical capacity of graphite [110].
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Nitrogen-rich doped carbon spheres were synthesized using onion waste as the pre-
cursor [111]. Nitrogen doping enhances the extension of the interlayer distance, which
is favorable for the insertion/extraction of large Na ions (Figure 7a,b). The considerable
amorphous structure and heteroatom doping enhance the electrical conductivity and active
sites of the material; the reversible capacity is also enhanced, and the structural defor-
mation during cycling is alleviated. In addition, the synergistic effect of binary/multiple
heteroatoms can not only obtain larger interlayer spacing and provide additional charge
storage capacity by Na+ binding to relevant defects or functional groups, it can also con-
tribute to the conduction band of carbon by providing additional free electrons, resulting in
higher electrical conductivity and improved electrochemical performance [92,97,112,113].
Jin synthesized N, B-doped carbon nanosheets by a one-step carbonization method using
biomass gelatin as the precursor and boronic acid as the template [83]. The addition of
N, B will produce more defects and disordered structures. The differential charge density
and density of states are calculated by building a heteroatom doping model, indicating
superior electrochemical performance. In addition, Liu et al. [5] synthesized a N, O co-
doped porous carbon with uniform ultra-micropores. The presence of N atoms helps to
improve the electrical conductivity, while the oxygen functional group can improve the
wettability of the electrode material and promote better contact between the active material
and the electrolyte ions to improve the electrochemical performance (Figure 7c–h). Overall,
heteroatom-doped carbon materials are considered promising anode candidates for SESDs.
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Figure 7. (a) Schematic illustration of the synthesis of N-doped carbon sphere. (b) TEM image of
carbon sphere. Reprinted with permission from Ref. [111]. Copyright 2020 Elsevier. (c) The rate
performance of NOPC and MAC anodes at various current densities. (d) Cycling stability of hard
carbon anode measured at 1000 mA g−1. (e) CV curves measured of hard carbon anode. Reprinted
with permission from Ref. [5]. Copyright 2020 Elsevier. (f) The Raman spectra of NDC and NBT.
(g) The N2 adsorption–desorption isotherms at different temperature. (h) The N doping model for
NDC and N, B co-doping model for NBT, respectively. Reprinted with permission from Ref. [83].
Copyright 2021 Wiley-VCH.

4.3. Hybridization of Biomass-Derived Carbon and Metal Compounds

Transition metal oxides, sulfides, and phosphides have high theoretical capacities [114].
However, as electrode materials for sodium-ion energy-storage systems, the volume
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changes during the charge and discharge process, and the electrodes are severely pul-
verized, resulting in low energy storage density and poor cycle performance. To improve
these problems, the most effective method is to hybridize transition metal oxides, sulfides,
or phosphides with carbon materials [53,54,115,116]. This not only provides a conductive
network for electron transfer but also acts as a stable structural matrix to accommodate
volume changes during cycling. Among carbon materials, biomass carbon has high ther-
mal/chemical stability, unique morphological structure, and high electrical conductivity,
especially biomass containing different functional groups, such as hydroxyl and amino.
These functional groups are easily combined with metals, so biomass carbon becomes the
best candidate for metal composites.

In 2016, Yang and his team first reported the double-helix three-dimensional metal
sulfide/carbon aerogel nanostructures combined with carrageenan-metal hydrogel for
high-performance sodium-ion storage (Figure 8a). Using it as an electrode material, it
showed a high reversible specific capacity of 280 mAh g−1, even after 200 cycles at a
current density of 0.5 Ag−1 [117]. The carbon skeleton in this nanostructure not only
facilitates the fast charge transfer reaction but also enhances the mechanical properties of
FeS nanoparticles and buffers their volume changes, thereby extending the electrode cycle
life. Moreover, Ni3S4 nanoparticles were embedded in porous carbon (Figure 8b,c) [118].
As a negative electrode for Na-ion batteries, it maintained a capacity of 297 mAh g−1 for
100 cycles at a current density of 1 A g−1. Its excellent electrochemical performance benefits
from porous carbon inhibit the accumulation of Ni3S4 nanoparticles during the synthesis.
In addition, the addition of Ni3S4nanocrystals accelerates the transport of sodium ions,
thereby improving the capacity and reaction kinetics. In conclusion, metals are intercalated
into biomass-derived carbon as active materials, providing more active sites, while biomass
carbon limits the volume change during the intercalation/deintercalation of sodium ions
through internal stress. The synergy between the two together improves the stability and
electrochemical performance of Na-ion batteries [32,114,118–120].
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Ni3S4/C cycled at the 1st, 2nd, and 3rd from 0.01 V to 3.0 V (vs. Na+/Na) at a current density of
1 A g−1. Reprinted with permission from Ref. [118]. Copyright 2019 Elcevier.



Nanomaterials 2022, 12, 930 14 of 19

5. Conclusions, Challenges, and Outlook

Different biomass carbon materials with their inherent structure and chemical advan-
tages have opened up a new key field for the design and preparation of electrodes for
SESDs. Due to its wide range of sources, non-toxicity, and chemical stability, the application
potential of biomass carbon materials in sodium-ion energy-storage systems is believed to
help meet future environmental needs. This article reviews the latest developments in the
application of sodium-ion batteries and sodium-ion capacitors with biochar materials of
various structures, morphologies, and chemical compositions, and the factors that affect
electrochemical performance. This provides references for the future tailoring of advanced
carbon materials for SESDs.

Although biomass carbon electrodes have great potential in SIBs and SICs, there are
still some problems that need to be solved before they can be successfully commercialized
and widely used. Their further challenges are mainly as follows. 1. Biomass carbon source
materials are difficult to use to achieve high-quality, uniform mass production, owing to the
diversity of geography and environment. 2. The relatively low carbon yield of precursors
limits its industrialization [37–39,41,50]. For this case, industrial products derived from
biomass can be utilized for synthesizing uniform electrode materials for SESDs. This will
be one of the feasible methods for practical production. 3. The impurities in biomass carbon
are usually detrimental to the electrochemical performance of SESDs. Thus, leaching com-
bined with rinsing is an effective strategy to decrease the impurities of biomass carbon. 4.
Due to the limitations of synthesis equipment and technologies such as impurity cleaning
and vacuum filtration, the continuous preparation of large-scale biomass electrodes is
still a challenge worthy of attention. Therefore, the development of scale-up technology
for preparation is an important issue as well. 5. An even more challenging aspect is the
electrochemical shortcomings, such as the low initial Coulombic efficiency in SIBs, routine
cycle performance, unsuitable voltage plateau, and poor energy density. Nanostructured
strategies, such as structure/composition engineering, doping, and hybridization with ac-
tive materials, are demonstrated to be the best potential choices to enhance the performance
in SIBs and SICs. It is important to further elucidate the Na-ions storage mechanisms and
better explore biomass-based materials with controllable microstructures.

Lastly, the existing studies of new biomaterial systems and synthesis strategies have
provided a new platform for the development of SESDs, and a lot of work is still needed in
the future.
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