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Abstract: The trapping of coronene and zinc phthalocyanine (ZnPc) molecules at low concentration
by a two-dimensional self-assembled nanoarchitecture of a push–pull dye is investigated using
scanning tunneling microscopy (STM) at the liquid–solid interface. The push–pull molecules adopt
an L-shaped conformation and self-assemble on a graphite surface into a hydrogen-bonded Kagomé
network with porous hexagonal cavities. This porous host-structure is used to trap coronene and
ZnPc guest molecules. STM images reveal that only 11% of the Kagomé network cavities are filled
with coronene molecules. In addition, these guest molecules are not locked in the host-network and
are desorbing from the surface. In contrast, STM results reveal that the occupancy of the Kagomé
cavities by ZnPc evolves linearly with time until 95% are occupied and that the host structure cavities
are all occupied after few hours.

Keywords: molecular self-assembly; guest-host structures; 2D material; scanning tunneling mi-
croscopy; intermolecular interactions; hydrogen bonds

1. Introduction

Porous materials and nanoarchitectures are of scientific and technological interest
because of their ability to interact with foreign nanospecies throughout specific functional
sites located in their internal structure or surface [1–4]. Research has been devoted to
assessing the structure property correlations and interactions between the host-structure
and guest-species. In this respect, the construction of organic nanoarchitectures and thus,
porous host-structure through molecular self-assembly [5–7] is especially appealing [8–10].
Selective and directional intermolecular binding by halogen bonds [11–17] as well as hy-
drogen bonds [5,18–25] has been successfully exploited to govern molecular self-assembly.
Even multi-component organic two-dimensional nanoarchitectures have been successfully
achieved [26–28]. Multicomponent organic nanoarchitectures have also been engineered by
the formation of guest-host structures, where foreign molecules are trapped inside the cavi-
ties of a porous 2D network [29,30]. The size and shape of the trapped molecules, as well as
those of the host structure cavities, are key parameters, which drastically affect the efficiency
of guest-molecule trapping by the host structure [31,32]. Scanning tunneling microscopy
(STM) is a powerful tool with submolecular resolution to not only characterize molecular
assembly but also probe various dynamic processes appearing during the formation of a
guest-host structure. For example, evidence for single-molecule adsorption/desorption
events have been identified in sequential STM images [33].

We recently successfully engineered a porous two-dimensional (2D) Kagomé host-
nanoarchitecture through the self-assembly of “push–pull” dyes and used this structure to
trap round coronene molecules at high concentration [34]. However, the ability of a host
structure has to be assessed at low guest-molecule concentration to determine its efficiency
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and stability. It is also unclear whether this host structure is versatile enough to trap larger
functionalized cross-shaped complexes, such as those of phthalocyanines [35–37]. Phthalo-
cyanines are especially appealing organic compounds and have attracted considerable
interest in recent years due to their potential applications in organic transistors [38], solar
cells [39] and information storage systems [40].

In this paper, we investigate the molecular trapping efficiency at low-concentration of
two-dimensional host-nanoarchitecture composed of push–pull dye. STM is used to locally
assess if coronene and ZnPc guest molecules can be trapped into the cavities of the dye
host structure.

2. Materials and Methods

Materials and sample preparation: The structure of the push–pull dye, N,N-di
(4-benzoic acid)-4-(5′-[(indan-1,3-dion-2-ylidene)methyl-2,2′-bithien-5-yl)-phenylamine
(compound-1, C38H24N6O6S2), is depicted in Figure 1a. This molecule is composed of an in-
dandione head, a bithiophene backbone and a triphenylamine tail. Carboxylic groups have
been grafted onto the triphenylamine group to promote intermolecular double hydrogen-
bonds (O–H···O). This interaction has been successfully used to stabilize the formation
of porous as well as compact nanoarchitectures on surfaces [41–47]. The compound-1
was synthesized according to the procedure described in ref. [48]. First, a 1.0 × 10−3 M
solution of compound-1 in 1-octanoic acid was prepared and it was then ultrasonicated
for 20 min in a centrifuge tube. Finally, the solution was diluted to reach the target value
of 10−5–10−6 M. The structure of zinc phthalocyanine (ZnPc, C32H16N8Zn) is presented
in Figure 1b. This cross-shaped molecule has a Zn atom at its center and its diameter is
1.4 nm. Solution of ZnPc at a low concentration (2.0 × 10−6 M), also in 1-octanoic acid,
was prepared. The structure of the coronene molecule (C24H12) is presented in Figure 1c,
which has a round shape and the diameter of ∼1.0 nm. Solution of coronene at a low
concentration (2.0 × 10−6 M), also in 1-octanoic acid, was prepared.
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respectively. 

Figure 1. (a) Scheme of N,N-di(4-benzoicacid)-4-(5′-[(indan-1,3-dion-2-ylidene)methyl]-2,2′-bithien-5-
yl)-phenylamine molecule(C38H24N6O6S2). (b) Scheme of zinc phthalocyanine (ZnPc), C32H16N8Zn.
(c) Scheme of coronene molecule, C24H12. Carbon atoms are represented in gray, hydrogen atoms
in white, oxygen atoms in red, nitrogen atoms in blue, sulfur atoms in yellow and zinc atom in
green, respectively.

STM imaging: After obtaining STM images of assembled adlayer of compound-1 at
the solid–liquid interface, a drop of ZnPc or coronene solution was deposited on the same
highly ordered pyrolytic graphite (HOPG) surface (Bruker, Billerica, MA, USA, quality ZYB
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grade). STM measurements were preformed straight after guest molecule deposition. A
physical monolayer formed spontaneously. STM imaging of the samples was performed at
the liquid/solid interface using a Nanoscope IIIa Multimode SPM (Bruker, Billerica, MA,
USA) scanning tunneling microscope. Cut Pt/Ir tips were used to obtain constant current
images at room temperature with a bias voltage applied to the sample. Positive tunneling
bias therefore corresponds to tunnelling into the sample empty states, whereas negative
bias corresponds to tunnelling from the sample filled states. STM images were processed
and analyzed using the application FabViewer v2.18 [49].

3. Results
3.1. Dye Porous Kagomé Nanoarchitecture

The STM image in Figure 2a shows the self-assembly of compound-1 on the graphite
surface after the deposition of a droplet of its solution. Molecules form a porous large-scale
2D Kagomé nanoarchitecture with hexagonal cavities. The network unit cell is a hexagon
(white lines in Figure 2a) with 4.8 ± 0.1 nm unit cell constant (it should be noticed that the
primitive network unit cell of this hexagonal nanoarchitecture is a lozenge with ~4.8 nm
and ~4.8 nm unit cell constants and an angle of ~60◦ between the axes).
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Figure 2. STM images of the self-assembly of compound-1 into a Kagomé nanoarchitecture with
hexagonal cavities on graphite, (a) 38 × 38 nm2; (b) 20 × 20 nm2; Vs = 0.6 V, It = 450 pA. As a guide
for the eyes, the hexagonal unit cell (white solid lines) and the Kagomé star (yellow solid lines) have
been superimposed onto the STM image in (a). (c) Model of the Kagomé nanoarchitecture observed
in (a,b). As a guide for the eyes, dashed white and black triangles highlighting triangular trimers
have been superimposed onto the STM image in (b) and the model in (c), respectively.

A high-resolution STM image of the molecular self-assembly is presented in Figure 2b.
This image reveals that the cavities of the 2D nanoarchitecture result from the arrangement
of molecular trimers in triangles (dashed white and black triangles in Figures 2b and 2c,
respectively). These trimers are composed of blue-, red- and green-colored molecules in
Figure 2b,c. A model of the molecular arrangement is presented in Figure 2c [34]. Molecules
do not adopt a straight conformation but an “L” conformation. This conformation maxi-
mizes intermolecular van der Waals interactions; there is no gap between the backbones of
neighboring molecules. Neighboring trimers are rotated by 60◦ and are bonded through
two double O···H−O hydrogen bonds between the carboxylic groups. This packing leads
to the formation of hexagonal cavities (Diameter = ~2.0 nm) inside the organic network.

3.2. Coronene-Dye Guest–Host Nanoarchitecture

Coronene molecules at low concentration (2.0 × 10−6 M) are now deposited with the
dye molecules on the graphite surface. The large scale STM image in Figure 3 shows that
most of the Kagomé network cavities remain empty and only few cavities are filled with a
coronene molecule.
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Figure 3. STM image of the dye Kagomé network after coronene deposition, 56 × 56 nm2; Vs = 0.6 V,
It = 400 pA.

Sequential STM images of the coronene-dye molecular assembly are now presented
in Figure 4a. The time between two consecutive STM images is 2 min and 45 s. As a
guide for the eyes, blue and red circles have been superimposed to twenty-six cavities of
the dye Kagomé network in the six STM images in Figure 4a. The circles are blue when
the cavity is filled with a coronene molecule, whereas the circles are red when the cavity
is empty. STM images show that only four cavities are filled with a guest-molecule at
the original time (0 min), whereas twenty-three cavities are filled 2′45 min later. After
12′45 min, only one of the highlighted cavities is occupied. The sequential STM images in
Figure 4a thus reveal that the coronene molecules are constantly adsorbing and desorbing
from the Kagomé network cavities. The time-dependent evolution of the cavity occupancy
with coronene molecule is presented in Figure 4b: the cavity occupancy is about ~11% and
is quite constant with time.

3.3. ZnPc-Dye Guest–Host Nanoarchitecture

In order to compare with the results obtained with coronene in Figure 4, ZnPc
molecules (Figure 1b) at low concentration (2.0 × 10−6 M) are now deposited with the dye
molecules on the graphite surface.

A large-scale STM image of the organic layer recorded just after ZnPc deposition
is presented in Figure 5a. This image is quite similar to those obtained with coronene
molecules, Figure 4. Bright features corresponding to trapped ZnPc molecules in the
compound-1 Kagomé nanoarchitecture are observed. Many cavities of the dye network
are also empty. In Figure 5c is presented the molecular model of the guest–host structure
highlighted by a yellow-colored area in the STM image in Figure 5b.

In order to assess the dynamics of ZnPc trapping by the dye Kagomé network, the
time-dependent evolution of the guest-host network is presented in Figure 6a. In contrast
to coronene molecules (Figure 4), the sequential STM images reveal that cavity occupancy
by ZnPc molecules of the network cavities increases with time. The evolution of the cavity
occupancy with time is displayed in Figure 6b: cavity occupancy first evolves linearly. The
top-left STM image in Figure 6a shows that only 40% of the Kagomé network cavities are
filled with ZnPc. 55% of the cavities are filled after 33 min. The filling rate then slows
once 95% of the network is occupied. It then takes 20 min for the 5% remaining empty
cavities to be filled with a single ZnPc molecule. After one hour, nearly all the cavities of
the Kagomé network are filled with one ZnPc molecule, Figure 7. It should be noticed that
the empty cavities are gradually filled by ZnPc molecules and the desorption of the guest
ZnPc molecules is rarely observed during the filling of the host structure cavities. This
indicates that the space constraint is strong enough to hold the guest ZnPc molecules into
the cavities of Kagomé network.
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Figure 4. (a) Sequential STM images of the coronene adsorption into the organic dye Kagomé host-
nanoarchitecture, 40 × 40 nm2; Vs = 0.6 V, It = 400 pA. The time between each image is 2 min and 45 s.
(b) Evolution of the cavity occupancy of the host nanoarchitecture (percentage) with time (minutes).
The red curve is a fit of the occupancy behavior.
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Figure 6. (a) Sequential STM images of the ZnPc adsorption into the organic host nanoarchitecture,
75 × 55 nm2; Vs = 0.6 V, It = 400 pA. (b) Evolution of the cavity occupancy of the host nanoarchitecture
(percentage) with time (min). The red curve is a fit of the occupancy behavior.
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4. Discussion

The use of porous nanomaterial for molecular sensing relies on their ability to trap
foreign molecular species at very low concentration.

STM shows that an extended porous 2D nanoarchitecture can be engineered taking
advantage of the self-assembly of the dye molecule (Figure 2a). The molecules self-assemble
on graphite surface into a Kagomé network with large cavities (Diameter = ~2.3 nm).

The versatility and trapping efficiency are then explored by depositing coronene and
ZnPc molecules at low concentration (2.0 × 10−6 M) with the dye molecules. STM reveals
that both coronene and ZnPc molecules can be trapped inside the Kagomé network cavities
but the with different effectiveness.

The Figure 4 shows that only 11% of the Kagomé network cavities are filled with
coronene molecules. This occupancy ratio does not evolve with time. These guest molecules
are in addition temporary trapped in the host structure; they usually desorb from the surface
few minutes after.

The behavior of the guest ZnPc molecules is drastically different. The Figure 6 shows
that the number of trapped ZnPc molecules by the host structure linearly evolves with
time, until 95% of the Kagomé cavities are occupied. After one hour, nearly all the cavities
are filled. In comparison with coronene molecules, the desorption of the ZnPc from the
cavities is rarely observed.

Solubility may affect molecular assembly. We selected 1-octanoic acid as the solvent
because coronene and phtalocyanine molecules are known to be highly soluble in it. This
high solubility may explain why no pure coronene or phthalocyanine networks are ob-
served on the surface. Coronene in host cavities are desorbing from the surface, whereas
ZnPc are not. This shows that the adsorption efficiency of ZnPc is higher than the one of
coronene under the same concentration. Therefore, the size of guest molecule relative to
the host-porous size is the critical factor for their trapping efficiency. Only intermolecular
interactions with the host structure allows immobilizing these guest molecules on the
surface. The experimental STM observation highlights that the dye Kagomé network is a
more efficient porous structure to trap ZnPc molecules at low concentration. The Kagomé
network cavities are ~2.3 nm large, whereas the coronene and ZnPc molecules have a
diameter of 1.0 nm and 1.4 nm, respectively. The large size discrepancy between the cavity
dimensions and the coronene molecule explain why the coronene molecule are desorbing
from the surface due to the weak steric constraints between the coronene and the dye
network. In contrast, as the ZnPc molecules have larger dimensions, the steric constraints
between the guest molecules and the host structure are large enough to keep the ZnPc
molecules trapped in the dye network. The most optimized space matching of ZnPc with
the size of the Kagomé network cavities appears therefore to be the main driving force
stabilizing the guest-host nanostructure (i.e., trapping permanently the ZnPc molecules in
the host structure; an effect which is not observed with smaller coronene molecules).
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5. Conclusions

In this paper, we investigated the trapping of coronene and ZnPc molecules by a
porous 2D self-assembled nanoarchitecture of a push–pull dye on a graphite surface. The
dye molecules form a hexagonal Kagomé network with large empty cavities. STM shows
that this host structure can be used to trap coronene and ZnPc molecules in its cavities
at a low concentration. The coronene molecules are, however, desorbing and the host
structure is never saturated with guest molecules at low concentration, whereas almost
all the cavities of the host structure are filled with ZnPc molecules after a few hours. The
geometry of the 2D nanoarchitecture opens up new opportunities for trapping specific
foreign molecules, especially phthalocyanine-based compounds, for engineering novel
organic nanomaterials for applications in molecular sensing and organic electronics [50–52].
This structure is a model system for investigating local electronic coupling [53] and charge
transfer [54] between foreign organic species. Future experimental research will also focus
on exploring the ability of the host structure to trap functionalized guest molecules with
different shape and substituents to trigger intermolecular interactions other than van der
Waals ones.
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