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Abstract: Parkinson’s disease is one of the most common degenerative disorders and is characterized
by observable motor dysfunction and the loss of dopaminergic neurons. In this study, we fabricated
curcumin nanoparticles using human serum albumin as a nanocarrier. Encapsulating curcumin
is beneficial to improving its aqueous solubility and bioavailability. The curcumin-loaded HSA
nanoparticles were acquired in the particle size and at the zeta potential of 200 nm and −10 mV,
respectively. The curcumin-loaded human serum albumin nanoparticles ameliorated Parkinson’s
disease features in the C. elegans model, including body movement, basal slowing response, and
the degeneration of dopaminergic neurons. These results suggest that curcumin nanoparticles have
potential as a medicinal nanomaterial for preventing the progression of Parkinson’s disease.
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1. Introduction

Parkinson’s disease (PD) is one of the most frequently diagnosed age-related diseases
next to Alzheimer’s disease. The prevalence of PD increases as age progresses, and patients
are expected to have a decreased life expectancy [1]. PD is known for its motor symptoms,
including shaking (both rest and action tremors), stiffness, slower voluntary movements
(bradykinesia), and the inability to maintain an upright posture [2]. There is evidence that
the onset of motor symptoms is only visible when ~80% of the putaminal dopamine (DA)
is diminished and when ~60% of the dopaminergic neurons of the substantia nigra par
compacta have been lost [3]. Despite extensive research on PD, there is still no concrete
mechanistic explanation as to how neurodegeneration starts. This restricted knowledge
is the main hindrance in providing proper neuroprotective therapeutic advancement for
PD. However, advancements in bio- and nanotechnologies and the use of natural sub-
stances, such as gingko biloba [4,5], ginseng [6,7], and flavonoids [8,9], as novel regimens
or supplementary agents are gaining a great deal of interest. In our previous study, we suc-
cessfully prepared zein-carboxymethyl cellulose (CMC) nanoparticles loaded with dioscin
(a steroidal saponin) using an antisolvent precipitation process [10]. DZC nanocomplexes
were also used to inhibit dopaminergic neuron degeneration in C. elegans successfully, with
no specific toxicity being induced.

In the same direction, this study focused on the utilization of curcumin- (CU) loaded
nanoparticles as a promising PD therapeutic agent. Numerous studies have suggested
its beneficial effects in treating several neurodegenerative diseases [11–20]. Its health
benefits are not only limited to neurodegenerative diseases, and researchers have also
discussed numerous biological and pharmacological activities, such as anti-Alzheimer’s,
anticancer antibacterial, antioxidant, anti-inflammatory, and anti-tumor activities [21,22].
CU is a polyphenolic compound that is extracted from the rhizomes of a commonly oc-
curring plant known as turmeric (Curcuma longa). CU appears as a yellow pigment and is
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reported to have 3–6% bioactive properties [23–27]. For centuries, it has been popularly
used as a food additive and as an herbal medicine in several parts of South Asia [28].
The United States Food and Drug Administration (USFDA) generally regards curcumin
as being safe (GRAS) due to its relatively low toxicity [29]. Despite its numerous health
benefits, its pharmacological or nutraceutical applications are limited due to its poor oral
bioavailability and low water solubility [28]. Various approaches have been applied to
enhance the stability and solubility of CU, including encapsulation into proteins, polymeric
micelles, and nanoparticles [29–31]. Additionally, evidence has shown that the stability of
polyphenols such as curcumin can be improved by fabricating a CU–protein complex [32].

HSA, a versatile protein carrier that is extensively used for drug delivery, is an ideal
candidate CU–protein nanocomplex fabrication. In the circulatory system, HSA is present
at a considerate amount (60%), and it provides 80% of the blood’s osmotic pressure [33].
HSA appears to be globular, composing 585 amino acids in a single polypeptide chain [34].
Research has shown that HSA-based nanocarriers have been proven to enhance the stabil-
ities of certain compounds, especially cancer agents [35,36], while maintaining safe and
efficient delivery [37–39]. In the present study, we investigated PD alleviation in a C. elegans
model system using a nanometer-sized particle encapsulating CU with HSA (CUHNP).

2. Materials and Methods
2.1. Materials

Curcumin (CU) and human serum albumin (HSA) were procured from Sigma-Aldrich
Chemical Co. (St. Louis, MO, USA), with no further purification being carried out. Through-
out the experiments, analytical grade reagents and double-distilled water were used.

2.2. Fabrication of CU-Loaded HSA Nanoparticles (CUHNP)

Lyophilized HSA powder was dissolved in 10 mM pH 7.0 NaCl solution to form
a 16 mg/mL HSA aqueous solution. Then, 4 mL absolute ethanol was added to the HSA so-
lution dropwise while being vortexed at a medium speed. The prepared HSA nanoparticle
solution was further crosslinked with 48 µL of freshly prepared 8% glutaraldehyde solution.
(Commercial 25% glutaraldehyde solution was diluted to 8% using distilled water). To
proceed with the crosslinking, the nanoparticle solution was shaken for 15 min. Any insol-
uble materials left after crosslinking were removed by centrifuging the solution for 10 min
at 4500× g. The supernatant was removed, and the pellets were washed via dispersal in
a 5 mL solution of 10 mM NaCl at pH 7.0 followed by centrifugation at 4500× g for 10 min.
Washing was carried out at least 5 times to ensure that the glutaraldehyde was removed
from the solution. After the washing process was complete, the nanoparticles were filtered
using a 0.45 um PVDF syringe filter. The filtered solution was added with an appropriate
amount of freshly prepared CU stock solution to achieve the desired concentration of CU
in the HSA.

2.3. Fabrication/Characterization of CUHNP
2.3.1. Morphology, Particle Size, PDI, and ζ-Potential

Dynamic light scattering (DLS) was utilized to determine the Z-average diameter and
polydispersity index (PDI) of the samples at 25 ◦C using a He/Ne laser (λ = 633 nm) and
a 173◦ backscatter detector on a Zetasizer Nano ZS (Malvern Instrument, Worcester-shire,
UK) [31,32].

The ζ-potential of the samples was determined at 25 ◦C using the Helm–Holtz–
Smoluchowski model used for electrophoretic mobility measurements conducted on the
same DLS instrument [40,41]. All of the DLS measurements were performed after the
ten-fold dilution of the sample in the appropriate pH buffer solution, and data processing
was performed using the Malvern Zetasizer Nano-ZS software that was included with the
device. All of the measurements were performed at least in triplicate.

The morphology of the freeze-dried samples was examined using a field emission
scanning electron microscope (Hitachi SU-70 FE-SEM, Chatsworth, CA, USA). The samples
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were placed on conductive carbon tape and were platinum-coated using a Hitachi MC1000
Ion Sputter (Hitachi, Singapore) before observation.

2.3.2. Encapsulation Efficiency (EE)

CUHNP solubilization was carried out by stirring the freeze-dried samples (~10 mg)
in 10 mL ethyl acetate in the dark overnight. After overnight stirring, the samples were
centrifuged for 25 min at 4500× g. A ten-fold dilution using ethyl acetate was carried out
with the resulting supernatant to reduce the concentration. To assess the CU concentration,
the absorbance at 425 nm was obtained by employing a UV/Vis spectrophotometer. The
calibration curve was established by employing standard solutions (0–30 µg/mL free CU
in ethyl acetate). The encapsulation efficiency (EE) was calculated using:

Encapsulation efficiency (%EE) =
(total amount of CU added − free non − entrapped CU)

(total amount of CU added (g))
× 100 (1)

2.4. In Vivo Safety of CUHNP in C. elegans
2.4.1. Nematode Cultivation

C. elegans were maintained at standard conditions at 20 ◦C. Hypochlorite bleaching
(1.5% NaOCl and 1.5 M NaOH) was employed to synchronize the worms, and the eggs
were subsequently cultured on fresh NGM plates with E. coli OP50 [42]. The synchronized
worms were grown until the 4th larval (L4) developmental stage, and the larvae were
exposed to different diets. L4 stage-synchronized worms were used in all assays.

2.4.2. Analysis of Lifespan

Lifespan was characterized using an amended methodology determined by Sutphin
(2009) [43]. Experiments were carried out on two different set-ups: (1) with control worms
that were fed on E. coli OP50 and (2) diet-treated worms that were fed with E. coli OP50
with added CUHNP (two different concentrations: 10 µg/mL or 35 µg/mL). In each assay,
lifespan was scored by tallying the number of surviving and dead animals per day starting
from the first day of adulthood. To avoid mixing generations, it was necessary to transfer
the nematodes to freshly prepared NGM plates seeded with enough food each day during
active reproduction. After the reproductive activities concluded, the nematodes were
transferred every three days until all of the worms were dead. The scoring is as follows:
(1) nematodes that were stagnant after being prodded gently were tallied as dead, and
(2) those that crawled or fled out of the plates were tallied as missing and were subtracted
from the lifespan count. Assays were performed in three replicates consisting of three trials
per replicate and N ≥ 100 worms per group. Using Kaplan–Meier survival analyses for
each group, the cumulative survival patterns were calculated.

2.4.3. Locomotion Assay

Similar to the lifespan assay, the synchronized L4 worms were raised in two different
set-ups: (1) control worms were fed on E. coli OP50, and (2) diet-treated worms were
fed with E. coli OP50 with added CUHNP (two different concentrations: 10 µg/mL or
35 µg/mL). A total of 10 worms were randomly selected from the 24 h, 72 h, and 120 h
of adulthood groups (which is equivalent to one, three, and five days of adulthood).
Movement scoring was carried out by transferring the randomly selected worms to an
unseeded NGM plate. to the plates were tapped gently induce movement stimuli, 2 s
were allowed to pass before the bends each worm made were scored. Body bends were
counted manually for 60 s. A locomotion assay was performed until the worms reached
5 days of adulthood. Assays were performed in three replicates, consisting of three trials
per replicate and had N ≥ 10 worms per group.



Nanomaterials 2022, 12, 758 4 of 13

2.4.4. Assessment of DA Neuron Degeneration and DA-Related Behaviors

Neurodegeneration assessment was accomplished by raising synchronized L4 BZ555
mutant worms in two different set-ups: (1) control worms were fed on E. coli OP50 and
(2) diet-treated worms were fed with E. coli OP50 with added CUHNP (two different concen-
trations: 10 µg/mL or 35 µg/mL). Diet exposure took place for 48 h, with a dopaminergic
neuron assessment e every 12 h. To assess the neurons effectively, the nematodes were
sandwiched in 2% agarose pads with a drop of 5 M levamisole being previously added
and coverslip on top). Before sandwiching, the worms were washed with an M9 buffer
to eliminate the bacterial debris clinging to the body. An amount of 5 M Levamisole was
added to aid in the immobilization of the worms [44]. Neurodegeneration monitoring
was carried out by imaging the living (immobilized) worms’ dopamine neurons tagged
with green fluorescence (GFP). The assay was carried out using a fluorescence microscope,
Axio Imager A2 (Carl Zeiss, Jena, Germany) at a fixed fluorescence exposure time. Each
photographed image was analyzed using ImageJ software.

2.4.5. Assessment of DA-Related Behaviors
Basal Slowing Response (BSR) Assay

BSR was explored by employing a slightly modified protocol described by Chase [45].
The assay was accomplished by separately raising well-fed synchronized L4 N2 and
cat-2-defective mutant worms. Each strain was raised in two different set-ups: (1) control
worms were fed OP50 and (2) diet-treated worms were fed with OP50 with added CUHNP
(two different concentrations: 10 µg/mL or 35 µg/mL). A total of 30 individual worms
from each set-up were randomly chosen and were transferred to separate freshly prepared
unseeded NGM plates for exactly 5 min. After 5 min, the worms were divided equally
and were moved to two separate plates labeled: (1) “with-food plate” (NGM media with
seeded OP50) and (2) “no-food plate” (unseeded NGM media). Before scoring the body
movements, the worms were incubated for 2 min, allowing them to acclimatize first. The
body bends were counted manually for 20 s. Percent basal slowing was calculated using
the formula:

BSR =
rateon food − rateoff food

rateoff food
(2)

2.4.6. Ethanol Avoidance Test

Similar to the BSR assay, the ethanol avoidance test was accomplished by separately
raising synchronized well-fed L4 stage N2 and cat-2 defective mutant worms. Each strain
was raised in two different set-ups: (1) control worms were fed on OP50 and (2) diet-treated
worms were fed OP50 with added CUHNP (two different concentrations: 10 µg/mL or
35 µg/mL). The test plate assay was carried out using unseeded NGM plates that were
divided into four equal quadrants. At the center of the plate, a 1 cm-diameter circle was
marked. Total amount of 4 µL of ethanol and water were spotted 2.5 cm away from the
center and were positioned diagonally from each other. In the initially marked center,
a randomly selected 10 synchronized L4 worms were spotted and were allowed to roam
around. Before the worms were place in the center, the nematodes were thoroughly washed
using M9 buffer to remove any E. coli OP50 debris. Ethanol avoidance was carried out by
tallying the number of animals in both the ethanol and water quadrants, and the preference
index (PI) was calculated using the following formula:

Preference index =
number of wormsethanol quadrants − number of wormscontrol quadrants

total number of worms tested
(3)
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3. Results
3.1. Fabrication/Characterization of CU-Loaded HSA Nanoparticles (CUHNP)
3.1.1. Effect of CU Concentrations on Particle Size and ζ-Potential

The preparation of the HSA nanoparticles can be achieved through the desolvation
method, in which the desolving agents such as alcohol are added dropwise followed by
the addition of a crosslinking agent, glutaraldehyde. Then, curcumin can be successfully
incorporated by adding it directly to the formed HSA nanoparticles while mixing [46].
Figure 1 depicts the influence of increasing the CU concentration on the particle size, PDI,
and ζ-potential of complex nanoparticles. The particle size of bare HSA nanoparticles
was ~435 nm, with a PDI value of 0.04 (Figure 1A). After adding 10 µg/mL of CU, the
particle size and the PDI value of the nanoparticles decreased by two-fold, from ~435 nm to
~200 nm and from 0.04 to 0.22, respectively. However, a concentration-dependent increase
in the particle size was noted while maintaining the PDI after adding more CU to the
nanoparticle. Changes in the ζ-potential values could help to further explain the particle
size results (Figure 1B). The ζ-potential of plain HSA was ~−2.5 mV. The ζ-potential of
complex nanoparticles increased from −2.5 to −13 mV.

Nanoparticle-mediated delivery systems have been demonstrated to improve the oral
bioavailability of this nonpolar bioactive compound [47,48]. To evaluate the encapsulation
of curcumin (CU) molecules into complex nanoparticles, UV/Vis spectroscopy was utilized.
As shown in Figure 1B, the encapsulation efficiency was as high as 77% when a small
concentration of curcumin was added to the nanoparticles. Remarkably, the EE of CU
reached 93% after adding a higher concentration of CU. These results along with the particle
sizes revealed that CU was effectively integrated into the HSA nanoparticle.
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Figure 1. Fabrication of stable and homogeneous CUHNP. Particle size, PDI (A), ζ-potential, and
encapsulation efficiency (B) of CUHNP as a function of CU concentration and SEM images of HSA
(C) and CUHNP (D) nanoparticles.

3.1.2. Morphology of CUHNP

FE-SEM was used to observe the structure and surface appearance of the HSA nanopar-
ticles in the absence and presence of CU, as shown in Figure 1C,D. HSA was observed to
have a cube-shaped flaky microstructure. The presence of curcumin resulted in an individual
particulate structure. The particulates were mostly cube-shaped and had smooth surfaces.
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3.2. In Vivo Assessment of CUHNP in C. elegans
3.2.1. Enhanced Lifespan after Feeding with CUHNP

CU and HSA are already considered GRAS and have been widely used in several
therapeutic applications, although their nanoparticle transformation requires additional safety
confirmations. In these experiments, the in vivo safety of CUHNP was confirmed using
C. elegans models. The in vivo testing involved lifespan and body movement measurements.

To determine the effect of the CUHNP, two different concentrations (10 µg/mL and
35 µg/mL) were introduced to C. elegans. For re-confirmation, an empty HSA-NP was also
fed to the animals. The effect of each additional diet was calculated using Kaplan–Meier
survival analysis with a Log-rank significance test. From Figure 2A, the survival ratio of
the animals fed HSA exhibited a slight decrease, resulting in a shortened mean lifespan of
24.33 ± 2.08 days, although this decrease is not statistically different from the survival ratio
of the control worms (without nanocomplex) of 28.00 ± 0.79 (p < 0.001). This observation
only suggests that the cross-linking step using glutaraldehyde resulted in an acceleration of
the aging process; hence, additional washing steps were carried out to ensure the complete
removal of the excess glutaraldehyde. Interestingly, this reduction in the lifespan was
successfully recovered when the bare HSA nanoparticles were added along with the core
compound, curcumin. The calculated mean lifespans for the worms that had been treated
with 10 µg/mL and 35-µg/mL were 28.33 ± 1.53 and 31.0 ± 1.57, respectively. The overall
results indicate that the oral administration of CUHNP is considered safe in terms of the
survival ratio over the course of the entire lifespan of C. elegans, showing that no significant
differences are observed in the CUHNP group compared to the control group worms
(Figure 2A).
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Figure 2. Biological safety of CUHNP in C. elegans. Lifespan (A) and body movement (B) of C. elegans
that were cultured without nanoparticles, with HSA, and with 10 µg/mL and 35 µg/mL of CU-loaded
HSA nanoparticles (CUHNP or CU + HSA), respectively. The data present the mean ± S.D. from
three independent experiments (p < 0.01).

3.2.2. Enhanced Body Movement after Feeding with CUHNP

A lifespan assay is not enough to establish the biological safety of the CUHNP, so its
effect on body movement was also determined. The validation of the effect of CUHNP was
carried out by measuring the body bends on the first, third, and fifth days of adulthood.
Interestingly, on the third day of adulthood, the nematodes that had been fed with the
different diets, HSA nanoparticles only or 10 µg/mL and 35- µg/mL of curcumin, exhibited
a significant decline or enhancements in their body movements, even if their survival
ratio was similar to the control ones. As expected, worms that had been treated with
HSA nanoparticles only exhibited a decrease in body movement that coincided with the
lifespan assay results. However, 35 µg/mL of CUHNP effectively delayed the age-related
deterioration of movement on the third day of adulthood (Figure 2B) from 35 bends/min
to 65 bends/min.

As discussed above, the aging or the development of neurodegenerative diseases is
linked with changes in movement behaviors [49]. Taking into account that the CUHNP
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aided in the enhancement of body movements, these nanoparticles might have the potential
to delay neurodegeneration. The next approach aimed to confirm the effectiveness of the
CUHNP on the dopamine-related behavior of C. elegans.

3.3. Improvement of DA-Regulatory Behaviors by CUHNP
3.3.1. Basal Slowing Response (BSR) Assay

To further assess the effect of the CUHNP on DA-related behavioral movements
in C. elegans, a comparison of the basal slowing response (BSR) and ethanol avoidance
between N2 worms and dopamine-deficient mutant strains, cat-2, both of which had been
fed with and without the nanoparticles, was performed.

The BSR assay is a behavioral test that assesses worm behavior when they are placed on
an agar plate in the presence and in the absence of bacterial food. BSR is mainly executed by
the DA neuron system; hence, any defect in the DA neuronal system will result in a defective
BSR, as observed from the cat-2 mutant worms [45]. As expected, the wild-type nematodes
exhibited slower locomotion when placed on the (+) food plates (≈7 bends/20 s) compared
to the worms on the (−) food plates (≈20 bends/20 s) (Figure 3A). Since the wild-type N2
worms exerted intact DA signaling, no significant differences in the BSR behavior were
displayed between animals who received 10 µg/mLand 35-µg/mL of CUHNP and the
control worms (no nanoparticles) (≈59–80%) (Figure 3A). These results indicate that there
is no toxic effect induced that is by the CUHNP on DA neuron-governed behavior, BSR.
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Figure 3. Improvement in DA-regulated behavior, BSR, in C. elegans by CUHNP. Body movement
(left y-axis, bends per 20 s) and basal slowing response (BSR) percentage (right y-axis) of wild-type
N2 (A) and cat-2(e1112) mutant (B) C. elegans fed without nanoparticles and with 10 µg/mL and
35-µg/mL CU-loaded HSA nanoparticles (CUHNP), respectively. The data present the mean ± S.D.
from three independent experiments (p < 0.01). * means exhibited enhanced BSR within worm strain
group, and A represents a defect in BSR compared to in wild type samples.

On the other hand, cat-2 mutants have a defective DA biosynthetic process due to the
lack of ortholog in the human tyrosine hydroxylase (TH) gene. This disables the ability of
cat-2 mutants to recognize new surroundings and does not reduce their movement speed
as if they are still in space without food. The control group of the cat-2 mutants (without
exposure to CUHNP) displayed a very low BSR of ~12.5%. The low BSR percentage
was rescued after the cat-2 worms were exposed to 10 µg/mL and 35-µg/mL CUHNP,
displaying a significant reduction (p < 0.01) in their movement speed in the new plate
containing food, resulting in ≈50–60% BSR. The change in the BSR percentage was more
pronounced in the animals fed with 35-µg/mL CUHNP, and this is almost similar to the
case of the wild-type N2 strain (Figure 3B). These results demonstrate that CU delivery can
be successfully attained by employing an HSA nanoparticle vehicle. The results from the
cat-2 experiments claim that the CUHNP can be orally administered to turn on alternative
DA-like neurotransmitter synthesis or to enhance the efficiency of DA transmission.
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3.3.2. Ethanol Avoidance

For an additional confirmatory DA-regulated behavior assay, an ethanol avoidance
test was also performed. In this assay, the worms were not exposed to nor fed ethanol;
instead, healthy and well-fed worms were exposed to ethanol for 10 min in order to observe
their chemotactic behavior (attraction/repulsion). As expected, worms with the same
intact DA signaling as that in the wild-type N2 exhibited a 100% alcohol avoidance ratio
during day 1 of adulthood (Supplementary Figure S3). The alcohol avoidance ratio in
the N2 worms who did not receive nanocomplex exposure was diminished at day 2 of
adulthood (≈60%); however, such a reduction in alcohol avoidance at day 2 was recovered
in the worms that had been fed 35 µg/mL of CUHNP (≈100%). The wild-type N2 worms
that had been fed10 µg/mL of CUHNP exhibited an 80% avoidance at day 2. In the cat-2
context, the effect of both nanoparticle concentrations was dramatically exerted, resulting
in ≈100% alcohol avoidance; however, none of the worms cultured in the absence of the
nanocomplex showed alcohol avoidance (≈−30%). These results demonstrate that there
might be cat-2-independent pathways for the execution of DA-related behaviors.

3.4. Prevention of Dopaminergic Neuron Degeneration by CUHNP

Similar to our previous study on the DZC nanocomplex [10], one feasible explanation
for the beneficial effect of CUHNP on DA-regulated behaviors is that nanoparticles might
promote DA transportation. In C. elegans, the DAT-1 gene encodes the DA transporter
which is expressed in two pairs of anterior (ADE, CEP) and one pair of posterior (PDE) DA
neurons [50].

To confirm whether the effect of the CUHNP can actively promote DA transport, the
use of the Pdat-1::GFP transgenic strain, BZ555, was employed. Compared to the day 1 adult
worms maintained with different diets, the DA transporter, DAT-1, was more expressed
or activated in the animals fed 35 µg/mL CUHNP, showing brighter green fluorescence
ranging from the GFP tagged to DAT-1 groups (Figure 4). Based on the computation image
analyses (Figure 5), the fluorescence intensity of the CUHNP-fed group within 12 h is
approximately 107% stronger than that of the control groups (without CUHNP). The said
increase in the DAT-1 activity was more pronounced after the worms had been the CUHNP
diet for 24 h, resulting fluorescence intensity that was about 130% stronger. These results
provide evidence that the CUHNP can improve the activity of DA transporters at the end
of presynaptic neurons, resulting in enhanced DA transportation to synaptic neurons.
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4. Discussion

Aging is an inevitable phenomenon in every living organism. Additionally, the prevalence
of Parkinson’s disease (PD) increases as humans become older. Despite extensive research
about PD, there are still no medications for it. Because of this, the study employed a C. elegans
model system to assess the effect of functional food nanocomplexes for PD prevention.

Several naturally occurring compounds are known to be beneficial in preventing
PD progression, including gingko biloba [4,5], ginseng [6,7], flavonoids [8,9], dioscin [10],
and curcumin [47]. Curcumin is known for various biological activities; however, its
pharmacological or nutraceutical applications are limited due to its poor oral bioavailability
and low water solubility [28]. Curcumin is readily soluble in ethanol; however, the use of
such solvents can induce negative effects when ingested directly by the nematodes [51].
In this study, the effects of fabricating a human serum albumin (HSA)-based nanocarrier
for curcumin to enhance its neuroprotective effects were assessed. HSA was specifically
chosen because of its high biodegradability and because it does not induce any serious
side-effects, as proven by numerous clinical studies [52,53]. HSA-based nanoparticles can
be prepared by employing the desolvation method, where a desolving agent is added
dropwise to the aqueous albumin solution, followed by the addition of a crosslinking
agent [54,55]. Crosslinking is an important step that can affect the release of the compound
from the system [56], and the most commonly used stabilizer or crosslinking agent is the
glutaraldehyde (GA) [57,58]. Following this method, curcumin (CU) was successfully
encapsulated with an HSA nanoparticle, having a very high EE of 90%. Based on our
previous reports, curcumin’s aqueous solubility was successfully enhanced by 234-fold
when using the albumin–protein nanocarrier (ovalbumin), while curcumin degradation
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in aqueous solutions was significantly diminished (0.25-fold) at a wide range of pHs
(1.2–8.5) [59]. Thus, it can be hypothesized that a small molecule such as curcumin would
be readily released from HSA nanoparticles in vivo and would have the intended effects,
which were substantiated by our findings.

From the lifespan assay we performed, a slight decrease in the lifespan of the worms
was noted after feeding with HSA-NP, but this decrease is not significantly different from
the control group. The bare HSA-NP is only composed of the albumin and the crosslinker,
GA. Although some research has reported that GA exhibits some toxicity [60,61], we can
rule out the toxicity effect since the worms are still alive throughout their expected average
lifespan. In fact, the observed mean lifespan of the HSA-fed worms is still 2 days longer
compared to our previous nanocomplex (dioscin-loaded zein–CMC nanocomplexes), where
a mean lifespan of 22.33 ± 2.08 days was observed [10]. Moreover, the results also showed
that the addition of curcumin to the bare HSA-NP rescued the lifespan. This further
confirms that curcumin was successfully introduced to C. elegans. The oral supplementation
of curcumin-loaded HSA nanoparticles was found to prolong the lifespan of the worms
more efficiently, by 2–3 days. Worms are expected to complete their full lifespan in a span
of a month; hence, the 4–5-day difference in the lifespan portrayed by the HSA-fed animals
only shows an advanced aging process for the worms. This result was further supported
by the observed enhanced movement, DA-related behaviors as well as the protection of the
DA neurons.

Examining the DA synthesis pathway in C. elegans, dopamine is mostly synthe-
sized from the precursor tyrosine (Tyr) with the aid of the catalyzing agent tyrosine
3-monooxygenase-forming levodopa (L-DOPA), which is further decarboxylated by the
amino acid decarboxylase (AADC) [49,62]. In the case of cat-2 mutant worms, they do not
carry the genes responsible for encoding the tyrosine hydroxylase, making this mutant
incapable of synthesizing DA compared to the N2. However, the major results of the study
showed that the cat-2 mutant worms significantly exhibited an improvement in DA-related
behaviors, including in the BSR percentage and alcohol avoidance. The response time
of the worm to volatile repellent ethanol is an indicator of the DA levels. With a normal
amount of DA, the worm immediately repels away from the ethanol scent by moving away
from it, while worms with a decreased DA content does not recognize the ethanol scent
and tends to stay in the zone [63]. The repulsion behavior that we observed indicated that
curcumin offered almost the same DA content as that seen in the control worms. The same
was observed in the BSR assay, which implies that curcumin contributed to dopamine
supplication. This is further supported by the conservation of the DA neurons observed on
the BZ555 mutant worms.

In conclusion, combining all the results, we propose that the activity of DAT-1, a DA
transporter, can be enhanced through CU supplementation in the diet. CUHNP sup-
plements can act as a DA transport, contributing to neuronal signaling and controlling
behaviors. CUHNP was found to be beneficial in protecting DA neurons inhibiting the
manifestation of Parkinson’s disease-like symptoms in a C. elegans PD model system.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12050758/s1, Figure S1: FTIR spectra; Figure S2: Pharyngeal
pumping of the C. elegans [64]; Figure S3: Enhanced ethanol avoidance.
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