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Abstract: The advent of metasurface technology has revolutionized the field of optics and pho-
tonics in recent years due to its capability of engineering optical wavefronts with well-patterned
nanostructures at subwavelength scale. Meanwhile, inspired and benefited from the tremendous
success of the “lab-on-fiber” concept, the integration of metasurface with optical fibers has drawn
particular interest in the last decade, which establishes a novel technological platform towards
the development of “all-in-fiber” metasurface-based devices. Thereby, this review aims to present
and summarize the optical fiber-integrated metasurfaces with the current state of the art. The
application scenarios of the optical fiber metasurface-based devices are well classified and dis-
cussed accordingly, with a brief explanation of physical fundamentals and design methods. The
key fabrication methods corresponding to various optical fiber metasurfaces are summarized and
compared. Furthermore, the challenges and potential future research directions of optical fiber
metasurfaces are addressed to further leverage the flexibility and versatility of meta-fiber-based
devices. It is believed that the optical fiber metasurfaces, as a novel all-around technological plat-
form, will be exploited for a large range of applications in telecommunication, sensing, imaging,
and biomedicine.

Keywords: metasurface technology; nanostructures; lab-on-fiber; optical fiber metasurfaces

1. Introduction

Optical fiber has long been a well-established medium since the first demonstration
of silica-based fiber with low-loss transmission less than 20 dB/km in the 1970s [1].
Benefiting from its extraordinary features such as perfect light guiding, light volume,
chemical inertness, and immunity to electromagnetic interference, a myriad of optical
fiber-based applications have been realized, which has greatly revolutionized the optical
sensing [2–6] and telecommunication industry [7–9] in the last five decades. Despite the
tremendous success of optical fiber technology, it turns out that there remain several
challenges that obstruct the further progress of optical fiber-based devices. The optical
properties such as the propagation direction of guided modes, amplitude, mode profile,
polarization states, are hardly to be altered after the fiber drawing fabrication process.
Moreover, the divergence of output transmitted light and chromatic dispersion of the
optical fiber also limits the practical applications in long-haul transmission systems.
In this regard, the recent concept of “lab-on-fiber” has opened up a new pathway to
functionalize conventional fibers for multiple applications (e.g., environmental sensing,
biomedicine, clinical diagnosis [10–12]), with the enhanced light-matter interactions
introduced by the dielectric or metallic nanostructured patterns embedded on the facet of
optical fibers. Undoubtedly, the lab-on-fiber paradigm has greatly boosted the creation
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of novel plug-and-play “all-in-fiber” devices that are accessible in various application
scenarios. However, most of the conventional nanostructures are formed by artificial
3D metamaterials (e.g., “meta-atoms”). The fabrication process of 3D metamaterials
is labor-intensive and costly, which brings complexity and impediments for practical
optical applications.

Fortunately, the appearance of metasurface technology in the last decade has further
brought disruptive innovations to the nanophotonic field. The metasurfaces, based on
the phase discontinuities with 2D counterparts of metamaterials, could flexibly engineer
the properties (e.g., phase, amplitude, and polarization) of the incident light. Therefore,
a number of applications have been surged, including beam steering [13], aberration-
free focusing metalenses [14], polarization control [15,16], holography [17–19], and
imaging [20–22]. Inspired by the lab-on-fiber technology, the integration of metasurfaces
on optical fibers, as a novel landmark in the lab-on-fiber realm, has attracted enormous
attention in recent years. The flexibility, biocompatibility, and mechanical robustness
have made optical fibers excellent platforms to be linked to metasurface technology,
which is expected to leverage the functionalities pertaining to optical fiber technologies
to be applied to real-world scenarios.

In this article, the basic physics and working principles of metasurfaces are explicitly
elucidated in the first part, which are supported as the theoretical basis for the following
optical fiber-integrated metasurfaces. Subsequently, the latest applications of optical fiber
metasurface-based devices, depending on their specific design methods and application
scenarios, have been classified accordingly and discussed comprehensively. Moreover, the
corresponding fabrication techniques of optical fiber metasurfaces have been presented
with the comparison of the merits of each technique. Furthermore, the potential challenges
and future prospects in the field of optical fiber metasurfaces are also outlined, which may
shed some light on the efficient bridging between fiber-optic technology and the “flat”
photonics with a plethora of potential applications with high compactness, compatibility,
and efficiency.

2. Basic Concepts and Principle of Metasurfaces

Metasurfaces are typically made up of arrays of antennas that are spatially at sub-
wavelength scale with varying geometric parameters. The light propagating through
metasurfaces will undergo varying spatially optical responses and thus be shaped by the
phase discontinuities (defined as the abrupt phase change over a distance compared to
wavelength). The working principle of metasurfaces was systematically demonstrated
by Yu and Capasso in 2011, where the generalized Snell’s laws were formulated with the
introduction of the concept of phase discontinuities [13]. Briefly, the working principle of
metasurface can be explained from the perspective of Huygen’s principle: Each point on
the interface can be regarded as an independent source and generated as a sphere wavelet,
and a new wavefront is thus created by the interference of these wavelets. For a regular
nonstructured surface, there is no change of propagation direction for the incident light.
However, in the case of inhomogeneous metasurface consisting of arrays of resonators
(e.g., antenna, nanopillars, nanobricks, etc.), the wavefront will be reconstructed due to the
distinct phase response of these spatially arranged resonators, as indicated by Figure 1a,b.
To further analyze the phenomenon of reflection and refraction of light interacting with
metasurfaces, Fermat’s principle can be applied, stating that two infinitesimally close paths
should have optical phase difference of zero (so-called “stationary phase”). These optical
paths include the inherent propagation phase and the phase change induced at the interface,
as shown in Figure 1c.
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Figure 1. Schematics showing the Huygens’s principle with optical wavefront impinging on (a) 93 
nonstructured surface, and (b) a metasurface. Reprinted with permission from Ref. [23]. Copyright 94 
2015, IEEE Photonics Society. (c) Schematic of derived generalized Snell’s law of refraction. Re- 95 
printed with permission from Ref. [13]. Copyright 2011, American Association for the Advance- 96 
ment of Science. 97 
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Figure 1. Schematics showing the Huygens’s principle with optical wavefront impinging on (a)
nonstructured surface, and (b) a metasurface. Reprinted with permission from Ref. [23]. Copyright
2015 IEEE Photonics Society. (c) Schematic of derived generalized Snell’s law of refraction. Reprinted
with permission from Ref. [13]. Copyright 2011 American Association for the Advancement of
Science.

Consequently, by applying the stationary phase condition on the phase gradient
metasurface, Snell’s law can be extended and generalized with an additional item related
to phase gradient, as indicated in Equation (1)

sin(θt) ∗ nt − sin(θi) ∗ ni =
λ

2π

dϕ

dx
(1)

where θt and θi are the refraction and incident angles, respectively, and nt and ni are the
refractive indices of the two media. The constant phase gradient, denoted as dϕ/dx, is
determined by the specific geometries and spatial arrangements of the resonators. Equation
(1) also implies that the refracted beam can be directed arbitrarily. Furthermore, under
the condition nt < ni, the critical angles under the total internal reflection condition can be
satisfied and derived, as:

θc = arcsin
(
±nt

ni
− λ

2πni

dϕ

dx

)
(2)

Similarly, in the case of reflection with gradient metasurface, the generalized Snell law can
be rewritten as:

sin(θr)− sin(θi) =
λ

2πni

dϕ

dx
(3)

where θr is the reflection angle. It is seen from Equation (3) that the anomalous reflection
is no longer equal to the incident angle, which differs significantly from the conventional
specular reflection. In addition, Equation (3) indicates that there exists a critical angle
beyond which the reflected beam becomes evanescent, which is expressed as:

θ′r = arcsin
(

1− λ

2πni

∣∣∣∣dϕ

dx

∣∣∣∣) (4)

As seen from Equations (1)–(4), the light manipulation is closely associated with the phase
gradient induced by the optical resonators constituting the 2D metasurfaces. The optical
resonators can be selected from a wide range such as dielectric resonators, quantum dots,
nano-crystals, and plasmonic antennas. However, it should be noted that the resonators
have to satisfy the following requirements: (1) they should have subwavelength geometric
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parameters to be arranged at subwavelength scale with limited transmission loss. (2) The
phase modulation of these resonators should cover the entire 2π range. (3) The scattered
optical amplitude should be uniform and large across the metasurface array. Based on the
principles and physics of metasurfaces, Yu and Capasso et al. have successfully pioneered a
variety of flat optical components based on metasurfaces, including metalens [24], quarter-
wave plates [15], vortex plates [25], and holograms for vortex beam generation [26]. In
particular, successful implementation of the metasurface-based collimating lens on the
facets of semiconductor lasers to control the far-field laser emissions (e.g., divergence
angle [27], output power [28]) has shown promising inroads towards the production of
metasurface-integrated devices. This would be of great value to propel the optical fiber-
integrated metasurfaces, because in both platforms the light propagation is well confined
in the optical waveguide.

3. Applications of Optical Fiber Meta-devices

Illuminated by the successful integration of metasurface with the well-established
platform of semiconductor lasers for wavefront engineering, there is sufficient grounds
that the metasurface technology could also bring new features to conventional optical
fibers to launch a novel class of all-fiber devices and components: (1) the metasurface
arrays can be readily patterned on the facets (e.g., end face of the fiber core, the side
face of D-shaped fiber) of optical fibers to interact with either the confined or evanescent
fields [29–31]. (2) The compact resonators of metasurface nanostructures on the optical
fiber platforms can have strong interactions with either the electric field or magnetic field
of the guided light, thus controlling the optical impedance with modified transmission or
reflection properties. (3) The integrated metasurface with high refractive index materials
is capable of modulating the optical properties of the guided mode, including the phase,
amplitude, and wavevector. Therefore, optical fiber metasurface-based devices have sprung
up during the last decade and have been exploited in many strategic applications, ranging
from optical processing and communication to environmental sensing, biomedicine, and
security. In the following, the specific application scenarios, design methods, and brief
physics of optical fiber-integrated metasurface-based devices are categorized, reviewed,
and discussed accordingly.

3.1. Function of Light Beam Focusing

One of the most pronounced and repetitively reported functions of fiber-integrated
metasurface is the light beam, focusing on fiber guided fundamental mode. Typically, to
transfer the input plane wavefronts to the focused spherical ones, the phase retardation of
the predesigned metalens should follow the hyperbolic phase profile, which is expressed
as [32,33]:

ϕ(x, y) = −2π

λ

(√
f 2+x2+y2− f ) (5)

where (x, y) refers to the spatial coordinate in which each unit cell of the metalens is
located, f is the designed focal length, and λ is the operating wavelength. To realize
the target hyperbolic phase distribution, several phase modulation methods for the
spatially distributed nanopillars can be considered. Depending on the polarization
sensitivity of the incident beam, the phase modulation methods can be classified into
two types: one is the propagation phase modulation [34], in which the phase difference
is mapped by square cylinders or cylinders utilizing varying side lengths or diameters.
Each nanofin can be regarded as a waveguide and thus introduce the waveguiding effect
as the following [35]:

ϕWG =
2π

λ
ne f f H (6)
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where neff represents the effective index of the fundamental mode (HE11) and H is the
propagation length (nanofin’s height). By varying nanofin’s diameter, the effective index
of the propagated mode is varied, and thus the 2π phase converge can be obtained
with a suitable height of nanofins [36,37]. It should be noted that for this kind of phase
modulation, the isotropic structures are always utilized, with square or cylindrical
geometry mapping the required phase profile. In contrast, another frequently used
phase control method is the geometric phase (also denoted as “Pancharatnam-Berry”
phase), where the additional phase is generated by the specific spatial orientation (e.g.,
rotation angle θ) of the anisotropic rotary nanofin to tailor the wavefront of circular
polarizations. More specifically, when a circularly polarized light is incident on the
dielectric nanofins rotated by an angle of θ, the complex transmission coefficient can be
expressed by the Jones matrix [38,39]:

T = R(−θ)∗J ∗ R(θ) =
[

cos θ − sin θ
sin θ cos θ

][
txxeiϕxx 0

0 tyyeiϕyy

][
cos θ sin θ
− sin θ cos θ

]
(7)

where θ is the rotation angle in the x–y plane (metalens plane). R(θ) and R(−θ) are 2 × 2
rotation matrices. J is the transmission matrix in the crystal coordinates. t and ϕ are the
transmission coefficients and structural phase retardation, where the subscripts xx and yy
indicate the polarization direction of the incident beam parallel to the x or y–direction. With
the above equation, the output transmitted field upon a circularly polarized incident beam
(Ein = [1, ±i]) can be expressed as:

Eout= T ∗ Ein =
1
2
(t xxeiϕxx + tyyeiϕyy)

(
1
±i

)
+

1
2
(t xxeiϕxx − tyyeiϕyy)e±i2θ

(
1
+i

)
(8)

Clearly from Equation (4), the output electric field consists of two parts, the first item refers
to the co-polarized output beam without change of polarization states, and the second
item represents cross-polarized (opposite handedness) beam carrying an additional phase
Φ = 2θ, which is known as the PB phase. To achieve 2π coverage by utilizing the geometric
phase method, the rotation angle for each nanofin in the metalens plane should satisfy the
following equation:

θ(x, y) =
1
2

ϕ(x, y) (9)

where ϕ (x, y) is the required phase indicated in Equation (5). From Equation (9), it is clear
that by continuously rotating the nanofins radially from the center to the edge of the meta-
surface, a full 2π coverage can be smoothly obtained. It should be noted that the PB phase
modulation method only applies to incident lights with circularly polarization (CP) states,
and thus there is inevitably polarization conversion which limits the focusing efficiency
of the fiber-integrated metasurface. To maximize polarization conversion efficiency, the
nanofins should act as half-waveplates by tailoring the dimensions (length, width, etc.) of
the nanofins [40–42].

In 2019, Yang et al. first reported the direct combination of optical fiber platform with
the plasmonic metasurface for light beam focusing from the fiber output end [43,44]. In
this work, the circular gold metalens was directly patterned on the facet of large-mode-area
photonic crystal fiber (LAM-PCF) by focused ion beam (FIB) milling. A single etched
gold nanorod was considered as the unit element with varying orientation angle (0–164◦)
radially to construct the hyperbolic phase profile covering 2π indicated in Equation (5),
using the geometry phase method with CP incidence. The detailed fiber metalens structure
is depicted in Figure 2a–c.
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By both experimental and computational simulation, the proposed LAM-PCF metalens
with two different numerical apertures (NA) has demonstrated good focusing performance
with focal lengths of 30 and 50 µm upon the incident RCP light at 1550 nm. Furthermore,
the enhanced optical intensity has been found to be over 230% due to the tight and bright
focusing spot (See Figure 2d). Following Yang’s work, in 2020, Korean researcher Kim
et al. suggested that the PCF-based metallic metalens in [43] suffer from a low operation
efficiency (~17%) due to the low polarization conversion efficiency and metal loss. As a
result, Kim et al. proposed an all-dielectric metalens by depositing the aperiodic silicon
(Si) nanopillars on top of the photonic crystal fiber [45]. The focusing effect was realized
by tuning the diameters of Si nanopillars using the propagation phase. Simulation results
have shown that the focusing efficiency of the dielectric PCF metalens has been improved
to 88% with a focal length of 30 µm. Although the operating efficiency of the proposed PCF
metalens has been enhanced, however, neither the newly designed fiber platform (the PCF
type is the same as reported in [43]) nor the broadband focusing is presented in this work.
In this regard, in 2021, Zhao et al. designed a customized all-glass PCF metalens for output
guided beam focusing [46]. The schematic is shown in Figure 3a,b.
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Zhao et al. replaced the air-holes constituting PCF cladding with fluorine-doped glass
rods to reduce the refractive index between the core and cladding, which increased the
single-mode operation regime. The designed LAM-PCF for loading the dielectric metalens
has a large core diameter of 50 µm, which is twice as large than that used in [43,45]. The
large core size supports more unit cells with higher resolution to tune the phase profile,
and most importantly, allows for a larger focal length according to Equation (5). The 2π
phase modulation was achieved by varying the diameters of TiO2 nanopillars using the
propagation phase modulation method. Moreover, the author demonstrated a broadband
focusing function with the designed LMA-PCF metalens covering the typical “three com-
munication windows” (800–1550 nm), and the focusing performance with varying incident
wavelengths has also been well studied. The simulated results have shown that the cus-
tomized all-glass LMA-PCF could be operated in the broadband near-infrared range with a
stably high focusing efficiency (~70%) and large focal length (~300 µm), which has greatly
improved the focusing performance of in-fiber metalens. Besides the PCF as the substrate
for integrating the flat metalens, single-mode fibers have also been selected as an appropri-
ate candidate for saddling the metalenses to achieve the short or long-distance focusing
of fiber guided mode in either visible band or the near-IR range [47–53], which is more
approachable for the practical applications in the long-haul optical communication systems.
Besides the extensive study of the focusing proprieties for this kind of fiber metalens, it has
been found that the numerical aperture (NA) is also a key factor affecting the performance
of optical since a larger NA supports a higher coupling efficiency of optical fiber to be
applied to high-power applications. In this regard, the optical fiber metalens with the
purpose of increasing the NA is also studied. Mostly recently, Matthias et al. proposed
a model which combines the single-mode fiber with plasmonic metalens via a coreless
glass section (expansion section, Figure 4a,b). By means of the insertion of the expansion
section, the light propagating through the fiber end could be expanded to 48 µm and thus
greatly enlarge the NA of the metalens (~0.3) [49]. In this application, the geometry phase
method was applied, with gold nanoslits orientated to different angles to achieve the 2π
phase profile indicated in Equation (5). The dimensions of the nanoslits were optimized
using the Babinets’ principle to achieve the maximal transmission (T ~ 0.332) at the desired
wavelength λ = 650 nm, resulting in L = 140 nm, W = 60 nm. This fiber metalens concept
will find applications in a multitude of fields, including remote focusing, optical trapping,
beam generation, and efficient light collection.
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Figure 4. (a) Schematic of gold-coated plasmonic metasurface interfacing with single-mode step-
index fiber. (b) Illustration of the interfacing structure including fiber expansion section. (c) Measured
transverse intensity distribution of the focused spot in the focal plane. Reprinted with permission
from Ref. [49]. Copyright 2021 WILEY-VCH.
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In another practical application with light beam focusing, the fabricated fiber-integrated
metalens was self-adapted and was directly applied to the laser lithography system for
light beam routing [54]. The circular metalens, made of photoresist, has a phase profile
defined by Equation (5), a focal length of 8 µm, and a near-infrared operating wavelength
of 980 nm (See Figure 5a,b).

Nanomaterials 2022, 11, x FOR PEER REVIEW 8 of 20 
 

 

 274 

Figure 5. (a) SEM image of the fabricated metalens on top of the fiber core. (b) Enlarged view of 275 
the fiber meta-tip lens. (c) Schematic of the homemade two-photon laser writing system. (d) Illus- 276 
tration of two-photon writing process via fiber meta-tip lens and with the patterned “NU” and 277 
straight lines. Reprinted with permission from Ref. [54]. Copyright 2021, American Chemical Soci- 278 
ety. 279 

The inverse-designed was fabricated via 3D direct-writing methodology [55]. The 280 

homemade fiber focusing metalens was employed as the objective lens and directly inte- 281 

grated into the two-photon laser writing system for sample patterning (Figure 5c,d). It has 282 

been demonstrated that the fiber meta-tip that incorporated two-photon laser writing 283 

setup has a better patterning resolution (~200 nm), as compared to the commercial direct 284 

laser writing system. 285 

3.2. Function of Light Beam Routing  286 

Apart from the light focusing function of optical fiber-integrated metalens, another 287 

typical functionality achieved by optical fiber-integrated metasurface is the light beam 288 

steering. This function is of great importance because it can not only flexibly control the 289 

propagation direction of the output beam, but it can also distinguish the incident beam 290 

with different chirality without the use of the bulky optical components (e.g., reflecting 291 

mirrors, wave-plates). It is worth mentioning that Maria et al. in 2017 first proposed the 292 

single-mode optical fiber meta-tip for beam steering (deflection) with the phase-gradient 293 

metasurface [56,57]. The proof-of-concept application was the beam steering of a trans- 294 

mitted beam by an arbitrary deflection angle. The deflection angle of the anomalous re- 295 

fraction, under normal incidence, can be derived from the generalized Snell’s law and 296 

Equation (1), which is expressed: 297 

sinα= 
λ

2π*nfiber
γ

x
 (10) 

where α is the deflection angle, nfiber is the refractive index of the fiber, and γx is the phase 298 

gradient along the x direction in the metasurface plane. By means of Babinet-inverted 299 

plasmonic metasurfaces with tuning the rectangle nanoholes’ side lengths, the 2π phase 300 

coverage is achieved for the anomalous deflection beam [58]. The phase gradient can be 301 

calculated by: 302 

γ
x
= 
∆∅

𝑙𝑥
 (11) 

Where ΔΦ and lx represent the phase difference and distance between neighbor nano- 303 

holes. By varying the side lengths (L1 and L2) of the nanoholes according to the simulated 304 

“look-up” phase map, five prototypes of single-mode fiber-based metalens with varying 305 

phase gradients have been fabricated. Upon experimental verification, the anomalous 306 

Figure 5. (a) SEM image of the fabricated metalens on top of the fiber core. (b) Enlarged view of the
fiber meta-tip lens. (c) Schematic of the homemade two-photon laser writing system. (d) Illustration
of two-photon writing process via fiber meta-tip lens and with the patterned “NU” and straight lines.
Reprinted with permission from Ref. [54]. Copyright 2021 American Chemical Society.

The inverse-designed was fabricated via 3D direct-writing methodology [55]. The
homemade fiber focusing metalens was employed as the objective lens and directly inte-
grated into the two-photon laser writing system for sample patterning (Figure 5c,d). It has
been demonstrated that the fiber meta-tip that incorporated two-photon laser writing setup
has a better patterning resolution (~200 nm), as compared to the commercial direct laser
writing system.

3.2. Function of Light Beam Routing

Apart from the light focusing function of optical fiber-integrated metalens, another
typical functionality achieved by optical fiber-integrated metasurface is the light beam
steering. This function is of great importance because it can not only flexibly control the
propagation direction of the output beam, but it can also distinguish the incident beam
with different chirality without the use of the bulky optical components (e.g., reflecting
mirrors, wave-plates). It is worth mentioning that Maria et al. in 2017 first proposed the
single-mode optical fiber meta-tip for beam steering (deflection) with the phase-gradient
metasurface [56,57]. The proof-of-concept application was the beam steering of a transmit-
ted beam by an arbitrary deflection angle. The deflection angle of the anomalous refraction,
under normal incidence, can be derived from the generalized Snell’s law and Equation (1),
which is expressed:

sin α =
λ

2π ∗ n f iber
γx (10)

where α is the deflection angle, nfiber is the refractive index of the fiber, and γx is the phase
gradient along the x direction in the metasurface plane. By means of Babinet-inverted
plasmonic metasurfaces with tuning the rectangle nanoholes’ side lengths, the 2π phase
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coverage is achieved for the anomalous deflection beam [58]. The phase gradient can be
calculated by:

γx =
∆∅
lx

(11)

where ∆Φ and lx represent the phase difference and distance between neighbor nanoholes.
By varying the side lengths (L1 and L2) of the nanoholes according to the simulated “look-
up” phase map, five prototypes of single-mode fiber-based metalens with varying phase
gradients have been fabricated. Upon experimental verification, the anomalous beams
with cross-polarization to the incident beam were deflected accordingly from 11◦ to 22◦,
as indicated by Equation (10), and the constructed fiber meta-tip prototype and beam
deflection performance are depicted in Figure 6a–f.
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Figure 6. (a) Schematic of fiber meta-tip. (b) Illustration of generalized Snell’s law described in
Equation (6). (c) Nanohole as the unit cell with 45◦ orientation in the x-y plane. (d) Simulated electric
field-intensity profiles of fiber meta-tip 3 (γ = 14960 rad·cm−1). (e) Measured field-intensity map at
z = 8 mm. (f) Transverse cuts at y = 0 comparing the measured (black-solid curve) and simulated
(magenta-dashed curve) results. Reprinted with permission from Ref. [57]. Copyright 2017 Nature
Publishing Group.

Following Maria’s work, in 2018, Michael et al. firstly proposed a UV curable polymer
in-fiber polarimeter (see Figure 7a,b) with the template stripping transfer method [59,60].
The reason for using gold nanoholes as the unit cell is that the template stripping method
could enhance the adhesion between metals (gold included) and silicon to ensure that
the nanostructure pattern is smoothly transferred to the fiber core. The metasurface was
made of two superimposed gratings of antenna columns arranged in a pattern where the
antennas in each column are rotated 90◦ relative to antennas in the neighboring column,
and the spacing between. The distance between the two columns is set as λ* (1 + 1/4)
(λ is the resonant wavelength of the gold antenna) to scattering of polarization-dependent
in-plane and out-plane grating orders. The out-plane order was scattered at an angle of 45◦

from the metasurface plane (λ = 1550 nm) and was used for polarization measurements.
The authors have demonstrated the validity of the homemade in-fiber polarimeter since the
measurement results of polarization states of the incident beam from the in-fiber polarimeter
are almost identical to that of a commercial free-space polarimeter. The integration of in-
line polarimeters represents an important step towards the miniaturization of optical
polarimeter but is also useful for controlling light polarization in optical communication
systems.
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Figure 7. Micrograph images of patterned fibers. (a) Image of a polarimeter fabricated with the fiber
exposure approach. (b) Image of a patterned fiber facet using the flood exposure approach, where a
much larger area of nanoantennas arrays is transferred. Scale bar = 2 µm. Reprinted with permission
from Ref. [59]. Copyright 2019 IEEE Photonics Society.

In addition to the beam deflection, the collimation of light beam has also been theo-
retically studied based on single-mode fiber (SMF600) metalens [61]. The key feature in
this research is the use of low refractive index material (polymer, n = 1.52) to form the
metalens to reduce the optical impedance match between the metasurface/fiber interface
(see Figure 8a,b). More precisely, the elliptical nanopillars with uniform height but varied
width and length (100–400 nm) constructed the metalens with 2π phase modulation (as
described in Equation (5)), thus collimating the divergent beam output from the fiber end. It
has been found that the highly divergent beam from the fiber facet can be tightly collimated
with high efficiency of 95% while maintaining the Gaussian beam profile, and the concept
of optical fiber metalens collimator may find applications in laser-delivery, biomedicine,
and optical imaging.
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In view of the abovementioned applications, it is evident that the combination of
optical fiber with the superior light-guiding capability from the flat metasurface has pro-
vided an unprecedentedly well-established platform for the creation of novel photonic
devices with complex functionalities at multiscale, which greatly advances the production
of multiple photonic devices to be applied in diverse optical systems.

3.3. Function of Biological Sensing and Imaging

The real-time and accurate sensing of multiple physical quantities has never failed to
draw attention. Conventional optical fibers have been well explored as a mature platform
for multiparametric environmental monitoring. For plasmonic nanosensors based on the
electromagnetic resonance, whether they are surface plasmon resonance (SPR) or localized
surface plasmon resonance (LSPR), enhancing the light-matter interactions is the most
critical way to improve their performance [62]. The enhancement of plasmonic sensing
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can be achieved with either the optimized design of the nanostructures or the tuning
of plasmonic via nanoparticle growth [63]. Meanwhile, the emergence of metasurface
technology of controlling the light proprieties with the principle of phase discontinuity
has opened up new windows for the sensing and monitoring of environmental variables.
Of different fiber sensing platforms, the biomedical applications based on optical fiber
metasurface-based devices begin to draw attention from researchers worldwide.

Further to the model described in Section 3.2 for the function of beam deflection,
Marial Principe et al. has expanded their work into the application of label-free biological
sensing [56,64], with the fiber meta-tip named “prototype 5” indicated in [57]. As seen in
Equation (10), there exists a critical phase gradient above which the incident plane wave is
driven to surface wave (evanescent range, θt = 90◦, grazing condition), as expressed by:

γx � nt
2π

λ
(12)

where nt is the refractive index of the transmission region. To maximize the phase gradient,
the authors use the minimum number of etched gold nanoholes to obtain the maximal
phase change ∆Φ = π. Considering the biological experiments (e.g., liquid biologic solution
with RI of 1.34) and the operating wavelength (1400–1600 nm), the side lengths (L1 and L2)
have been optimized to locate the resonance wavelength in the operating range as well as
fulfilling the grazing condition. Figure 9a,b shows the schematic of fiber meta-tip coupling
the anomalous transmitted beam into a surface wave. A Babinet-inverted, plasmonic
phase-gradient MS, comprised of rectangular nanoholes milled in a thin gold film, is laid
on the flat fiber tip, which is assumed to separate the fiber core (incidence region) and
the exterior medium (liquid biological solution). The authors have compared the surface
sensitivity of phase-gradient metasurface and gradient-free one by observing the plasmonic
resonance wavelength shift of nanoholes under the same local refractive index environment,
and the experimental results have shown that the phase-gradient metasurface features
a higher surface sensitivity, indicated by a larger wavelength shift and enhanced local
field enhancement. The enhanced surface sensitivity of phase gradient fiber metasurface
was further demonstrated by the real-time and high-sensitivity monitoring of biological
molecules (Streptavidin ~a few ng/mL) [65].
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Figure 9. (a) Schematic of the fiber meta-tip for the excitation of the surface wave. (b) SEM image of
the phase-gradient meta-tip. (c) Dose-response curves pertaining to the phase-gradient fiber meta-tip
(black squares) and gradient-free benchmark (red circles) biosensing platforms. Reprinted with
permission from Ref. [65]. Copyright 2020 Wiley-VCH.

By implementation of real-time biological experiments, the phase-gradient fiber meta-
tip is capable of detecting the slight concentration change of Biotin and Biotin–Streptavidin
interaction, evidenced by a larger resonance wavelength shift (Figure 9c). The wavelength
shift is considered as an important parameter in label-free chemical and biological sensing
applications. The enhanced sensitivity of fiber meta-tip benefits from the coupling of the
incident field to the plasmonic resonance, thus yielding a higher field enhancement. Fur-
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thermore, the authors have also figured out the detection limit of the biological molecules
(3 nm/mL) with the proposed fiber meta-tip, which is proven to prevail over the fiber
optic biosensors with the current state of the art [66–71]. Another impressive example
of fiber-integrated metalens for biological imaging was reported by Hamid et al. from
Harvard Medical School [72]. The metalens (290 × 290 µm2), made of silicon pillars,
was embedded on the fiber endoscopic catheter (see Figure 10a–d), and could achieve
varying near-diffraction-limited tight focal points in response to the incident wavelength
(λ = 1.31 µm). This results in effective high-quality axially-shifted imaging for subsurface
tissues (lung specimens and sheep airways) in vivo, in which the transverse resolution and
the high depth-of-focus have been perfectly balanced.
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Figure 10. (a) Schematic of the nano-optics endoscope. (b) Photographic image of the distal end
of the nano-optics endoscope. (c) Schematic of an individual metalens building block consisting of
amorphous silicon (a-Si) nanopillar on a glass substrate. (d) SEM image of a portion of a fabricated
metalens. Reprinted with permission from Ref. [72]. Copyright 2018 Nature Publishing Group.

Obviously, the biomedical applications obtained through the optical fiber-integrated
metasurface have opened up intriguing avenues towards the fabrication of the miniaturized
plug-and-play optical fiber metasurface-based devices. These fiber meta-devices, with
advantages such as excellent light tuning ability, small volume, and even biocompatibility,
may find plenty of optical applications in the biomedical and clinical field including real-
time biological parameters testing, liquid biopsy, cancer diagnosis, and high-resolution
medical in vivo imaging.

3.4. Function of Special Beam Generation and Applications for Optical Communication

Since metasurfaces are capable of controlling light properties (phase, amplitude, polar-
ization, optical impedance, etc.) in 2D versions, they are undoubtedly promising candidates
for shaping and generation of nonconventional light beams with special wavefronts (vortex
beam, twisted beam) [25,73,74]. When combined with optical fibers, the generation of
special light beams could be of great use in a variety of optical applications, including
fiber-optic communication, light beam manipulation, and information processing. In 2018,
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Yifan Zhao et al. first demonstrated a large core optical fiber meta-tip for the generation of
twisted light (linearly polarized, circularly polarized) from both the meta-tip side (OAM+1)
and the planar-facet side (OAM-1) [75]. The 2π phase coverage was achieved by judiciously
arranging eight etched gold “V” antenna arrays on top of the fiber core (d = 14.6 µm) with
continuous change of included angle θ and arm length L (see Figure 11a,b), resulting in a
phase shift interval of π/4. The arm width and cell lateral period of each “V” antenna are
fixed at 100 nm and 1.4 µm. The plasmonic metasurface was then capable of twisting the
incident light with cross-polarized states with a conversion efficiency of ~9%. In addition
to the generation of twisting incident light beam, the reconstruction of the phase profile
of the generated twisted light has been achieved with the tilted interferogram using the
Fourier-transform method, which had a broadband operating wavelength range of 1480 to
1640 nm with a high phase purity beyond 90%.

Nanomaterials 2022, 11, x FOR PEER REVIEW 13 of 20 
 

 

 446 

Figure 11. Schematic of the fiber meta-tip for twisting broadband light from either (a) meta-facet 447 
side or (b) planar-facet side. (c) Metasurface structure with etched “V-shape” antenna arrays and 448 
the conversion relationship between input and output polarization states. (d) SEM images of the 449 
original fiber facet fabricated on-top metasurface and enlarged metasurface region with OAM+1. 450 
Reprinted with permission from Ref. [75]. Copyright 2018, AIP Publishing LLC. 451 

The results presented in this paper bring new insights for the fiber metasurfaces, 452 

since the generated propagation modes can be feasibly applied in fiber-optic communica- 453 

tion systems. Indeed, with further consideration of the prototype depicted in [75], it is 454 

seen that the created twisted light with OAM±1 can further propagate along the fiber for 455 

optical data transmission. Furthermore, higher-order OAM modes could also be sup- 456 

ported by the replacement of other types of fiber platforms (e.g., few-mode fiber, multi- 457 

mode fiber) with the current metasurface structure. This kind of fiber-integrated meta- 458 

device will show great potential in high-speed and mass fiber-optic communication sys- 459 

tems, especially those with space-division multiplexing (SDM) technology using OAM 460 

modes as the input signal channels [76–82]. Similar optical fiber meta-tips for the genera- 461 

tion of structured light generation and beam shaping can be found in [83,84]. In the mean- 462 

time, great importance should be attached to the pioneered work demonstrated by 463 

Changyi Zhou et al. in 2021, who has successfully built up an all-dielectric metasurface 464 

based on a single-mode fiber [85]. This work has overcome the shortcomings of intrinsic 465 

ohmic loss encountered by the metallic metasurface structures. Benefiting from the 2π 466 

phase coverage from the spatially arranged silicon nanobricks (Figure 12a,b), this all-die- 467 

lectric fiber meta-tip enables two different functions, with the vortex beam generation 468 

from TE-polarized incident beam and the collimation of TM-polarized incident beam. 469 

Based on the polarization-selective characteristics of the proposed fiber meta-tip, the au- 470 

thors further reinforce and exploit its practical application in optical systems in which a 471 

pair of fiber meta-tips are combined to constitute the optical interconnects for optical data 472 

transmission systems (Figure 12c). The optical interconnects acted as an effective channel 473 

gate in which the on/off state is strictly dependent on the indent beam polarization state 474 

(with the passthrough of TE-polarized mode and blocking of TM-polarized mode). 475 

  476 

Figure 11. Schematic of the fiber meta-tip for twisting broadband light from either (a) meta-facet
side or (b) planar-facet side. (c) Metasurface structure with etched “V-shape” antenna arrays and the
conversion relationship between input and output polarization states. (d) SEM images of the original
fiber facet fabricated on-top metasurface and enlarged metasurface region with OAM+1. Reprinted
with permission from Ref. [75]. Copyright 2018 AIP Publishing LLC.

The results presented in this paper bring new insights for the fiber metasurfaces, since
the generated propagation modes can be feasibly applied in fiber-optic communication
systems. Indeed, with further consideration of the prototype depicted in [75], it is seen
that the created twisted light with OAM ± 1 can further propagate along the fiber for
optical data transmission. Furthermore, higher-order OAM modes could also be supported
by the replacement of other types of fiber platforms (e.g., few-mode fiber, multimode
fiber) with the current metasurface structure. This kind of fiber-integrated meta-device
will show great potential in high-speed and mass fiber-optic communication systems,
especially those with space-division multiplexing (SDM) technology using OAM modes
as the input signal channels [76–82]. Similar optical fiber meta-tips for the generation of
structured light generation and beam shaping can be found in [83,84]. In the meantime,
great importance should be attached to the pioneered work demonstrated by Changyi
Zhou et al. in 2021, who has successfully built up an all-dielectric metasurface based on
a single-mode fiber [85]. This work has overcome the shortcomings of intrinsic ohmic
loss encountered by the metallic metasurface structures. Benefiting from the 2π phase
coverage from the spatially arranged silicon nanobricks (Figure 12a,b), this all-dielectric
fiber meta-tip enables two different functions, with the vortex beam generation from TE-
polarized incident beam and the collimation of TM-polarized incident beam. Based on the
polarization-selective characteristics of the proposed fiber meta-tip, the authors further
reinforce and exploit its practical application in optical systems in which a pair of fiber
meta-tips are combined to constitute the optical interconnects for optical data transmission
systems (Figure 12c). The optical interconnects acted as an effective channel gate in which
the on/off state is strictly dependent on the indent beam polarization state (with the
passthrough of TE-polarized mode and blocking of TM-polarized mode).
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Figure 12. (a) Schematic of bifunctional optical fiber meta-tip. (b) SEM images of the metasurface
and the zoomed-in nanobricks. (c) Demonstration of polarization-controlled data transmission with a
pair of fiber meta-tips and the transmitted output signals with TE/TM polarization states. Reprinted
with permission from Ref. [85]. Copyright 2021 Wiley-VCH.

Coincidentally, the practical use of fiber-integrated metasurface-based in the field
of fiber communication networks has been further emphasized in [86]. The metasurface
consists of 70-nm-thick gold film perforated with an array of asymmetrically split ring
apertures (Figure 13a), which can be placed either the anti-nodes (coherent absorption) or
nodes (coherent transparency) to flexibly control the optical absorption of incident light
from 0 to 100% (Figure 13b).
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Figure 13. (a) Coherent optical input signals α and β interact on a metasurface absorber, generating
output signals γ and δ. (b) The standing wave formed by the counterpropagating input signal. The
metasurface could be placed either the node or anti-node where the optical absorption is suppressed
or increased. (c) Schematic representation of the fully fiberized experimental setup with a photograph
of the packaged fiber meta-device. Scale bar = 5 mm. Reprinted with permission from Ref. [86].
Copyright 2018 Nature Publishing Group.

The fiber metasurface-based device then could feasibly control the output light inten-
sity depending on the phase difference between the coherent input signals, and thus fulfill
the function analog to logic gates (XOR, NOT, AND) by altering the input/output signal
phase relations operating at both kHz and GHz bitrates (Figure 13c). The experimental
results have manifested the fabricated fiber meta-device as an efficient fiberized switcher to
be applied for all-optical signal processing in quantum information networks.
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3.5. Fabrication Methods of Optical Fiber Meta-Devices

The conventional optical fibers, with their advantages including geometric flexibility,
high aspect ratio, and planar cross-sections, have provided a favorable platform for the
integration of dielectric or plasmonic metasurfaces. Nevertheless, there remains a big ob-
stacle for the traditional nanofabrication technology to be smoothly applied to the facet of
the optical fiber due to the limited size of the optical fiber core. Still, great efforts have been
made towards the diversity and maturity of the fiber-integrated meta-devices, from the
experimental demonstration to the potential practical applications in the market. Except for
the theoretic and numerical studies of optical fiber metasurfaces, the fabrication methods
of fiber-based metasurfaces reviewed in this article can be categorized into the following
types, which are listed in Table 1: (1) Focus ion beam (FIB) milling: FIB milling is the most
frequently applied approach for the planar or 3D nanostructure construction with high
precision and resolution. However, the FIB filling technique suffers from limited exposure
depth and a time-consuming process that inhibits mass production. Still, it is a preferred
fabrication method in which the nanostructures can also be patterned on the sidewalls of op-
tical fiber to construct the metamaterial fibers [87–90]. (2) Electron-beam lithography (EBL):
Similar to FIB milling, the EBL is also a precise fabrication method but with prolonged and
complex processing. Different from the direct FIB milling, modifications on the size of the
apparatus are usually required since the conventional spin coating and resist processing
are performed on big wafers. Several additional measures have been taken to uniformize
the resist coating or improve the quality of lithographic patterns for better resolution of
imprinted metasurfaces on top of the fiber facet [91,92]. (3) Photolithography: the optical
lithography yields higher efficiency and throughputs, especially for the patterning of peri-
odic nanostructures on large scales. However, it inevitably encounters complicated extra
procedures, including the resist coating, pattern fixture, and alignment with the optical fiber
facet. A more approachable fabrication method is the interference lithography with the ease
of complex optical systems. Still, it contains multiple steps and is limited to the periodic
arrays of nanostructured patterns where the aperiodic metasurface is not applicable. (4)
Nano-transfer technique: Nano-transfer provides an effective way for the transferring
of subtle metasurface patterns onto the small fiber tips (e.g., single-mode fibers) where
direct nanofabrication is not feasible. The patterning resolution and quality can be soundly
maintained during the transfer process. However, the defects may be introduced during
the transferring process due to the imperfections of the apparatus, and the transferring
process is usually labor-intensive and costly. Nanfang Yu et al. has developed inexpensive
nano-transfer techniques with either dry and wet transfer processes named “decal transfer”
and “nanoskiving”. These approaches have been manifested to be cost-effective, efficient,
and convenient for the transferring of dense, sparse, or interconnected metasurface pat-
terns [93–95]. (5) Direct laser writing: by either employing the femtosecond laser pulse or
the two-photon polymerization, direct laser writing could also be used for the patterning of
nanostructures on top of the fiber facets. Nevertheless, subwavelength structures obtained
via femtosecond laser ablation usually encounters relatively low resolution, featuring larger
dimensions than the operating wavelength [96–98]. Alternatively, the two-photon direct
laser writing technique prevails in the aspect of constructing complex three-dimensional
(3D) structures which are hardly completed by top-down lithography. The superiorities of
two-photon direct laser writing have also enabled complex structure prototyping inside
the intra-waveguide structures [99,100].

Vastly different from the abovementioned fabrication methods in which the metasur-
face patterns are patterned on the drawn optical fiber, the preform-based fiber drawing
technique allows for the flexible addition of the metamaterials or microscopic features
during the preform assembly and drawing process [101]. As an example, the intra-fiber
nanowires have been successfully embedded into the metamaterial preforms with different
spatial orientations [102,103]. Although this metamaterial preform is a non-optical fiber
device, it is anticipated that this technology could be further adapted for the massive
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production of optical fiber-based metasurface-based devices with multiple functions at
multiscale, controlling optical loss and structural confinement.

Table 1. Summary of fabrication methodologies related to optical fiber meta-devices.

Fabrication
Methods Advantages Resolution Scalability Ref.

FIB milling
Extremely high

resolution with low
lateral scattering

High < 30 nm Low [43,44,56,57,64,
65,75,84,86]

EBL
Precise geometry
and patterning

features
High < 30 nm Low [47,49,83,85,104]

Nano-transfer
Prevail at defining
nanostructures on

small areas
Relatively high Low [59,93–95]

Photolithography
High throughput;
Well controlled

features
Low~Medium Medium [72,105,106]

Direct laser
writing

Superior in shaping
3D structures Low~Medium Medium [53,54]

4. Summary and Future Prospects

The emergence of metasurface technology in the last decade has witnessed the prosper-
ity of optical devices being applied almost everywhere in the optical field. The introduction
of phase discontinuities of metasurfaces enables the flexible engineering of the light prop-
agation direction, phase, amplitude, and polarization, and thus a diversity of optical
meta-devices has been created to meet the increasing demands in the nanophotonic field.
Meanwhile, the rise of the “lab-on-fiber “paradigm has brought disruptive developments
for the generation of functionalized optical fibers, which has greatly expanded the appli-
cation scenarios of conventional optical fibers. In this article, the applications of optical
fiber-integrated metasurfaces, which is regarded as an emerging platform from the branch
of lab-on-fiber technology, have been reviewed comprehensively. The basic concept and
principle of metasurface was been introduced first, which is set as the theoretic basis for the
implementation of optical fiber metasurfaces. Depending on the specific phase retardation
profile and design methods, the applications with brief physics of optical fiber metasurface-
based devices have been categorized and reviewed accordingly, followed by the summary
of diverse fabrication techniques for the creation of these fiber-based meta-devices. With the
review for the fruitful and novel optical fiber meta-devices, it is believed that the fiber-based
metasurfaces show great promising potential in a large number of practical fiber-compatible
applications, such as signal processing, long-haul fiber-optic communication, biomedical
sensing, endoscopic imaging, optical metrology, and optical storage. Still, there are some
challenges and potential research directions for this newly-established photonic platform:
(1) One of the salient challenges is the development of a mature fabrication technique with
high scalability and cost-effectiveness. Currently, most fiber-based metasurfaces rely on
the slow etching process such as FIB milling and EBL, which are not suitable for massive
and commercial production. Nanoimprinting and self-assembly may be promising inroads
towards future volume production but need further investigation. (2) Nearly all optical
fiber meta-devices presented at the current stage are composed of lossy metallic material,
which greatly impedes the operating efficiency for the designed functions. Other materials
with low loss and high light-matter interactions still need further exploration. (3) The
optical fiber metasurfaces at the current stage typically fulfill one specific function with a
predetermined phase profile. Bifunctional or multifunctional optical fiber metasurfaces can
be further developed by combining the nanostructure arrays with different phase profiles
or phase modulation principles on the fiber facet, such as directional beam focusing with
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polarization detection, simultaneous co-axial or off-axis beam focusing, and light beam
collimation with the generation of new structured light. (4) More types of optical fibers can
be selected as a promising substrate to be the promising substrates for accommodating the
2D nanostructures, such as multicore fibers, ring-core fibers, multimode fibers, or other
microstructured optical fibers, which support the high-order guided modes propagation to
be applied to the practical application of fiber-optic communication with SDM technology.
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