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Abstract: This study investigated the steady two-phase flow of a nanofluid in a permeable duct
with thermal radiation, a magnetic field, and external forces. The basic continuity and momentum
equations were considered along with the Buongiorno model to formulate the governing mathemat-
ical model of the problem. Furthermore, the intelligent computational strength of artificial neural
networks (ANNs) was utilized to construct the approximate solution for the problem. The unsuper-
vised objective functions of the governing equations in terms of mean square error were optimized
by hybridizing the global search ability of an arithmetic optimization algorithm (AOA) with the
local search capability of an interior point algorithm (IPA). The proposed ANN-AOA-IPA technique
was implemented to study the effect of variations in the thermophoretic parameter (Nt), Hartmann
number (Ha), Brownian (Nb) and radiation (Rd) motion parameters, Eckert number (Ec), Reynolds
number (Re) and Schmidt number (Sc) on the velocity profile, thermal profile, Nusselt number and
skin friction coefficient of the nanofluid. The results obtained by the designed metaheuristic algorithm
were compared with the numerical solutions obtained by the Runge–Kutta method of order 4 (RK-4)
and machine learning algorithms based on a nonlinear autoregressive network with exogenous
inputs (NARX) and backpropagated Levenberg–Marquardt algorithm. The mean percentage errors in
approximate solutions obtained by ANN-AOA-IPA are around 10−6 to 10−7. The graphical analysis
illustrates that the velocity, temperature, and concentration profiles of the nanofluid increase with an
increase in the suction parameter, Eckert number and Schmidt number, respectively. Solutions and
the results of performance indicators such as mean absolute deviation, Theil’s inequality coefficient
and error in Nash–Sutcliffe efficiency further validate the proposed algorithm’s utility and efficiency.

Keywords: porous semipermeable duct; steady two-phase flow; nanofluid; Buongiorno model;
magnetic field; artificial intelligence; arithmetic optimization algorithm; soft computing

1. Introduction

Nanofluids are defined as fluids that contain nanometer-sized particles (less than
100 nanometers (nm) in size), which are suspended in base fluids to enhance their convec-
tional heat transfer. Nanofluidic problems of the flow and heat transfer characteristics are
important from a theoretical as well as a practical point of view, and they have been exten-
sively studied in applied sciences and various engineering applications, such as thermal
power generation systems, the cooling of a large metallic plate in a bath, fiber spinning,
glass blowing, melt spinning, wire coating dynamics and the extrusion of material through
a die [1]. Choi and Eastman [2] were among the first to introduce nanoparticles to the fluid
system. The basic idea was based on the ability of nanoparticles to improve heat transfer in
classical base fluids, which suggested the potential to use nanofluids in advanced thermal

Nanomaterials 2022, 12, 637. https://doi.org/10.3390/nano12040637 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12040637
https://doi.org/10.3390/nano12040637
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-8680-723X
https://orcid.org/0000-0002-4040-6211
https://orcid.org/0000-0002-4606-7222
https://orcid.org/0000-0002-5402-8960
https://doi.org/10.3390/nano12040637
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12040637?type=check_update&version=1


Nanomaterials 2022, 12, 637 2 of 22

systems with low economical cost. Some well-known examples of nanoparticles include
aluminum (Al), copper (Cu), ferric oxide (Fe2O3) , alumina (Al2O3), silicon dioxide (SiO2)
and carbon nanotubes (CNTs). The suspension of base fluids such as water, oil and ethylene
glycol in various nanofluids is an effective way to achieve a high heat transfer rate in
fluid systems [3,4]. Sheikholeslami [5] analyzed the various shapes of aluminum oxide
(Al2O3) using the Darcy porous medium with thermal radiation. Further, he investigated
nanoparticles with different shapes, such as copper oxide and water with Brownian motion,
revealing that platelet-shaped nanoparticles had an immense impact when compared with
other nanoparticle shapes [6].

In recent times, nanofluids have gained researchers’ attention due to their vast appli-
cations and their impact when combined with base fluids. In 2014, Rashidi [7] investigated
the incompressible electrically conductive nanofluid flow over a porous rotating disk by
applying the second law of thermodynamics. It was concluded that magnetic spinning
disk drives have important applications in improving heat transfer in renewable energy
systems. Vajravelua and Kumar [8] studied the numerical solutions and impact of physical
parameters on the viscous flow of a magnetohydrodynamic (MHD) nanofluid in a rotating
system with porous and stretched plates. The thermal performance and heat sink of a
rectangular microchannel containing nanoparticles such as copper, zinc and aluminum
oxide in ethylene glycol fluid were numerically investigated by Seyf and Nikaaein [9]. In
addition, a nanofluid was used by Jang and Choi [10] to study cooling performance. Their
results demonstrated that the nanofluid reduced the thermal resistance and difference in
temperatures in a heated wall of microchannels. Rout [11] analyzed kerosene oil-based
and water-based copper between two parallel plates with thermal radiation. Nanofluid
flow in horizontal spiral coils used for solar ponds was studied by Khodabandeh [12,13].
Ahmed [14] numerically studied the unsteady radiative flow of a chemically reacting fluid
over a convectively heated stretchable surface with cross-diffusion gradients.

Generally, mathematical models of problems involving nanofluid flow are highly
nonlinear in nature. Therefore, various methods in the literature have been developed to
tackle such problems. The optimal homotopy analysis method (OHAM) has been used
to study numerical solutions of the Cattaneo–Christov heat flux model [15,16], nanoflu-
ids over a nonlinear stretching surface with variable surface thickness [17], the flow
and heat transfer of nanofluids over a moving surface with nonlinear velocity [18] and
non-Newtonian nanofluid flow in porous media with gyrotactic microorganisms [19,20].
M. Govindaraju [21] investigated the boundary layer flow of gold–thorium water based on
nanofluids over a moving semi-infinite plate by using the homotopy perturbation method
(HPM). YAS El-Masry [22] studied the impacts of varying magnetic field and free convec-
tion heat transfer on Eyring–Powell nanofluid flow with peristalsis by using the variational
iteration method (VIM). Thumma [23] used the Adomian decomposition method (ADM)
for a Cu/CuO–water viscoplastic nanofluid over a porous stretched sheet. All of these tech-
niques are based on traditional deterministic approaches that have their own advantages
and limitations in terms of solution quality, convergence rate and applicability domain.
However, stochastic metaheuristic techniques developed through artificial intelligence
algorithms have not been explored and exploited for solving nonlinear models of nanoflu-
ids. Recently, the strength of stochastic techniques based on artificial neural networks
(ANNs) using bio- and nature-inspired computing paradigms has been extensively applied
to study the approximate solutions of stiff nonlinear problems, such as the saturation of
oil and water during the secondary oil recovery process [24], the bath of a wire during
coating with Oldroyd 8-constant fluid [25], the rolling motion of ships in random beam
seas [26], the study of 3-D Prandtl nanofluid flow over a convectively heated sheet [27],
nonlinear problems arising in heat transfer [28,29], thermal radiation and Hall effects on
the boundary layer flow of a nanofluid [30] and the Lorenz chaotic attractor (LCA) and
double-scroll attractor (DSA) in secure communication systems [31]. Some salient features
of the designed schemes are as follows:
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• In this study, a mathematical model of the steady two-phase flow of a nanofluid in
a semipermeable duct in the presence of external forces was formulated by using
the Buongiorno model and basic concepts of continuity and momentum equations.
Further, the model was reduced to a system of ordinary differential equations.

• Moreover, to study the effect of variations in certain parameters, such as the ther-
mophoretic parameter (Nt), Hartmann number (Ha), Brownian (Nb) and radiation
(Rd) motion parameters, Eckert number (Ec), Reynolds number (Re) and Schmidt
number (Sc), on the velocity profile, thermal profile, Nusselt number and skin friction
coefficient of the nanofluid, a soft computing metaheuristic technique was designed.
The intelligent computational strength of artificial neural networks was utilized with
a combination of unsupervised and supervised learning strategies.

• The results obtained with the proposed ANN-AOA-IPA technique were compared
with the methods available in the latest literature. In addition, to study the con-
vergence and stability of the results, the proposed algorithm was implemented for
100 independent runs.

• Extensive graphical, statistical and sensitivity analyses were conducted to study the
errors in approximate solutions based on mean absolute deviations, Theil’s inequality
coefficient and error in Nash–Sutcliffe efficiency.

The rest of the paper is organized as follows: In Section 2, we analyze the mathematical
model of a nanofluid migrating in a semipermeable duct, and then we describe the proposed
methodology in Section 3 for solving the governing equations of the problem. In Section 4,
we discuss the numerical simulation and results obtained by executing the proposed
technique for 100 runs. Finally, we conclude the paper in Section 5.

2. Mathematical Formulation

Consider the steady two-phase flow of a nanofluid in a semipermeable duct, as shown
in Figure 1. It is assumed that the upper surface is cold, while the lower surface is hot. In
addition, the effects of Joule heating and radiation on temperature distribution along with
the constant vertical magnetic field B0 are applied. The basic governing equations are as
follows [32,33]:

∂v
∂y

+
∂u
∂x

= 0, (1)

ρf

(
v

∂u
∂y

+ u
∂u
∂x

)
− µ

(
∂2u
∂y2

)
+

∂p
∂x

+ σB2
0u = 0, (2)

(
u

∂T
∂x

+ v
∂T
∂y

)(
ρCp

)
f +

∂qr

∂y
− σB2

0u2 = k
(

∂2T
∂y2

)
+
(
ρCp

)
p

[
DB

{
dC
dy
· dT

dy

}
+ (DT/T2)

{(
dT
dy

)2
}]

, (3)

qr = −
4σe

3βR

∂T4

∂y
, (4)

∂C
∂y

v +
∂C
∂x

u =

(
DT
T2

){
d2C
dy2

}
+ DB

∂2C
∂y2 . (5)

According to Raptis [34], the fluid temperature is

T4 ∼= 4T3
c T − 3T4

c , (6)

subject to boundary conditions

C = C1, u = bx, v = −v0, T = T1 at y = −a, (7)

C = C2, v = 0, u = 0, T = T2 at y = a, (8)

where Cp represents the specific heat capacity, B0 is the magnetic field, µ is dynamic
viscosity, σ is electrical conductivity, u and v are horizontal and vertical velocities, qr is
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thermal radiation, ρe is the Stefan–Boltzmann constant, T is thermal quantity, and βR is
the mean absorption coefficient. The following parameters are used to convert the above
equations into ordinary differential equations [32].

η =
y
a

, u = bx
d f
dη

, v = −ab f (η), θ =
T − T1

T1 − T2
, φ =

C− C1

C1 − C2
. (9)

 

𝒖 = 𝒃𝒙, 𝒗 = −𝒗𝟎, 𝑻 = 𝑻𝟏, 𝑪 = 𝑪𝟏 

𝒖 = 𝟎, 𝒗 = 𝟎, 𝑻 = 𝑻𝟐, 𝑪 = 𝑪𝟐 

𝒀 

𝑿 

Nanofluid 

𝑩𝟎 

Figure 1. Steady two-phase flow of the nanofluid.

Using Equation (9) will result in a system of ordinary differential equations, which are
given as

d f 4

dη4 + Re
(

f
d f 3

dη3 −
d f 2

dη2
d f
dη

)
− Ha2 d f 2

dη2 = 0, (10)

(
1 +

4
3

Rd
)

dθ2

dη2 + Pr f
dθ

dη
+ Ha2Ec

Pr
Re

(
d f
dη

)2
+ Nb

dθ

dη

dφ

dη
+ Nt

(
dθ

dη

)2
= 0, (11)

dφ2

dη2 + Sc
(

dφ

dη

)
+

Nt
Nb

dθ2

dη2 = 0, (12)

where Re, Ha, Rd, Ec, Pr, Nt, Nb and Sc are the Reynolds number, Hartmann number,
radiation motion parameter, Brownian motion parameter, Eckert number, Prandtl number,
thermophoretic parameter and Schmidt number, respectively, which are defined as

Re =
a2b
v

, Ha = B0a
√

σ

µ
, Rd = 4σeT3

c /(βRK), Pr =
(
ρCp

)
f
a2b
k

, Sc =
v
D

, (13)

Nb = ∆Cα−1DB
(
ρCp

)−1
f

(
ρCp

)
p, Nt =

∆T
(
ρCp

)
pDT(

ρCp
)

fα
, Ec =

ρf(bx)2(
ρCp

)
∆T

. (14)

The corresponding boundary conditions for Equations (10)–(12) are

f (1) = 0, f (−1) = λ,

f ′(1) = 0, f ′(−1) = 1,

θ(1) = 0, θ(−1) = 1,

φ(−1) = 1, φ(1) = 0.

(15)

The Nusselt number (Nu) and specific heat over the bottom wall are defined as

Nu =
∣∣θ′(−1)

∣∣, Cf =
∣∣ f ′′(−1)

∣∣. (16)
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3. Methodology

In this section, we discuss the designed methodology for the solutions of the migration
of nanoparticles in a duct with variable thermal radiation. The proposed technique consists
of two phases. Initially, unsupervised ANN models in terms of mean square error (MSE)
are constructed with the log-sigmoid activation function for Equations (10)–(12). In the
second phase, the parameters involved in the ANN model are optimized for the solutions
of governing equations by using global search and local search techniques.

3.1. Neural Network Modeling

ANN-based models have been extensively used to study the approximate solutions of
various problems arising in engineering and applied sciences [24,33,35]. The mathematical
model for solutions of the steady two-phase flow of a nanofluid in the duct is given by a
feed-forward ANN in the form of continuous mapping, which is defined as

f (η) =
k

∑
i=1

αih(ωiη + βi), (17)

θ(η) =
k

∑
i=1

αih(ωiη + βi), (18)

φ(η) =
k

∑
i=1

αih(ωiη + βi). (19)

In general, the nth-order derivative of the above models in terms of input, hidden and
output layers is given as

f (n)(x) =
k

∑
i=1

αih(n)(ωiη + βi). (20)

In Equations (17)–(20), log-sigmoid is used as an activation function in the hidden
layer; then, the updated solutions and their nth order can be written as

f (η) =
k

∑
i=1

αi

(
1

1 + e−(ωiη+βi)

)
, (21)

f (n)(η) =
k

∑
i=1

αi

(
1

1 + e−(ωiη+βi)

)(n)
, (22)

where α = [α1, α2, α3, . . . , αk], ω = [ω1, ω2, ω3, . . . , ωk] and β = [β1, β2, β3, . . . , βk] are the
optimization decision weights that are to be found during the course of calculating the
solution using the arithmetic optimization algorithm and interior point algorithm.

Further, the suggested closed-form solutions and their derivatives are used to construct
the fitness functions in terms of mean square error for the governing model of the problem
along with the boundary conditions:

minimize Θ = Θ1 + Θ2 + Θ3 + Θ4, (23)

where Θ1, Θ2 and Θ3 correspond to differential equations, and Θ4 represents the boundary
conditions, which are defined as

Θ1 =
1
M

M

∑
i=1

(
d f 4

i
dη4 + Re

(
fi

d f 3
i

dη3 −
d f 2

i
dη2

d fi
dη

)
− Ha2 d f 2

i
dη2

)2

, (24)

Θ2 =
1
M

M

∑
i=1

((
1 +

4
3

Rd
)

dθ2
i

dη2 + Pr fi
dθi
dη

+ Ha2Ec
Pr
Re

(
d fi
dη

)2
+ Nb

dθi
dη

dφi
dη

+ Nt
(

dθi
dη

)2
)2

, (25)
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Θ3 =
1
M

M

∑
i=1

(
dφ2

i
dη2 + Sc

(
dφi
dη

)
+

Nt
Nb

dθ2
i

dη2

)2

, (26)

Θ4 =
1
8

(
( f (1))2 + ( f (−1)− λ)2 + ( f ′(1))2 + ( f ′(−1)− 1)2

+(θ(1))2 + (θ(−1)− 1)2 + (φ(1))2 + (φ(−1)− 1)2

)
, (27)

where M = 1/h. The unsupervised fitness function given in Equation (23) is optimized by
an optimization algorithm to find the values of neurons in the ANN structure.

3.2. Optimization Methods
3.2.1. Arithmetic Optimization Algorithm

The arithmetic optimization algorithm (AOA) is a metaheuristic technique proposed by
Abualigah [36] in 2021 and was inspired by basic arithmetic operators in mathematics, i.e.,
multiplication (M,×), division (D,÷), subtraction (S,−) and addition (A,+). Figure 2
shows the dominance of the operators from outside to inside, along with an overview of
the search mechanism of AOA. This algorithm is a population-based technique that is used
to find the optimal solutions of a problem without calculating the gradient. The parameter
settings for the execution of AOA are given in Table 1.

 

D

M

S

A 
 

Exploration Exploitation 

 

Area of Optimal 

Solution 

(a)

 

  𝒊𝒇 𝒓𝟏 > MOA 

A 

S 

𝒓𝟐 < 𝟎. 𝟓 

𝒓𝟐 > 𝟎. 𝟓 

D 

M 

Exploitation 

Exploration 

(b)

Figure 2. (a) Hierarchy of arithmetic operators (dominance decreases from the top down) and (b) the
search phases of the AOA.

Table 1. Appropriate parameter settings for the execution of AOA and interior point algorithm.

Algorithm Parameters Settings Parameter Settings

Arithmetic optimization algorithm Lower bound −5 Upper bound 5
Search agents 80 Dimensions 90
Maximum iterations 5000 Fitness ≤10−12

Tolerance function ≤10−18 Tolerance constrained ≤10−18

Interior point algorithm Lower bound −5 Upper bound 5
Maximum iterations 1000 Fitness ≤10−15

Function evaluations 1,500,000 Tolerance function ≤10−20

The arithmetic optimization algorithm begins the process of optimization by randomly
generating a set of N candidate solutions X, which is given as

X =



x1,1 · · · · · · x1,j x1,n−1 x1,n
x2,1 · · · · · · x2,j · · · x2,n
· · · · · · · · · · · · · · · · · ·

...
...

...
...

...
...

xN−1,1 · · · · · · xN−1,j · · · xN−1,n
xN,1 · · · · · · xN,j xN,n−1 xN,n


. (28)
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In the next step, AOA starts to improve the candidate solution by choosing the search
mechanism (i.e., exploration or exploitation), so the math optimizer accelerated (MOA)
function is used to determine the coefficient, which is defined as

MOA(t) = Min+t×
(

Max−Min
T

)
(29)

where T represents the total number of iterations, MOA(t) is the function value at the tth
iteration, and t ∈ [1, T] is the current iteration. Max and Min denote the maximum and
minimum values of the accelerated function, respectively.
Exploration phase:

In this phase, the exploratory behavior of AOA is established. In mathematical
calculations, arithmetic operators such as multiplication and division have high distribution
values or decisions (relative to other operators) that are committed to the exploration search
mechanism. Therefore, division or multiplication search strategies are used by AOA to
explore the candidate space and find a better solution. This phase of searching is shown in
Figure 3. The phenomenon is modeled as

xi,j(t + 1) =
{

best
(
xj
)
÷ (MOP + ε)×

((
UBj − LBj

)
× µ̄ + LBj

)
, r2 < 0.5

best
(
xj
)
×MOP×

((
UBj − LBj

)
× µ̄ + LBj

)
otherwise

(30)

𝒓𝟐 

𝒓𝟑 

𝝁 

𝝁 

𝒓𝟐 

𝝁 

𝝁 

𝒓𝟑 

Division Subtraction 

Optimum Area 

Multiplication 

Addition 

Movement
t

Figure 3. Model of updating the position of math operators in AOA toward the optimum area.

This search is performed if r1 > MOA, where r1 is a random number. Then, D will be
executed if r2 < 0.5; otherwise, M will be incorporated. Here, xi(t + 1) is the ith solution,
xi,j(t) denotes the jth position of the ith solution at current iteration, UBj and LBj are the
upper and lower bounds of the jth position, and µ̄ is a controlling parameter equal to
0.5 and is used to tune the exploration search phase. In addition, a coefficient known as
math optimizer probability (MOP) is defined, in which the sensitive parameter ᾱ = 5 is
used for the accuracy of the iteration in this phase.

MOP(t) = 1− t(
1
ᾱ )

T(
1
ᾱ )

(31)

Exploitation phase:
In this phase, the search space is exploited in depth to find the optimum solutions

around the candidate space. If r1 ≤ MOA, exploitation is activated, in which subtraction
and addition from arithmetic are utilized in the mathematical model for updating the
positions of the solution candidates, which is given as
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xi,j(t + 1) =

{
best

(
xj
)
−MOP×

((
UBj − LBj

)
× µ̄ + LBj

)
, r3 < 0.5

best
(
xj
)
+ MOP×

((
UBj − LBj

)
× µ̄ + LBj

)
otherwise

(32)

Figure 3 explains how a search solution updates its positions according to arithmetic
operators in the 2-dimensional search space. It can be seen that D, M, S and A estimate the
position of the near-optimal solution, and other solutions update their positions stochas-
tically around the area of the near-optimal solution [37]. Some recent applications of
AOA include workflow scheduling [38], cooling, heating and power systems [39], the
forced switching mechanism [38] and the identification of proton exchange membrane fuel
cells [40].

3.2.2. The Proposed Hybridized Algorithm

Metaheuristic (MH) algorithms are high-level unsupervised learning techniques that
are developed to solve complex optimization problems arising in various fields of physics,
engineering, mathematics and medical sciences. MH algorithms are flexible, concise
and vital in calculating solutions. However, in addition to these merits, they have some
drawbacks. For instance, when dealing with complex optimization problems, AOA only
utilizes the information of the best position in the population, which sometimes causes it to
become trapped in a local optimum, which might affect the speed of the convergence of the
algorithm. Therefore, the aim of this study was to develop a new hybridized algorithm to
enhance the speed of the convergence of solutions in the local search phase. The solutions
obtained by AOA are further tuned by a local search technique known as the interior
point algorithm (IPA). It is used for the optimization of constrained and unconstrained
optimization problems. Some recent applications of IPA include determining the solution
of nonsymmetric exponential-cone optimization [41], convex quadratic programming [42],
simulation of viscoplastic fluid flows [43] and simulation of aircraft parts riveting [44]. The
detailed workflow of the proposed ANN-AOA-IPA is shown in Figure 4.

 

Start 
Initialize the parameters of AOA 

such as search agents, number of 

iterations, upper and lower 

bounds etc 

 
Initialize the 

candidate solution 

Calculate the 
fitness value

Determine the 
best solution

Update MOA, 
MOP

While 

𝒕 < 𝑻 

 

If 𝒓𝟏 < 𝑴𝑶𝑨 

 

If 𝒓𝟐 > 𝟎. 𝟓 

 

If 𝒓𝟑 > 𝟎. 𝟓 

 

    

Apply the 

Division 

operator  

Apply the 

Multiplicatio

n operator  

Apply the 

Subtraction 

operator  

Apply the 

Addition 

operator  

𝒕 = 𝑻 

Return the 

best solution 

Start IPA 

Store the best 

weights.  

Initialize the parameters 

of IPA and take best 

weights of AOA as 

starting point.   

 
Termination 

criteria achieved? 

Update weights by IPA 

Optimized weights 

achieved by AOA-IPA 
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weights End 

Yes 

Yes 

Yes Yes 

Yes 

No 

No No 

No 

No 

Figure 4. An overview of the mechanism of AOA and IPA for finding the solution of the system of
differential equations representing the moment of nanoparticles in a permeable duct.
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4. Numerical Experimentation and Discussion

The proposed ANN-AOA-IPA algorithm was implemented to study the effect of
variations in various parameters, such as the thermophoretic parameter (Nt), Hartmann
number (Ha), Brownian (Nb) and radiation (Rd) motion parameters, Eckert number
(Ec), Reynolds number (Re) and Schmidt number (Sc), on the velocity profile, thermal
profile, Nusselt number and skin friction coefficient of the nanofluid. Each parameter is
varied while keeping the other parameters fixed at values of Ha = 1.0, λ = 1.0, Rd = 0.5,
Ec = 0.5, Sc = 1.0, Nt = 0.001, Nb = 0.01 and Pr = 10.

The approximate solutions obtained by the designed scheme are compared with the
numerical solutions obtained by RK-4 and results obtained by machine learning algorithms,
as shown in Table 2. These solutions can be regenerated by using the closed-form solution
given in Appendix A. In addition, Table 3 shows the accuracy and stability of the solu-
tions in terms of absolute errors. It can be seen that the approximate solution overlaps
with the analytical solution, with minimum absolute errors between 10−4 to 10−9 and
10−5 to 10−8, respectively.

Figure 5 demonstrates the effect of variations in the Reynolds number (Re) on profiles
of f , f ′, θ and φ. It is observed that the vertical velocity ( f ) and temperature profiles (θ)
possess an inverse relation with Re. Near the bottom wall, the horizontal velocity decreases,
while it increases at the upper wall. In addition, φ increases with an increase in Re. The
influence of the Hartman number (Ha) on the model is shown in Figure 6. Significant
increases in the temperature and concentration profiles of the nanofluid are observed with
an increase in Ha, while the velocity profile slightly decreases.

Table 2. Comparison of approximate solutions for f (η) obtained by ANN-AOA-IPA with RK-4
method and stochastic machine learning algorithm.

η
Re = 0.5 Re = 1.5

Numerical NN-BLM [45,46] NARX-LM [47,48] ANN-AOA-IPA Numerical NN-BLM [45,46] NARX-LM [47,48] ANN-AOA-IPA

−1 1.00000000 0.99996385 0.99999938 1.00000055 1.00000000 0.94071596 1.10009813 0.99999946
−0.9 1.07763894 1.08608331 1.07761050 1.07763906 1.07282631 1.07270067 1.10009797 1.07282754
−0.8 1.11587590 1.11489475 1.11586776 1.11587661 1.10009813 1.09571348 1.09998164 1.10009954
−0.7 1.12166425 1.11870199 1.12166471 1.12162656 1.09252600 1.08619716 1.09250160 1.09251966
−0.6 1.10084648 1.10025358 1.10034744 1.10084649 1.05832581 1.05931735 1.05836175 1.05837758
−0.5 1.05841043 1.06827881 1.05847989 1.05841021 1.00395629 1.00385653 1.00388772 1.00337256
−0.4 0.99868221 0.99875324 0.99874777 0.99868209 0.93461860 0.93460208 0.93467741 0.93460079
−0.3 0.92547167 0.92546679 0.92552296 0.92547108 0.85459585 0.99372664 0.85454526 0.85459395
−0.2 0.84218219 0.84218203 0.84220346 0.84218178 0.76748579 0.76748917 0.76746195 0.76748827
−0.1 0.75189435 0.75180907 0.75194013 0.75189332 0.67636211 0.67637960 0.67636574 0.67636559

0.0 0.65743016 0.65745095 0.65746523 0.65742961 0.58388820 0.58389632 0.58387412 0.58389402
0.1 0.56140356 0.32841222 0.56142094 0.56140284 0.49239957 0.49242261 0.49239969 0.49246100
0.2 0.46626097 0.46626563 0.46695412 0.46635119 0.40396540 0.40401405 0.40396405 0.40396402
0.3 0.37431537 0.37432027 0.37531147 0.37456661 0.32043680 0.32050855 0.32041108 0.32043193
0.4 0.28777627 0.28778534 0.28822966 0.28780743 0.24348682 0.24445067 0.24351486 0.24342219
0.5 0.20877774 0.20874843 0.20881059 0.20877765 0.17464595 0.13850070 0.17472544 0.17465424
0.6 0.13940632 0.13343492 0.13945447 0.13940621 0.11533566 0.11527305 0.11531411 0.11533162
0.7 0.08173037 0.08206249 0.08172059 0.08173037 0.06690252 0.05927328 0.06692670 0.06690254
0.8 0.03783243 0.03762772 0.03781267 0.03874270 0.03065445 0.03157715 0.03069898 0.03065476
0.9 0.00984625 0.01255599 0.01366272 0.00987969 0.00790112 0.06554558 0.00777912 0.00799663

1 0.00000000 0.00342423 0.00361723 0.00000143 0.00000006 0.03495787 0.00046412 −0.00002026



Nanomaterials 2022, 12, 637 10 of 22

Table 3. Comparison of absolute error in the solutions obtained by ANN-AOA-IPA for different cases
of steady phase flow of nanofluid.

η
Re = 0.5 Re = 1.5

NN-BLM NARX-LM ANN-AOA-IPA NN-BLM NARX-LM ANN-AOA-IPA

−1 3.6146× 10−05 6.1700× 10−07 5.4600× 10−07 5.9284× 10−02 1.0010× 10−01 5.3600× 10−07

−0.9 8.4444× 10−03 2.8437× 10−05 1.2400× 10−07 1.2564× 10−04 2.7272× 10−02 1.2270× 10−06

−0.8 9.8115× 10−04 8.1310× 10−06 7.1500× 10−07 4.3847× 10−03 1.1649× 10−04 1.4122× 10−06

−0.7 2.9623× 10−03 4.6400× 10−07 3.7684× 10−05 6.3288× 10−03 2.4406× 10−05 6.3390× 10−06

−0.6 5.9290× 10−04 4.9904× 10−04 1.2000× 10−08 9.9154× 10−04 3.5942× 10−05 5.1774× 10−05

−0.5 9.8684× 10−03 6.9465× 10−05 2.1700× 10−07 9.9768× 10−05 6.8573× 10−05 5.8373× 10−04

−0.4 7.1027× 10−05 6.5563× 10−05 1.1700× 10−07 1.6514× 10−05 5.8814× 10−05 1.7809× 10−05

−0.3 4.8780× 10−06 5.1293× 10−05 5.8100× 10−07 1.3913× 10−01 5.0592× 10−05 1.9030× 10−06

−0.2 1.5600× 10−07 2.1266× 10−05 4.1500× 10−07 3.3758× 10−06 2.3848× 10−05 2.4770× 10−06

−0.1 8.5271× 10−05 4.5785× 10−05 1.0200× 10−06 1.7495× 10−05 3.6397× 10−06 3.4880× 10−06

0.0 2.0789× 10−05 3.5065× 10−05 5.5000× 10−07 8.1227× 10−06 1.4083× 10−05 5.8220× 10−06

0.1 2.3299× 10−01 1.7381× 10−05 7.2200× 10−07 2.3036× 10−05 1.1355× 10−07 6.1425× 10−05

0.2 4.6580× 10−06 6.9315× 10−04 9.0217× 10−05 4.8650× 10−05 1.3485× 10−06 1.3820× 10−06

0.3 4.8940× 10−06 9.9610× 10−04 2.5124× 10−04 7.1757× 10−05 2.5717× 10−05 4.8660× 10−06

0.4 9.0670× 10−06 4.5339× 10−04 3.1165× 10−05 9.6385× 10−04 2.8036× 10−05 6.4633× 10−05

0.5 2.9312× 10−05 3.2851× 10−05 9.2000× 10−08 3.6145× 10−02 7.9499× 10−05 8.2900× 10−06

0.6 5.9714× 10−03 4.8149× 10−05 1.1500× 10−07 6.2606× 10−05 2.1551× 10−05 4.0370× 10−06

0.7 3.3212× 10−04 9.7760× 10−06 1.0000× 10−09 7.6292× 10−03 2.4182× 10−05 1.7000× 10−08

0.8 2.0470× 10−04 1.9754× 10−05 9.1027× 10−04 9.2270× 10−04 4.4529× 10−05 3.1400× 10−07

0.9 2.7097× 10−03 3.8165× 10−03 3.3443× 10−05 5.7644× 10−02 1.2200× 10−04 9.5513× 10−05

1 3.4242× 10−03 3.6172× 10−03 1.4281× 10−06 3.4958× 10−02 4.6406× 10−04 2.0318× 10−05
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Figure 5. (a–d) The influence of variations in Reynolds number on velocity, temperature and concen-
tration profiles of the nanofluid subjected to the magnetic field.
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Figure 6. (a–d) Analysis based on the influence of variations in Hartman number on different profiles
of the nanofluid.

The suction parameter λ was varied from 0.5 to 2.0 to study its effect on the velocity,
thermal and concentration profiles of the nanofluid. The vertical velocity and temperature
profiles increase with an increase in λ. From Figure 7 it is observed that the minimum
velocity point shifts to the lower wall. In addition, the concentration of the fluid decreases.
Figures 8 and 9 illustrate the influence of variations in the radiation parameter, Eckert
number, Schmidt number, Brownian motion parameter and Prandtl number on temperature
and concentration profiles. It is concluded that increases in Rd, Ec and Sc cause decreases
in θ and φ. In addition, an increase in the Brownian motion parameter increases the
temperature profile of the nanofluid. It is also observed that the results obtained by the
proposed technique overlap with the analytical solution.
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Figure 7. Cont.
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Figure 7. (a–d) The behavior of velocity, temperature and concentration of the nanoparticles when
the suction parameter is varied from 0.5 to 2.
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Figure 8. (a–d) The influence of variations in radiation parameter, Eckert number and Schmidt
number on temperature and concentration profiles of the fluid.



Nanomaterials 2022, 12, 637 13 of 22

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

 (
)

Pr = 1
Pr = 5
Pr = 10
Pr = 15

(a)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1

 (
)

Nb = 0.01
Nb = 0.1
Nb = 0.2
Nb = 0.3

(b)

Figure 9. The effect of variations in (a) Prandtl number and (b) Brownian motion parameter on
temperature and concentration profiles of the nanofluid.

Furthermore, graphical analyses in Figure 10 show the influence of variations in
various parameters on the Nusselt number (Nu) and skin friction coefficient C f . The values
of the Nusselt number (Nu) and skin friction coefficient increase with increases in the
Hartman number and suction parameter. The Nusselt number decreases with an increase
in the Eckert number.
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Figure 10. (a–d) The influence of variations in Reynolds number, Hartmann number, Eckert number
and suction parameter on Nusselt number and skin friction coefficient.

To check the performance of the proposed algorithm in terms of stability, consistency
and accuracy, ANN-AOA-IPA was implemented for 100 independent runs. Various perfor-
mance indicators were defined to check the validity of the solutions. The formulation of
these parameters (mean absolute deviation, Theil’s inequality coefficient (TIC) and error in
Nash–Sutcliffe efficiency (ENSE)) are given as



Nanomaterials 2022, 12, 637 14 of 22

[
MAD f , MADθ , MADφ

]
=


1
M ∑M

j=1
∣∣ f̄ (ηj

)
− f

(
ηj
)∣∣,

1
M ∑M

j=1
∣∣θ̄(ηj

)
− θ)

(
ηj
)∣∣,

1
M ∑M

i=1
∣∣φ̄(ηj

)
− φ

(
ηj
)∣∣,


t

(33)

[
TIC f , TIC θ , TIC φ

]
=



√
1
M ∑M

j=1( f̄ (ηj)− f (ηj))
2√

1
M ∑M

j=1( f̄ (ηj))
2
+

√
1
M ∑M

j=1( f (ηj))
2
,

√
1
M ∑M

j=1(θ̄(ηj)−θ(ηj))
2√

1
M ∑M

j=1(θ̄(ηj))
2
+

√
1
M ∑M

j=1(θ(ηj))
2
,

√
1
M ∑M

j=1(φ̄(ηj)−φ(ηj))
2√

1
M ∑M

j=1(φ̄(ηj))
2
+

√
1
M ∑M

j=1(φ(ηj))
2
,



t

, (34)

[
NSE f , NSEθ , NSEφ

]
=



1−
1
M ∑M

j=1( f̄ (ηj)− f (ηj))
2

∑M
j=1( f̄ (ηj)− f̂ (ηj))

2 , f̂
(
ηj
)
= 1

M ∑M
j=1 f

(
ηj
)
,

1−
1
M ∑M

j=1(θ̄(ηj)−θ(ηj))
2

∑M
j=1(θ̄(ηj)−θ̂(ηj))

2 , θ̂
(
ηj
)
= 1

M ∑M
j=1 θ

(
ηj
)
,

1−
1
M ∑M

j=1(φ̄(ηj)−φ(ηj))
2

∑M
j=1(φ̄(ηj)−φ̂(ηj))

2 , φ̂
(
ηj
)
= 1

M ∑M
j=1 φ

(
ηj
)
,



t

(35)

[
ENSE f , ENSEθ , ENSEφ

]
=
[
1− NSE f , 1− NSEθ , 1− NSEφ

]
. (36)

Here, f̄ , θ̄, φ̄ and f , θ, φ are the analytical and approximate solutions, respectively. For
the perfect modeling of solutions, the values of MAD and TIC approach zero.

The behavior of the objective/fitness function given in Equation (23) is shown in
Figure 11, and the global values of the fitness function are illustrated in Figure 12. In
addition, a sensitivity analysis of the proposed algorithm was conducted by varying the
population size or candidate space (Pop) and the number of neurons (k) in the ANN
architecture. Table 4 shows that the accuracy of approximate solutions increases with
the increase in the population size and number of neurons. The statistical results for the
performance indicators in terms of minimum value, mean and standard deviation are
reported in Tables 5 and 6. The mean values of MAD, TIC and ENSE for each case are
around 10−3 to 10−5, 10−4 to 10−5 and 10−4 to 10−7, respectively. The results demonstrate
the accuracy of the results and the efficiency of the proposed algorithm in solving a
mathematical model of the steady two-phase flow of a nanofluid in a semipermeable duct.
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Table 4. Sensitivity analysis of the proposed ANN-AOA-IPA algorithm by varying the size of the
population space and increasing the number of neurons in ANN architecture.

η
Population Space Number of Neurons

Pop = 40 Pop = 60 Pop = 80 k = 10 k = 20 k = 30

−1 2.6864× 10−03 1.0329× 10−04 2.4641× 10−06 2.6253× 10−03 1.7346× 10−04 7.7574× 10−07

−0.9 5.8452× 10−03 3.0524× 10−04 4.6352× 10−07 7.1556× 10−03 5.5202× 10−04 3.0120× 10−06

−0.8 4.9577× 10−04 3.8561× 10−06 1.3737× 10−06 2.1806× 10−03 3.3220× 10−04 5.1192× 10−06

−0.7 3.9695× 10−03 1.8154× 10−04 1.9025× 10−06 5.4371× 10−03 2.2298× 10−04 2.8138× 10−06

−0.6 1.9468× 10−03 1.4502× 10−03 2.7830× 10−05 2.3706× 10−03 1.8001× 10−04 6.0552× 10−05

−0.5 1.7634× 10−03 8.2916× 10−05 1.7958× 10−06 2.0402× 10−03 2.7400× 10−04 5.2621× 10−06

−0.4 3.2420× 10−03 1.0875× 10−04 1.4003× 10−07 4.3142× 10−03 6.2096× 10−05 4.3763× 10−06

−0.3 1.5481× 10−03 1.4749× 10−04 1.2195× 10−06 3.6066× 10−03 1.6525× 10−04 9.4592× 10−06

−0.2 1.4065× 10−03 1.0883× 10−03 1.8041× 10−09 9.0876× 10−04 1.8397× 10−04 2.8093× 10−06

−0.1 2.9428× 10−03 2.8791× 10−05 1.5826× 10−05 2.0974× 10−03 7.0954× 10−06 8.1390× 10−06

0 1.8061× 10−03 4.8016× 10−05 8.2430× 10−06 3.9363× 10−03 2.2731× 10−04 1.0280× 10−07

0.1 9.8747× 10−04 8.8184× 10−04 7.0792× 10−08 3.8453× 10−03 2.6729× 10−04 3.5084× 10−06

0.2 3.0236× 10−03 7.9545× 10−05 7.2345× 10−06 1.9256× 10−03 4.9843× 10−05 1.1479× 10−05

0.3 2.3928× 10−03 3.1778× 10−05 8.9309× 10−07 9.7768× 10−04 2.9083× 10−04 9.8425× 10−06

0.4 6.1715× 10−04 2.9966× 10−05 5.5314× 10−06 3.5783× 10−03 4.6637× 10−04 5.0331× 10−06

0.5 3.2608× 10−03 7.4988× 10−05 8.4750× 10−07 4.5668× 10−03 2.3081× 10−04 1.4925× 10−06

0.6 2.2817× 10−03 7.7325× 10−04 6.1603× 10−04 3.1008× 10−03 3.5270× 10−04 3.1363× 10−05

0.7 2.2011× 10−03 2.5473× 10−05 5.9281× 10−06 6.4840× 10−04 7.4595× 10−04 1.8440× 10−07

0.8 3.7397× 10−03 6.3881× 10−05 1.6041× 10−05 4.8781× 10−03 1.8243× 10−04 1.2047× 10−06

0.9 4.1865× 10−03 1.1346× 10−04 9.6525× 10−06 5.4220× 10−03 1.1799× 10−03 2.9138× 10−05

1 1.3168× 10−03 9.7003× 10−05 7.0381× 10−07 5.1701× 10−03 4.8682× 10−04 1.1468× 10−07

Table 5. Statistics of performance indicators in terms of minimum, mean and standard deviations
obtained during 100 independent runs of the designed algorithm for the solution of f (η).

Mean Absolute Deviations Theil’s Inequality Coefficient Error in Nash–Sutcliffe Efficiency

Minimum Mean Standard
Deviation Minimum Mean Standard

Deviation Minimum Mean Standard
Deviation

f (η)

R = 0.5 7.2403× 10−05 3.5743× 10−04 2.9778× 10−04 4.6039× 10−05 5.1401× 10−04 3.5330× 10−04 7.3727× 10−07 2.2083× 10−04 2.6709× 10−04

R = 1.0 8.6929× 10−05 4.9791× 10−04 2.4997× 10−04 5.7010× 10−05 3.3104× 10−04 1.6783× 10−04 1.1169× 10−06 3.8924× 10−05 3.4451× 10−05

R = 1.5 1.9639× 10−04 4.0459× 10−04 2.3773× 10−04 1.3167× 10−04 2.7001× 10−04 1.5620× 10−04 6.0063× 10−06 3.3927× 10−05 3.7656× 10−05

R = 2.0 9.4110× 10−04 1.1000× 10−03 6.0482× 10−05 6.3155× 10−04 8.0922× 10−04 9.1869× 10−05 1.4547× 10−04 2.0401× 10−04 4.0899× 10−05

θ(η)

R = 0.5 1.8540× 10−04 8.5374× 10−04 1.0000× 10−03 9.4233× 10−05 4.5948× 10−04 5.4992× 10−04 4.7044× 10−06 4.5903× 10−04 5.6429× 10−04

R = 1.0 1.1846× 10−04 5.2613× 10−04 2.1343× 10−04 9.5384× 10−05 4.4563× 10−04 2.0499× 10−04 3.6759× 10−06 1.0560× 10−04 9.7748× 10−05

R = 1.5 8.9358× 10−05 3.3748× 10−04 2.1856× 10−04 1.0725× 10−04 3.2449× 10−04 1.9673× 10−04 3.0354× 10−06 7.8839× 10−05 1.0081× 10−04

R = 2.0 1.5648× 10−04 4.1213× 10−04 1.7723× 10−04 1.8750× 10−04 4.8842× 10−04 2.0099× 10−04 1.1969× 10−05 9.7290× 10−05 6.5530× 10−05

φ(η)

R = 0.5 2.6008× 10−05 2.9242× 10−04 1.8388× 10−04 2.6381× 10−05 2.6854× 10−04 1.6804× 10−04 1.8993× 10−07 2.6146× 10−05 2.4518× 10−05

R = 1.0 2.4168× 10−05 7.2382× 10−05 3.1487× 10−05 2.3046× 10−05 6.5648× 10−05 2.8007× 10−05 1.5679× 10−07 1.6672× 10−06 1.2839× 10−06

R = 1.5 3.4192× 10−05 5.6596× 10−05 1.6593× 10−05 3.2308× 10−05 5.0079× 10−05 1.4797× 10−05 3.0656× 10−07 9.0910× 10−07 5.1025× 10−07

R = 2.0 6.8627× 10−05 1.0628× 10−04 2.4705× 10−05 5.5882× 10−05 9.2091× 10−05 1.9497× 10−05 1.2165× 10−06 3.0670× 10−06 1.2993× 10−06
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Table 6. Statistics of performance indicators in terms of minimum, mean and standard deviations
obtained during the 100 independent runs of the designed algorithm for the solution of θ(η).

Mean Absolute Deviations Theil’s Inequality Coefficient Error in Nash–Sutcliffe Efficiency

Minimum Mean Standard
Deviation Minimum Mean Standard

Deviation Minimum Mean Standard
Deviation

f (η)

Rd = 0.1 2.9129× 10−04 6.5088× 10−04 2.8805× 10−04 2.6609× 10−04 6.0289× 10−04 2.7352× 10−04 2.4264× 10−05 1.4013× 10−04 1.0901× 10−04

Rd = 0.2 5.2428× 10−05 1.3954× 10−04 6.5303× 10−05 4.6231× 10−05 1.3250× 10−04 6.7998× 10−05 7.8297× 10−07 6.5184× 10−06 5.1070× 10−06

Rd = 0.5 2.6008× 10−05 1.2272× 10−04 5.2551× 10−05 2.6381× 10−05 1.1161× 10−04 4.5722× 10−05 1.8993× 10−07 4.9182× 10−06 3.5645× 10−06

Rd = 1.0 4.9235× 10−05 1.7491× 10−04 1.3438× 10−04 4.2589× 10−05 1.9682× 10−04 1.6747× 10−04 6.7810× 10−07 1.0572× 10−05 1.6896× 10−05

θ(η)

Rd = 0.1 6.0070× 10−04 9.1330× 10−04 2.4107× 10−04 8.2072× 10−04 1.0000× 10−03 1.5996× 10−04 1.0319× 10−04 3.1637× 10−04 1.3843× 10−04

Rd = 0.2 2.0447× 10−04 3.0581× 10−04 8.5580× 10−05 2.0198× 10−04 2.9700× 10−04 8.2541× 10−05 1.1910× 10−05 2.8308× 10−05 1.4805× 10−05

Rd = 0.5 1.2685× 10−04 2.3671× 10−04 9.9817× 10−05 1.1791× 10−04 2.1831× 10−04 9.1442× 10−05 4.5183× 10−06 1.8181× 10−05 1.4958× 10−05

Rd = 1.0 1.2235× 10−04 7.8569× 10−04 6.5424× 10−04 7.8651× 10−04 3.8227× 10−04 3.7916× 10−04 9.7866× 10−06 3.5243× 10−05 1.2779× 10−05

φ(η)

Rd = 0.1 4.7175× 10−04 5.1762× 10−04 9.1730× 10−05 4.3889× 10−04 5.2589× 10−04 1.2690× 10−04 6.2487× 10−05 9.3344× 10−05 4.4357× 10−05

Rd = 0.2 5.5114× 10−05 7.2623× 10−05 2.6976× 10−05 4.0381× 10−04 4.6302× 10−04 7.5120× 10−05 4.4304× 10−04 5.0270× 10−04 8.6157× 10−05

Rd = 0.5 2.2756× 10−05 9.4426× 10−05 6.8102× 10−05 2.0798× 10−05 1.0284× 10−04 8.2923× 10−05 1.4485× 10−07 3.6473× 10−06 4.3006× 10−06

Rd = 1.0 3.7874× 10−05 3.5456× 10−05 1.8766× 10−05 9.6532× 10−05 9.8765× 10−05 1.5466× 10−05 6.4731× 10−07 9.5646× 10−07 4.5685× 10−07
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Figure 11. (a,b) The convergence of fitness value during the 100 independent runs of the desig-
ned technique.
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Figure 12. (a,b) The global values of fitness function during the 100 independent runs of the proposed
ANN-AOA-IPA algorithm.

5. Conclusions

A mathematical model of the steady two-phase magnetohydrodynamic flow of a nanofluid
in a semipermeable duct was analyzed. Moreover, to study the system, a metaheuristic-driven
approach was designed based on the intelligent computational strength of artificial neural
networks. ANNs were used to model the structure of approximate solutions for the veloc-
ity, temperature and concentration profiles of the nanofluid. Furthermore, unsupervised
models of solutions known as objective functions were optimized with the hybridization of
global and local search techniques. The designed ANN-AOA-IPA algorithm was success-
fully implemented to study the influence of variations in the thermophoretic parameter
(Nt), Brownian (Nb) and radiation (Rd) motion parameters, Reynolds number (R), Eckert
number (Ec), Hartmann number (Ha) and Schmidt number (Sc). The Nusselt number (Nu)
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and skin friction coefficient C f were calculated for different values of the Hartman number,
Eckert number and suction parameter. The results illustrate that Nu and C f increase with
the Hartman number and suction parameter, while an inverse relation is observed with the
Eckert number. In addition, it is observed that the velocity, temperature and concentration
profiles of the nanofluid increase with an increase in the suction parameter, Eckert number
and Schmidt number, respectively. The results of ANN-AOA-IPA were compared with the
Runge–Kutta method and machine learning algorithms, which reveal that the solutions
obtained by the proposed technique overlap with the numerical solutions, with absolute er-
rors of around 10−5 to 10−9. The stability, accuracy and efficiency of the designed technique
were validated by error analysis based on MAD, TIC and ENSE.
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Nomenclature

AOA Arithmetic optimization algorithm
IPA Interior point algorithm
TIC Theil’s inequality coefficient
MAD Mean absolute deviation
NSE Nash–Sutcliffe efficiency
ENSE Error in Nash–Sutcliffe efficiency
Nt Thermophoretic parameter
Ha Hartmann number
Nb Brownian motion parameter
Rd Radiation motion parameter
Re Reynolds number
Sc Schmidt number
λ Suction parameter
Ec Eckert number
Cp Specific heat capacity
Pr Prandtl number
B0 Magnetic field
BR Mean absorption coefficient
µ Dynamic viscosity
Nu Nusselt number
σ Electrical conductivity
C f Skin friction coefficient
u, v Horizontal and vertical velocities
η Similarity-independent variable
qr Thermal radiation
θ Dimensionless temperature
ρe Stefan–Boltzmann constant
φ Dimensionless concentration
h Activation function
α, β, ω Unknown neurons in ANN structure
k Number of neurons
a, b, r1, r2, r3 Random numbers
UBj, LBj Upper and lower bounds
µ̄ Controlling parameter in AOA
ᾱ Sensitivity parameter in AOA
f, p (subscripts) Fluid phase, particulate phase
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Appendix A
Approximate series solutions for the velocity, temperature and concentration of the

fluid for R = 0.5 are given as

f (η) =
4.61369980524645

1 + e−(5.08711787637231η+9.90867776328236)

+
2.93758362572738

1 + e−(3.09195460470904η+5.69916567641777)

+
3.29945980406045

1 + e−(2.32570116204802η+4.02631566205142)

+
−3.78192366991081

1 + e(1.62985653339985η−5.49858809617563)

+
−3.22583732511908

1 + e−(−0.370478023140672η+2.00839985002585)

+
−5.34813467606133

1 + e−(−2.92997660113540η+6.77439711326103)

+
−1.74596240330998

1 + e−(1.62626182324585η+0.401259099155673)

+
0.0285998274897956

1 + e−(2.71661052797685η+0.432623409646409)

+
−7.04187260919816

1 + e−(1.09619593671067η−1.45607700580778)

+
6.32391288523611

1 + e−(1.50299659396555η−2.60292294090048)
,

(A1)

θ(η) =
−0.762329897926404

1 + e−(1.68494525972436η+31.2426609585497)

+
−2.31189639017061

1 + e−(−1.50469611836172η+1.56501407903514)

+
−2.66393004854463

1 + e−(−1.06620117001768η−1.80630124000031)

+
−6.14157555274085

1 + e−(2.16908279747484η−1.09700349256711)

+
5.47586997864664

1 + e−(−5.59059045698216η−7.19784783962392)

+
−6.82815233359154

1 + e−(1.34558295675714η−3.70915380122379)

+
−3.11479387823252

1 + e−(−0.0884720225553450η−1.06256782303172)

+
8.60883142974415

1 + e−(5.61401069041918η+8.01296209229107)

+
−3.00270903621335

1 + e−(−2.49238263574495η+1.11606951601859)

+
0.914452301076381

1 + e−(−1.58802329749731η−4.04995378577328)
,

(A2)
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Φ(η) =
−4.29104167184275

1 + e−(1.29160502365402η+0.936652114155683)

+
−4.95499508899306

1 + e−(−0.619641753235744η+2.37818424387284)

+
7.50577678885757

1 + e−(0.607093211631663η+1.19078083137004)

+
−5.32284504861338

1 + e−(0.539662722456454η+1.56094286041994)

+
3.55841274393489

1 + e−(0.414796532515809η−0.316209500021666)

+
−4.70911002560639

1 + e−(1.67967325760117η−2.99941621832991)

+
−5.20837123119641

1 + e−(−1.23434514770494η+3.11287353056052)

+
10.0237940205905

1 + e−(−0.332933782284494η−2.03015694260553)

+
9.18640377585145

1 + e−(3.27340937126084η+5.53181041917603)

+
7.84723429468485

1 + e−(−3.67127578557170η−5.92860850158342)
.

(A3)
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