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Abstract: The traditional hydrophobic solarevaporator is generally obtained through the modifi-
cation of alkyl or fluoroalkyl on the photothermal membrane. However, the modified groups can
easily be oxidized in the long-term use process, resulting in the poor salt resistance and stability
of photothermal membrane. In order to solve this problem, a simple polypyrrole/polyvinylidene
fluoride membrane, consisting of an intrinsic hydrophobic support (polyvinylidene fluoride) and
a photothermal material (polypyrrole), was fabricated by ultrasonically mixing and immersed pre-
cipitation. This photothermal membrane showed good self-floating ability in the process of water
evaporation. In order to further improve the photothermal conversion efficiency, a micropyramid
structure with antireflective ability was formed on the surface of membrane by template method.
The micropyramids can enhance the absorption efficiency of incident light. The water evaporation
rate reached 1.42 kg m−2 h−1 under 1 sun irradiation, and the photothermal conversion efficiency
was 88.7%. The hydrophobic polyvinylidene fluoride ensures that NaCl cannot enter into mem-
brane during the evaporation process of the brine, thus realizing the stability and salt resistance of
polypyrrole/polyvinylidene fluoride in 3.5%wt and 10%wt NaCl solution.

Keywords: photothermal membrane; intrinsic hydrophobicity; heat transfer; solar water evapora-
tion; desalination

1. Introduction

Solar vapor generation (SVG) is one of the most important ways to utilize solar en-
ergy [1–5]. In recent years, SVG has attracted much attention due to the increasing demand
of fresh water [6–12]. The introduction of interface SVG, which is a self-floating solar
absorber to float at the water–air interface, further improves the photothermal conversion
efficiency of solar energy [13–15]. In the interface SVG system, the heat generated by solar
energy can be confined to the evaporating surface, which helps minimize the heat loss of
water reflux, thus improving the water evaporation rate and energy conversion efficiency
of SVG system [16–19].

At present, in order to improve the photothermal conversion efficiency of the interface
SVG system, researchers have carried out various advanced improvements. On the one
hand, the photothermal conversion efficiency of evaporator can be improved by construct-
ing a thermal insulating layer with water-transporting ability, which not only ensures that
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water can be quickly transferred to the surface of evaporator, but also avoids the loss caused
by heat diffusion from the surface of evaporator to the water [20]. On the other hand, a
balance between water transfer and evaporation can be achieved by regulating the surface
wettability of the evaporator, so as to improve the photothermal conversion efficiency of
the evaporator and avoid the convective thermal losses [21]. In addition, by regulating the
hydrophilic functional groups of the evaporator, the equivalent evaporation enthalpy of
water in the evaporator can be reduced, and then the photothermal conversion efficiency of
the evaporator can be improved [22].

In the process of SVG, besides self-floating ability, hydrophobic membranes have
better salt tolerance than traditional hydrophilic membranes [23,24]. The hydrophobic
photothermal membrane has been applied to the interface SVG system, and its advan-
tages are as follows. (1) Because the intermolecular force between hydrophobic materials
and water is weak, the water vapor molecules are easy to separate from the hydrophobic
membrane surface, which is conducive to accelerate the evaporation rate [25,26]. (2) Due
to the self-floating ability of hydrophobic membrane, the bubbles will be generated at
the contact interface between the membrane and water in the SVG process, which can
reduce the loss of heat transfer to the bulk water and improve the photothermal conversion
efficiency [27]. (3) By the reason of the hydrophobicity of photothermalmembrane, the salt
water cannot pass through the membrane holes, and the water vapor can escape through
the membrane holes. The salt grains are blocked at the interface of the hydrophobic layer,
and then the salt grains are taken away by the reflux of water, thus effectively inhibiting
the salt precipitation [28,29]. For example, Wang et al. assembled polypyrrole modified
with fluoroalkyl silane on the stainless-steel mesh, to form a hydrophobic and self-healing
photothermal membrane [30]. This hydrophobic membrane can spontaneously stay at
the water–air interface and fully contact with water, so that solar radiation canprecisely
heat the water at the gas–liquid interface. However, the hydrophobicityof the abovemen-
tioned photothermal membrane is mainly realized by surface modification with alkyl or
fluoroalkyl. During the long-term use of photothermal membrane, it will be exposed to the
environment of water and air, and under the action of strong ultraviolet light, the alkyl or
fluoroalkyl will undergo oxidation reaction, resulting in the hydrophobic membrane into
hydrophilic membrane [31–33].

Here, a novel polypyrrole/polyvinylidene fluoride photothermal membrane was
designed by ultrasonically mixing and immersed precipitation. Then, the micropyramid
structure was fabricated on the surface of membrane by soft imprinting [34]. Polypyrrole,
as a photothermal conversion material, has wide waveband absorption. Polyvinylidene
fluoride, as a hydrophobic support, has good self-floating and salt tolerance. Without
unmodification, this composite membrane can maintain long-term stability in SVG process,
due to the intrinsic hydrophobicity of polyvinylidene fluoride. The micropyramid structure
has an antireflective ability, which can improve the utilization efficiency of incident light,
and then improve the photothermal conversion efficiency of this system.

2. Materials and Methods
2.1. Materials

Polyvinylidene fluoride (PVDF), Dimethylformamide (DMF), Pyrrole, Ethanol, Fer-
ric trichloride (FeCl3), Sodium hydroxide (NaOH) and Sodium chloride (NaCl) are all
analytical reagents. All the materials were utilized as received without further purification.

2.2. Synthesis of PPy

First, 1.622 g FeCl3 was added into 100 mL deionized water and stirred until completely
dissolution. Then, 175 µL pyrrole was added into FeCl3 solution, and the reaction time
was 3 h. After the reaction, the above solution was aged for 12 h, and polypyrrole (PPy)
powder was obtained by filtration. The filtration was carried out by qualitative filter paper
with a pore size of 30–50 µm. Finally, PPy powder was washed with anhydrous ethanol
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and deionized water for 3 times respectively, and dried in a vacuum oven at 60 ◦C for
8 h [35,36].

2.3. Fabrication of PVDF Membrane

First, 1 g PVDF powder was added into9 mL DMF and stirred until completely
dissolved. Then, the above PVDF solution was poured into a hydrophobic mold. Finally,
the PVDF membrane was obtained by quickly dipping the above mold into deionized
water [37].

2.4. Fabrication of PPy/PVDF Membrane

First, 1 g PVDF powder was added into 9 mL DMF and stirred until complete dissolu-
tion. Second, 126 mg PPy powder was mixed into PVDF solution by the sufficient stirring.
Then, the above solution was poured into a hydrophobic mold. Finally, the PPy/PVDF
membrane was obtained by quickly dipping the above mold into deionized water.

2.5. Fabrication of PPy/PVDF Membrane with Micro-Pyramids

First, the Si template with micropyramid structure was obtained by etching Si wafer
into alkaline solution for 30 min at 85 ◦C [38,39]. Next, 1 g PVDF powder was added into
in 9 mL DMF and stirred until complete dissolution. Then, 126 mg PPy powder was mixed
into PVDF solution by the sufficient stirring, subsequently, the above solution was poured
into the hydrophobic Si template. Finally, the PPy/PVDF membrane with micropyramid
structure was obtained by rapidly dipping the above Si template into deionized water.

2.6. Photothermal Performance Testing

First, a photothermal membrane with a diameter of 35 mm was floated on the deion-
ized water in a container with an inner diameter of 39 mm. Then, under the irradiation of
simulated 1 sun (1 kW m−2), the photothermal water evaporation experiment was carried
out for 30 min. Meanwhile, the water evaporation mass change and the surface temperature
of photothermal membranes were recorded at 5 min intervals. In addition, the photother-
mal water evaporation experiment of PPy/PVDF membrane in 3.5%wt and 10%wt NaCl
solution was carried out. During the experiment, the temperature and humidity were kept
at 26◦C and 60% respectively.

2.7. Characterization

Scanning electron microscopy (SEM, S-4800, Hitachi, Tokyo, Japan) was used to ob-
serve the surface morphology of samples. Xenon lamp (CHF-XM-500W, PerfectLight
Company, Beijing, China) was used to simulate the solar beam. Infrared camera (FLIR-
E600), FLIRSystems Inc., Boston, MA, USA) was used to record the surface temperature of
photothermal membranes. The reflectance, transmission, and absorption spectra of samples
were measured by a UV-vis-NIR spectrophotometer (UV-3600plus, Shimazu Company,
Kyoto, Japan) with a scanning wavelength range of 300 nm to 1100 nm. The valence
state and electron transfer tests were performed using the Axis supra X-ray photoelec-
tron spectrometer (XPS, Axis supra, Kratos, Manchester, UK).The molecular structures of
the samples were characterized using a Fourier Transform Infrared Spectrometer (FTIR)
(Nicolet 6700, Thermo Fisher Scientific, Waltham, MA, USA).The contact angle of sam-
ples was measured by Optical Contact Angle Measuring Instrument (OCA-40, Beijing
Eastern-Dataphy Instrument Co., Ltd., Beijing, China).

3. Results and Discussion
3.1. Material Fabrication and Morphology

Figure 1 shows the schematic diagram of fabricating PPy/PVDF photothermal mem-
brane. First, PPy nanoparticles with a diameter of ~100 nm were synthesized by chemical
oxidation polymerization, as shown in Figure 2a,d. Then, PPy nanoparticles were ultrason-
ically dispersed into PVDF solution, and poured into the mold. After standing, the above
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mold with PPy and PVDF was immediatelyimmersed into the deionized water to obtain
PPy/PVDF membrane. The morphology of PPy/PVDF membrane is shown in Figure 2b,e.
The rough structure with a fluctuation of ~1 µm was formed on the surface of PPy/PVDF,
which is beneficial to increase the absorption efficiency of incident light. It can be seen
from Figure 2e that the cross section of PPy/PVDF membrane is highly porous, which is
favorable for the water vapor transmission. In addition, the porous PVDF networkplays a
role in supporting and fixing PPy nanoparticles, which can ensure the long-term and stable
photothermal conversion of PPy. Curves a, b, and c in Figure 3a are the IR spectra of PPy,
PVDF, and PPy/PVDF, respectively. From the IR spectrum of PPy, a strong broad N–H
stretching vibration absorption band at 3450 cm−1 is observed. The bands at 1631 cm−1

and 1544 cm−1 originated from C = C and C–C stretch peaks of ring-stretching modes. The
bands at 1180 and 1050 cm−1 originated from C-N stretching vibration and C–H stretching
vibration. The IR spectrum of PVDF shows that the bands at 1631 and 1544 cm−1 originated
from CF and CF2 stretching vibrations. The IR spectrum of PPy/PVDF composite shows
all of the above characteristic peaks, which proved that the PPy and PVDF composite were
successfully prepared. Figure 3b shows the XPS spectra of PPy and PPy/PVDF. It can be
seen that the deconvolution of N 1s peak of PPy leads to four main component peaks at
399.4, 400.83, 402.17 and 397.6 eV, which are attributed to N-H, C-N+, C = N+ and C = N,
respectively. When PPy and PVDF is compounded, the binding energy of N-H bond shifts
to 399.96 eV, indicating the strong hydrogen bond interaction between PPy and PVDF.
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In order to further enhance the photothermal conversion efficiency of PPy/PVDF
membrane, a micropyramid structure with antireflection was fabricated on the surface
of PPy/PVDF membrane by template method. The PPy/PVDF membrane with micro-
pyramids is defined as PPy/PVDF(P). Figure 2c,f shows the average height of micropy-
ramids is ~5 µm, which can effectively improve the absorption efficiency of incident
light [40,41]. The photos of PVDF, PPy/PVDF, and PPy/PVDF(P) membranes are shown in
Figure 4. Compared with the traditional SVG system, the advanced features of PPy/PVDF(P)
are as follows. (1) PVDF in PPy/PVDF(P) has excellent salt resistance, which is conducive
to its application in desalination. (2) The surface of PPy/PVDF(P) has an antireflective
structure, which is conducive to improving its absorption efficiency of sunlight and thus
improving its photothermal conversion efficiency. (3) Both PPy and PVDF are readily
available commercial raw materials with low cost, which is conducive to the marketization
of the system. (4) The fabrication process of PPy/PVDF(P) membrane is simple, which is
conducive to its industrialization promotion.
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3.2. Optical and Hydrophobic Property

Figure 5a,b shows the absorption and reflection spectra of PPy/PVDF and PVDF
membranes. Compared to the PVDF membrane without PPy, the PPy/PVDF membrane
has a great improvement in the absorption efficiency of incident light from 300 nm to
1100 nm. This is due to the fact that PPy is an excellent photothermal material with
strong light-absorption ability. As shown in Figure 5c,d, the light-absorption efficiency
of the PPy/PVDF(P) membrane with a micropyramid structure is higher than that of
the PPy/PVDF membrane without a micropyramid structure. This is because the micro-
pyramids of PPy/PVDF(P) can slow down the change of refractive index fromthe air to
the membrane surface, thus effectively reducing the reflectivity, which conforms to the
effective medium theory (EMT) [42,43]. Meanwhile, as PVDF is an intrinsically hydrophobic
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material, the contact angle of PPy/PVDF(P) reaches 114◦, realizing its self-floating on the
water surface, as shown in Figure 5e,f.
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3.3. Optimization of PPy/PVDF Membrane

The effect of the concentration of PVDF solution (DMF) on the evaporation rate of
PPy/PVDF is shown in Figure 6. When other conditions remain unchanged, the mass
fraction of PVDF is adjusted to 5.6%, 8.1%, 10.5%, 12.8%, and 15.0%, respectively. The cor-
responding evaporation mass of water is 0.4312 g, 0.5149 g, 0.6204 g, 0.5683 g, and 0.5481 g,
respectively. The corresponding evaporation rate is 0.90 kg m−2 h−1, 1.07 kg m−2 h−1,
1.29 kg m−2 h−1, 1.18 kg m−2 h−1, and 1.14 kg m−2 h−1, respectively. With the increase of
PVDF concentration, the evaporation rate of PPy/PVDF increases firstly and then decreases.
This is due to the fact that the strength of PPy/PVDF membrane is not enough when the
concentration of PVDF is low, and it will be deformed during the SVG process, which leads
to the decrease of the evaporation rate. The pore size of PVDF membrane decreases with the
increase of PVDF concentration. Therefore, when the concentration of PVDF is too high, the
corresponding pores of smaller size will hinder the diffusion of water vapor, thus reducing
the evaporation rate of water. In conclusion, PPy/PVDF has the best photothermal ability
when the concentration of PVDF is 10.5%.
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to 0.41 mm, 0.57 mm, 0.75 mm, 0.94 mm, and 1.11 mm, respectively. The corresponding
water evaporation mass is 0.5143 g, 0.5724 g, 0.6087 g, 0.6204 g, and 0.6228 g, respectively.
The corresponding evaporation rate is 1.07 kg m−2 h−1, 1.19 kg m−2 h−1, 1.27 kg m−2 h−1,
1.29 kg m−2 h−1, and 1.29 kg m−2 h−1, respectively.
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different thicknesses.

With the increase of membrane thickness, the evaporation rate of PPy/PVDF increases
firstly and then remains constant. This is because the thin membrane facilitates the high
transmittance of incident light, leading to the low light-absorption, which has a negative
impact on the evaporation rate of PPy/PVDF. When the membrane thickness reaches
0.94 mm, the evaporation rate reached the maximum, and then remained almost constant
with the increase of membrane thickness. In conclusion, when the membrane thickness is
0.94 mm, PPy/PVDF has the best photothermal ability.

The effect of PPy content on the evaporation rate of PPy/PVDF is shown in Figure 8.
When other conditions remain unchanged, the content of PPy is adjusted to 8 mg/mL,
10 mg/mL, 12 mg/mL, 14 mg/mL, and 16 mg/mL. The corresponding water evaporation
mass is 0.4931 g, 0.5446 g, 0.6165 g, 0.6573 g, and 0.6079 g, respectively. The corresponding
evaporation rate is 1.03 kg m−2 h−1, 1.13 kg m−2 h−1, 1.29 kg m−2 h−1, 1.36 kg m−2 h−1,
and 1.26 kg m−2 h−1, respectively. With the increase of PPy content, the evaporation
rate of PPy/PVDF increases firstly and then decreases. This is due to that PPy is an
excellent photothermal material, and the surface temperature of PPy/PVDF will increase
with the increase of PPy content, thus speeding up the evaporation rate. However, the
diffusion channel of water vapor is blocked when PPy content is too high, leading to the
increase of humidity at the interface between PPy/PVDF membrane and water, which is
not conducive to the subsequent evaporation of water. In conclusion, PPy/PVDF has the
best photothermal ability when the content of PPy is 14 mg/mL.
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3.4. Photothermal Property of PPy/PVDF(P)Membrane

The micropyramids on the surface of PPy/PVDF(P) membrane can further improve
the photothermal ability. The equilibrium temperature of PPy/PVDF(P) membrane in the
SVG process is higher than that of planar PPy/PVDF membrane, as shown in Figure 9a,c.
This is because the micropyramids have the ability of antireflection, which can effectively
improve the light absorption of PPy/PVDF(P) membrane, and thus enhance its solar
energy efficiency. The high surface temperature of photothermal membrane facilitates the
evaporation of water. Therefore, the evaporation rate of PPy/PVDF(P) membrane reaches
1.42 kg m−2 h−1, which is higher than that of the optimal planar PPy/PVDF membrane
(1.36 kg m−2 h−1), as shown in Figure 9b.
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Figure 10 shows the temperature change curve of PPy powder and PPy/PVDF(P)
membrane without water evaporation under 1 sun irradiation. It can be seen that the surface
temperature of PPy powder rapidly rises up to 92.0◦C, which proves that PPy is a highly
efficient photothermal material. Meanwhile, the surface temperature of PPy/PVDF(P)
membrane without water evaporation also rapidly rises up to 70.1 ◦C, which is much higher
than that of PPy/PVDF(P) membrane with water evaporation. The above phenomenon
indicates that the heat generated by PPy/PVDF(P) during water evaporation can be taken
away by the water at the solid–fluid interface, which is used for rapid water evaporation.
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The photothermal conversion efficiency is a parameter to evaluate the utilization
efficiency of incident light energy. The following formula is used to calculate [17,44–46]:

H = mLv/Pin (1)

where m is the evaporation rate of water (kg m−2 h−1), Lv (kJ kg−1) is the evaporationen-
thalpy of water, and Pin is the optical input power (kW m−2). For PPy/PVDF(P) membrane,
the enthalpy of water evaporation is 2248 kJ kg−1when the surface temperature reaches
the highest (46.4 ◦C). Through calculation, the photothermal conversion efficiency of
PPy/PVDF membrane is 84.9%. By using the above calculation method, the photothermal
conversion efficiency of PPy/PVDF(P) membrane with micropyramids is 88.7%.

3.5. Salt Tolerance and Stability of PPy/PVDF Membrane

In order to prove the salt resistance and stability of PPy/PVDF(P), 3.5%wt NaCl solu-
tion (close to seawater) and 10%wt NaCl solution (higher concentration than seawater) were
selected for the SVG cycle experiment. As can be seen from Figure 11a, the PPy/PVDF(P)
membrane has good stability in the SVG process of 3.5%wt NaCl solution, during which
the evaporation rate is basically stable at 1.28 kg m−2h−1 after 15 cycles of experiments.
Figure 11b shows the evaporation rate change of 3.5%wt NaCl solution and 10%wt NaCl
solution for PPy/PVDF(P) in the long-term SVG process. The higher the concentration of
NaCl solution, the lower the saturated vapor pressure, resulting in the decrease of water
evaporation rate. Therefore, the evaporation rate of 10%wt NaCl solution is lower than
that of 3.5%wt NaCl solution, but it is basically maintained at 1.23 kg m−2h−1. Due to
the hydrophobicity of PVDF, NaCl solution cannot enter into PPy/PVDF(P) membrane.
Therefore, no salt is precipitated on the surface of PPy/PVDF(P) after 8hSVG of 10%wt
NaCl solution (as shown in Figure 11c), showing excellent salt tolerance.
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Figure 11. (a) SVG cycle experiment of PPy/PVDF(P) in 3.5%wt NaCl; (b) salt-tolerance test of
PPy/PVDF(P) in 3.5%wt and 10%wt NaCl; (c) photos of PPy/PVDF(P) before and after 8 h SVG of
10%wt NaCl.

4. Conclusions

This photothermal membrane showed good self-floating ability in the process of water
evaporation. In order to further improve the photothermal conversion efficiency, a micropy-
ramid structure with antireflective ability was formed on the surface of themembrane by
template method. The micropyramids can enhance the absorption efficiency of incident
light. The water evaporation rate reached 1.42 kg m−2 h−1 under 1 sun irradiation, and
the photothermal conversion efficiency was 88.7%.

The hydrophobic polyvinylidene fluoride ensures that NaCl cannot enter into mem-
brane during the evaporation process of the brine, thus realizing the stability and salt
resistance of polypyrrole/polyvinylidene fluoride in 3.5%wt and 10%wt NaCl solution.

A kind of hydrophobic PPy/PVDF(P) evaporator with self-floating ability, anti-
reflective ability and long-term stability was fabricated by ultrasonic blending, phase
separation and molding.
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The micro-pyramid structure of the membrane surface can improve the absorption
efficiency of incident light.

In the cyclic evaporation experiment of PPy/PVDF in brine, the salt cannot crystallize
on the surface of PPy/PVDF(P) membrane, showing good salt tolerance and stability.

This structure and the preparation method provide a new idea to prepare long-term
stable hydrophobic photothermal membrane.
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