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Abstract: An optimal combination of power and energy characteristics is beneficial for the further
progress of supercapacitors-based technologies. We develop a nanoscale dynamic electrolyte model,
which describes both static capacitance and the time-dependent charging process, including the
initial square-root dependency and two subsequent exponential trends. The observed charging time
corresponds to one of the relaxation times of the exponential regimes and significantly depends on
the pore size. Additionally, we find analytical expressions providing relations of the time scales to the
electrode’s parameters, applied potential, and the final state of the confined electrolyte. Our numerical
results for the charging regimes agree with published computer simulations, and estimations of the
charging times coincide with the experimental values.
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1. Introduction

Among all modern energy sources, supercapacitors demonstrate an extraordinary
power density and an extremely long cycling life [1]. Such rapid charging and discharging
occur due to fast adsorption-electrostatic processes, making supercapacitor technology
environmentally friendly. These advantages open up a wide range of possible applications
from small devices [2] to electric cars [3]. However, the widespread use of supercapacitor
technology is limited by their relatively low energy density [4]. The implementation of
nanoporous electrodes led to a severe increase in energy density through a significant in-
crease in capacitance, first experimentally observed in sub-nanoporous carbon materials [5].
Moreover, subsequent experiments showed that the pore size giving the highest capacitance
corresponds to the diameter of the electrolyte molecules [6]. The capacitance’s oscillatory
behavior as a function of pore size has been successfully described in terms of the classical
density functional theory (c-DFT) [7], accounting for confined properties of the charged
hard spheres at an applied electrostatic potential. The state of the art c-DFT approach [8]
allows one to investigate how the supercapacitor parameters, namely electrodes’ pore
sizes [9,10] and electrolyte composition [11–13], affect energy storage performance.

In spite of the long history of [14–16] studies of porous electrode charging, the vast
majority of existing dynamic models correspond to meso- and macropores (pore size
H ≥ 2 nm), where the properties of confined dilute electrolytes are similar to the bulk ones.
In this case, the charging time is often estimated using the transmission line model (TLM),
first proposed and thoroughly studied in Refs. [14–16]. The TLM treats the electrolyte-filled
pore as an equivalent circuit of resistors and capacitors. The corresponding total resistance R
and capacitance C take into account the properties of the electrolyte in the bulk and double
electric layer (EDL) states, respectively. More than half a century ago, de Levy proposed a
diffusion equation for the electrostatic potential difference between the pore surface and
the central plane, which leads to a time scale RC [14,15]. Significantly, the effective circuit
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is used nowadays to investigate the various properties of the electrolyte charging [17–19].
Biesheuvel and Bazant extended transmission line approach considering pure capacitive
process Ref. [20] and Faradaic reaction Refs. [21,22] in porous electrodes. For low applied
potentials U � 25 mV model [20] results in the TLM, which is the linearization of Poisson–
Nernst–Planck (PNP) equations [23] at this limit. Because of the assumption of low applied
potential, TLM misses some critical phenomena [24] at conditions corresponding to the
majority of applications U ∼ 0.1–1 V. For example, the nonlinear model [20] predicts
the slower charging at higher potentials, which is crucial for the power performance.
However, the PNP calculations [24] showed that this predicted charging slowdown is
overestimated due to the unaccounted surface conductivity. Thus, an accurate description
of the electrolyte–electrode interface is crucial for adequately modeling nanopore charging
at moderate/high applied potentials.

Very recently, the TLM approach has been applied to nanoporous electrodes (H ∼ 2 nm),
and realistic scaling of the charging time has been obtained in terms of physically deter-
mined parameters [19]. The authors of ref. [19] have also shown that two comparable
timescales exist at high applied potentials: the first one corresponds to the equivalent
circuit model, and the second timescale is related to adsorption. A more detailed analysis
of the charge dynamics in nanopores requires information on the packing properties of
finite-sized ions, which goes beyond the [19] TLM models. The most realistic description
of ion transport in nanopores was obtained using the molecular dynamics (MD) method.
Molecular dynamics (MD) simulations [25,26] demonstrated that the charging of the elec-
trolyte filled pores is described by three consecutive regimes (modes). More precisely, the
charging starts with ions diffusion characterized by the slow squared-root dependence of
the total charge on time. Further, ion transport corresponds to two exponential regimes at
the intermediate and late times. The second exponential regime with a higher relaxation
time becomes crucial in ultra-narrow pores, which results in a significant slowdown of the
charging. The authors of ref. [27] demonstrated how to speed up the nanopores charging
using time-dependent applied potential. Such control of the applied potential allows the
ions to avoid the molecular clogging which causes the sluggish dynamics. Therefore,
modeling the ions’ transport inside nanopores is critical to designing the supercapacitors
with the optimal relation between storage and power properties. In addition, an actual
application of the ion transport models is capacitive deionization technologies which use
an electrostatic field to remove salt ions and provide the water desalination during the
filtration through porous electrodes [28]. Additionally, the recent experiments [29] demon-
strated that the salt ions could be excluded from the confined water because of the steric
effects of the nano-scale slit pores. Thus, it is crucial to combine the electrostatic and steric
properties to model the ion transport inside the nanopores properly.

This paper describes the ion dynamics inside a nanopore as wide as a molecule. Such
sub-nanoporous electrodes are necessary for further advances in supercapacitor-based
technologies. However, the sub-nanopore size limitation causes a significant slowing down
of ion motion and, consequently, the charge. We develop a theory based on the time-
dependent version of the c-DFT approach (see refs. [30,31] for one of the first derivations,
and ref. [32] for the comprehensive literature review). More precisely, we derive and
numerically solve the transport equations for the charged ions in the three-dimensional
narrow slit pores. Such pores exhibit negligibly small values of the width-to-length ratio,
which allows us to derive an asymptotic model—a one-dimensional transport equation
reflecting the properties of the ion dynamics inside 3D slit nanopores. The proposed
theory describes three consecutive charging regimes: an initial root-square process and
two exponential regimes with different time scales. The last exponential regime plays
a crucial role in the ultra-narrow pores (pore width is around ion diameter) and results
in the charging slowdown. Before the current work, the details of the charging inside
ultra-narrow pores had been investigated using MD simulations only [25–27]. Indeed,
since we use an accurate thermodynamic potential, our model accounts for the electric and
packaging properties of finite-sized ions within the nanopores. It is an advantage over
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recently published dynamic models [18,19], and allows us to relate charging times to the
given characteristics of nanopore supercapacitors.

2. Model

We use the slit pore geometry shown in Figure 1, which describes the spatial struc-
ture of modern porous materials, such as graphene based electrodes [33,34] and graphene
oxide (GO)/MXene fibers [35,36], exhibiting aligned slit-nanopores of width H compa-
rable to electrolyte diameter d and length L � H. The considered materials are used in
supercapacitor’s technologies as the porous electrodes which accumulate charge through
electric double layer formation without chemical reactions. More precisely, these ma-
terials show promising applications for wearable electronics and smart textiles devices
due to outstanding energy density and high flexibility [37]. Moreover, our geometrical
representation of the pore closely resembles recent molecular dynamic simulations of the
supercapacitors [26,27], which allows us to make a comparison of our predictions with the
MD-simulated electrolyte’s behavior. The electrodes with inhomogeneous pore-network
considered in refs. [21,38,39] are beyond the scope of our work. However, the developed
model of individual slit nanopore charging can be implemented as a pore-network building
block in the case of a non-trivial pore-size distribution [39]. A possible implementation
follows from ref. [39], where our transport equations can replace the Navier–Stokes equa-
tion for the effective medium approximation—the porous reservoir is a uniform network
of equal short pores.

x

z

L

H

O U > 0

d

Figure 1. Slit pore connected to bulk volume of symmetric electrolyte, constant electric potential is
applied to the pore walls.

In the case of slit pore geometry (Figure 1), the dynamic component density ρi(t, x, z)
for i = 1, . . . , n (where n is the number of components) depends on the coordinate x in
lateral direction along the pore’s surface and the normal distance to the surface z. Notice,
that we assume the homogeneous distribution in the direction which is perpendicular to
the x- and z-coordinates, see Figure 1. Therefore, to describe dynamics of the charging
process, we apply the time-dependent version of c-DFT [40] in two spatial coordinates
(x, z), defined in the general form as

∂tρi − βDi∇(ρi∇µi) = 0, (1)

where Di is the diffusion coefficient of i-th component, β = 1/kBT, kB is the Boltzmann
constant, T is the temperature,∇ = {∂x, ∂z} is 2D gradient vector, and µi(t, x, z) is the local
chemical potential of the i-th component.

To describe the confined electrolyte we use one of the most popular c-DFT approaches
based on the confined hard sphere model [41] and an electrostatic extension [42] account-
ing for the contributions from Coulomb interaction and additional finite size residual
correlations. The electrode’s pores are considered as an open system connected with a
bulk electrolyte. In accordance with Ref. [40], the chemical potentials µi(t, x, z) have the
following form

µi = kBT log
(

ρiΛ3
)
+ eZiψ +

δ fexc

δρi
, (2)

where ψ is the electric potential, e is the proton charge, Zi is the ion valency, Λ is the de
Broglie wavelength. The electric potential ψ(t, x, z) satisfies the Poisson equation

βe∆ψ = −4πlB
n

∑
i=1

Ziρi, (3)
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where ∆ = ∂xx + ∂zz is the 2D Laplace operator and lB = βe2/4πεε0 is the Bjerrum length.
A detailed description of the used c-DFT approach including particular form of the excess
term fexc can be found in Appendix D. Additionally, see in Appendix D the static the
capacitance’s properties from implemented c-DFT which correspond to model [9] and show
the realistic behavior.

Initially, no electrostatic potentials are applied, and the total charge of the symmet-
ric electrolyte is zero. We consider a step charge when the potential changes abruptly
from zero to some positive value U > 0. The applied potential causes the influx into
the pores of oppositely charged ions called counter-ions (anions in the case of U > 0),
while ions with a charge of the same sign as the applied potential (co-ions, cations for
U > 0) are pushed out of the pore volume. Inside sub-nanopores, the local increase in
the counter-ion density can strongly influence the co-ion desorption, hindering their re-
lease due to counter-ion clogging and thus leading to a notable slowdown of the charging
process [26]. The main variables of interest are the charges associated with individual
electrolyte components Qi(t) = −eZiL−1

∫ L
0

∫ H
0 dx dz ρi(t, x, z) and the surface total charge

density Q(t) = ∑n
i=1 Qi(t). The final charge Q∞ corresponds to the steady distributions

ρ∞
i (t, x, z) ≡ ρ∞

i (z), which are in equilibrium with the bulk electrolyte and depend on the
applied potential U.

Considering Equations (1) and (3) in the slit-pore geometry (see (A5) and (A6)) with
very small ratio H/L� 1, we seek the solutions of Equation (1) in the following forms:

ρi(t, x, z) = ρ0
i (t, x, z) +

H2

L2 ρ1
i (t, x, z) + . . . , (4)

ψ(t, x, z) = ψ0(t, x, z) +
H2

L2 ψ1(t, x, z) + . . . . (5)

where upper indices correspond to the O(1) and O(H2/L2) problems. As one can see in
Appendix A, we use the O(1) equations to find that µ0

i (t, x, z) ≡ µ0
i (t, x) do not depend on

the z-coordinate; and electrostatic potential ψ0(t, x, z) can be found from the O(1)-Poisson
equation. Therefore, the O(1)-problem allows us to describe the z-coordinate dependence,
while O(H2/L2) provides information about dynamics and x-coordinate distribution. One
of our most striking results is the demonstration that a complete solution to the problem
O(H2/L2) is not required. Indeed, we derive an asymptotic model describing charging
dynamics in terms of the pore cross-section averaged quantities for the O(1)-variables
ρ0

i (t, x, z) and µ0
i (t, x, z), as follows (see details in Appendix A):

∂tρ
0
i (t, x)− βDi∂x

(
ρ0

i (t, x)∂xµ0
i (ρ

0
1, . . . , ρ0

n)
)
= 0. (6)

where, ρ0
i (t, x) =

∫ H
0 dz ρ0

i (t, x, z)/H are pore cross-section-averaged densities, and
µ0

i = µi(ρ1, ..., ρn) are functions of averaged densities only, see Appendix B. We close the
1D transport equation by the following initial and boundary conditions:

ρ0
i (t, 0) = ρ∞

i (U), (7)

∂xµ0
i (t, L) = 0, (8)

ρ0
i (0, x) = ρi|U=0 (9)

where Equations (7) and (8) correspond to the open and closed boundaries, respectively;
Equation (9) is the initial condition accounting for the confined electrolyte properties at
U = 0. Such partial differential Equation (6) with (7)–(9) can be solved numerically using
c-DFT as discussed in Appendix C.
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Notice, that here and below we use ρi ≡ ρ0
i , µ ≡ µ0 and ψ ≡ ψ0 the dominant

terms in the expansions (4) and (5) over small parameter H/L. The chemical potentials
µi are defined by the popular confined fluid c-DFT model, see Appendix D. It allows
us to account for the realistic behavior of the electrolytes in confinement: alteration of
over-screening/crowding interfaces [43]; the capacity oscillations in narrow nanopores [6].
Such subnanoscale properties are beyond the scope of the PNP equations [24], linear TLM
models [23] or their very recent modifications [17,19]. Thus, since the derived transport
equation correctly describes the ions-packing properties and the electrostatic fluctuations,
we can extend the theoretical study to the ultra-narrow pores comparable to molecular size.

3. Results

Similar to some molecular simulations [25,26], we assume that electrolyte is a symmet-
ric two component mixture consisting of the molecules with the diameters d1 = d2 = d
and the charge valences Z1 = −Z2 = 1. For the sake of simplicity, we set the diffusion
coefficients of the components to be equal D1 = D2 = D. In the case of this symmetric elec-
trolyte, it is also useful to introduce, following [9], the dimensionless variables H∗ = H/d,
U∗ = eU/kBT, Q∗ = Qd2/e, ρ∗ = ρd3. It can be shown from dimensional arguments that
the characteristic time for the considered problem is L2/D and one can also introduce the
scaled time t∗ = tD/L2 = t/τ.

The charges of electrolyte components are conveniently defined in terms of average
densities as Qi(t) = −eZi HL−1

∫ L
0 dx ρi(t, x). An example of the calculated time-dependent

charges Q(t) for subnanopore electrodes (H∗ = 1.5 and H∗ = 2) at sufficiently high po-
tential U∗ = 10 is shown in Figure 2a,b. A discussion of the used numerical methods can
be found in Appendix C. As one can see from Figure 2a, the root-square law Q ∼

√
t

describes the notable part of the charging process at early times well. However, when the
charge Q approaches the saturated value Q∞, the trend changes to the exponential one.
Figure 2b shows that in the case of larger pores with H∗ = 2, the charging up to almost
95% is described by the following equation:

Q
Q∞

= 1− 8
π2 e−t/τ1 . (10)

Expression (10) is the leading term of the analytical solution of the TLM [24]. De-
spite that the pores sizes H ∼ d and potentials U > kBT/e are significantly beyond the
ranges of TLM applicability, the published computer simulations [25,44] show the ade-
quacy of exponential trend in Equation (10) for fitting of the charge dependency on time.
We observed that at late times the calculated profiles Q(t) in Figure 2b follow another
exponential trend succeeding (10), which is notably slower and describes the charging until
almost full saturation. The experimentally observed charging time for supercapacitors is
around 103 s, while the published dynamic DFT models result in enormously underesti-
mated values ∼10−9 s [19]. The proposed model provides both the realistic behavior of
the capacitance’s properties (Appendix D) and correct charging time scales. To provide
numerical estimations we have used experimental parameters from refs. [19,45]: the pore
length is L = 0.5 mm and confined diffusion coefficient D = 2× 10−10 m2s−1. The full
charging times estimations in the physical units for the pores H∗ = 1.5 and H∗ = 2 shown
in Figure 2b correspond to around 700 s and 400 s, respectively, which agrees with the
experimental characteristics.
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Figure 2. (a) The non-dimensional total charge (solid lines) profiles in the pores with different widths
H∗ = 1.5 and H∗ = 2.0. The dashed lines indicate the square-root trends at early times. (b) The
slit pore charging (solid lines) in the linear-log scale for H∗ = 1.5 and H∗ = 2.0. Long-dashed and
short-dashed lines show two exponential trends (long-dashed and short-dashed lines) at intermediate
and late times. (c) The separated total charge contributions from co-ions (red) counter-ions (blue) as
function of time. In all plots U∗ = 10 and τ = L2/D.

Calculations for a wide range of system parameters show that the full charging (say
95% for the sake of concreteness) in pores with H∗ ≥ 2 is described by the first exponential
trend in Equation (10). For this reason, we use Equation (10) to fit the charging time τ∗1
from the calculated profiles Q(t). Figure 3 demonstrates that the charging time for the
electrodes of width 2 ≤ H∗ ≤ 4 and various electrolyte bulk densities ρ0 and applied
potentials U∗ ≤ 4 can be explicitly expressed in terms of macroscopic parameters as

τ∗1 =
4

π2
Q∗∞

ρ∗∞U∗H∗
. (11)

Here, ρ∗∞ = ρ∗1,∞ + ρ∗2,∞ is the total final density; the coefficient 4/π2 is obtained from
the comparison with the TLM. The potentials considered here (up to 0.1 V in dimensional
terms) correspond to the lower range of the values used in the modern experiments [45–47],
but are significantly beyond the formal applicability range of the TLM [24]. To compare
result Equation (11) with TLM relaxation time we consider the limit of large pores (H∗ � 1)
at extremely low potentials (U∗ � 1). Unlike nano-confinement, in this limit, the total
density is almost constant ρ ' 2ρ0, and the charge can be calculated from the linearization
of the Gouy–Chapman theory Q∗ ' 4ρ∗0U∗λD/d, where λD is the Debye length. Inserting
these approximations in Equation (11), we obtain τ∗TLM = 4λD/(π2hp), where hp is the
ratio of pore cross-sectional area to perimeter. Expression τ∗TLM fits the TLM relaxation
time from ref. [24]. Significantly, such assumptions are not relevant to nanopores charging
due to the properties of the confined electrolyte. For example, the total charge Q becomes
an oscillating function of H, average densities strongly depend on the ion sizes, and
electrostatic correlations play a crucial role. Thus, our result Equation (11) generalizes the
TLM predictions for the case of the charging in nanopores at moderate potentials. Thus,
our approach is more general than standard TLM since it describes the charging at realistic
nanopores conditions.

In addition, we have not met the derived expression (11) in the literature. However,
we observed an interesting connection between expression (11) and the very recent result
for the charging time published in ref. [44]. The authors of ref. [44] used the effective
circuit to obtain RC-time of the charging inside nanoporous Metal Organic Frameworks
electrodes. The application of this adopted TLM approach from ref. [44] to slit pores gives
the following expression for relaxation time

τaTLM =
4

π2
CaL2

σl
, (12)

where using the notation adopted in ref. [44] the areal capacitance can be expressed as
Ca = Q∞/2U; the ionic conductivity inside the pore can be expressed in terms of the
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electrical mobility of ions m = eD/kBT and ions density ρ∞ as σ = eρ∞m. Inserting these
electrolyte characteristics into Equation (A51) one can obtain that τ∗aTLM = τ∗1 , see details in
Appendix E. Therefore, Equation (11) is equivalent to one from the nanopores RC-circuit
developed in ref. [44]. The advantage of our approach over the adopted TLM is self
contained form provided by c-DFT’s calculations without highly cost simulations.
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Figure 3. The calculated dimensionless charging time τ∗1 for the electrodes with H∗ > 2 at the external
potentials U∗ ≤ 4 and the bulk electrolyte densities ρ∗0 = {0.2, 0.3} versus the scaling law (11). The
arrow shows direction of the pores size increase.

The three consecutive dynamic regimes predicted in our work describe the results of
molecular dynamics simulations published in refs. [25–27]. Similarly with ref. [25,26] we
observed a stark contrast between the charging dynamics inside ultra-narrow H∗ = 1.5
and wider H∗ = 2 pores shown in Figure 2, for comparison, see Figures 2 and 3 in ref. [26]
and ref. [25], respectively. In Figure 2b the first exponential regime (10) for H∗ = 1.5 covers
the charging up to only 75%. Therefore, the significant part of the full charging inside
ultra-narrow pores (H∗ = 1.5) is defined by the slower second exponential trend: the
charge to 95% is ∼2 times slower than in the case of wider pores H∗ = 2.

To investigate this effect numerically, we described the charge profiles near the satura-
tion Q(t) ∼ 0.95Q∞ in terms of another exponential trend Q/Q∞ = 1− A2e−t/τ2 , where
τ2 ≥ τ1 and A2 are the fitting parameters. The results for the corresponding relaxation time
τ∗2 are shown in the inset of Figure 4. As one can see from this inset, expression (11) fits
the charging time in larger pores (H∗ ≥ 2). However, we observed that in the case of the
ultra-narrow pores H∗ ≤ 1.7, charging slow down becomes notable. We observed that the
charging slowdown starts as the pore width becomes less than two molecular diameters
(H∗ < 2). In such confinement, the electrolyte behavior near the wall crucially influence
on the ions distribution inside whole pore. Accordingly, it is reasonable to correlate the
charging inside narrow pores not only with the average inner density ρ but the wall-contact
density as well. As one can see from Figure 4, the charging time in ultra-narrow pores
(H∗ ≤ 1.7) at high potential can be fitted to the following expression

τ∗2 =
ρ∞

ρ∞(d/2)
+ a1

H∗ − 1
U∗

(13)

where ρ∞(d/2) = ρ∞,1(d/2) + ρ∞,2(d/2) is the wall-contact density at the final state of
complete charging and a1 ' 0.6 is the fitting parameter. The inverse dependence of charging
time (13) on the potential U contributes as the pore’s width increases. This behavior is
consistent with the high potential limit (H∗ρ∗∞ ' Q∗∞) of expression (11), which fits the data
well around H∗ = 2.
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Figure 4. The dimensionless charging timescale τ∗2 for the electrodes with 1.3 ≤ H∗ ≤ 1.7 at the high
external potentials 10 ≤ U∗ ≤ 20 versus the scaling law (13). The inset shows the same timescale
versus the scaling law (11); the pores with H∗ ≤ 1.7 and H∗ ≥ 2.0 are marked with purple and
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To discuss the slowdown dynamics inside ultra-narrow pores we considered the
dynamics of the co-ions/counter-ions separately. We observed that the contributions to
total charge from the co-ions Q1(t) and counter-ions Q2(t) shown in Figure 2c exhibit
significantly different relaxation times. More precisely, the counter-ions adsorption proceed
more rapidly than slow outflux of the co-ions. Therefore, at the late times the counter-
ions contribution is almost equal to the final charge Q2 ' Q∞, while the co-ions’ slow-
release decrease the total charge Q∞ −Q1. The possible explanation of this phenomenon
is that the co-ions are trapped in the crowded counter-ion phase. Such behavior of the
ions in nanopores was observed in MD simulations of symmetric electrolyte [26,27]. To
demonstrate that expression (13) is in agreement with this explanation, we consider the
ultra-narrow pores H ∼ d. Then, the second term in Equation (13) is negligible and the
counter-ion density dominates ρ∞,2 � ρ∞,1. Therefore, the relaxation time (13) can be
written as τ2 = L2ρ∞,2/Dρ∞,2(d/2). At the late times, such dynamics is equivalent to a
diffusion process of co-ions with the effective diffusion coefficient D1 = ρ∞,2D/ρ∞,2(d/2),
while the counter ions component is already in equilibrium. This coefficient D1 < D
is defined by the density and structure of the counter-ion component distribution, that
confirms the idea that the the abrupt counter-ions adsorption induces slow diffusion of the
co-ions.

This paper proved the concept of H/L-expansion in application to the nanoporous
charging compared with the experiment and simulations results. This approach could be
helpful in applications beyond the charging time calculations. For example, we recently
became aware of paper [48], where the authors use the same asymptotic approach to
calculate the impedance response in slit pores. In the future, the developed model could be
perspective in the following research directions.

(I): We considered only the popular version of the Constant Potential Method
(CPM)—the charging starts when the surface potential suddenly steps from zero to some
value. However, the CPM mode does not cover charging at a constant electric current
widely used in Galvanostatic Charge–Discharge (GCD) measurements. Additionally, re-
cent MD simulations in ref. [27] show that the charging in nanopores can be accelerated
applying time-dependent potential U(t), which allows one to avoid ion clogging near the
orifice. First of all, to describe the GCD- and U(t)-modes for the realistic supercapacitor’s
setup, one needs to account for the dynamics of the neutral electrolyte stored in the finite
bulk volume between two oppositely charged porous electrodes. Therefore, the proposed
model should be improved by accounting for the bulk electrolyte, as recently done for the
TLM in ref. [17], and for PNP equations in ref. [49]. Then, the time-dependent potential
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can be accounted for in boundary condition (8), assuming that U(t) varies slowly then
the diffusion time scale in z-direction H2/D. Possible realization of GCD mode follows
from very recent ref. [50]—one can use the boundary condition at x = 0 which indicates
an applied current with the given period and amplitude (see Equation (7c) in [50]). (II):
Our model is applied to the porous electrodes with flat smooth inner surface. Recently
we developed model for the electrolytes structure near the electrodes with rough surfaces
ref. [51]. Therefore, the proposed approach could be extended to the porous materials
with rough surfaces accounting for the modified Poisson equation from ref. [51]. (III):
We considered purely electrostatic supercapacitors, also known as electric double-layer
capacitors. However, our approach can be extended to the pseudocapacitors’ charging
mechanism based on the Faradaic processes (redox reactions). For this case, the possible
modifications are discussed in ref. [21], where the authors extended the porous electrode
theory from [20], accounting for the Faradaic reaction rate. Notice that these fast reactions
differ from the charging mechanism of Li-ion batteries, where the chemical reactions induce
the changes in the electrode molecules making/breaking chemical bonds.

4. Conclusions

In conclusion, we developed a model of the charging dynamics in slit nanopores
accounting for the confined properties of the electrolyte. We made significant simplification
of the dynamic equations exploiting the slit-pore geometry but remaining the properties
of the confined electrolytes. The developed model demands much lower computational
resources than computer simulations and allows the investigation of a wide range of
electrolyte and electrode parameters. Unlike the previous c-DFT applications to the ion
dynamics, our results for the charging time coincide with experimental data well [19]. In
addition, we described three consequent regimes of the supercapacitor’s charging: the
initial root-square diffusion and two exponential regimes with notably different time scales.
These results agree with molecular dynamic simulations published in refs. [25–27]. We
identified a threshold pore width below which the second exponential regime defines
the full charging time. In this case, the charging inside ultra-narrow pores is notably
slower and depends on the contact wall electrolytes density. These numerical estimations
are crucial to avoid power density decrease using the ultra-narrow pores. Thus, the
developed model will help investigate the relations between the supercapacitors’ storage
and dynamics properties.
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Abbreviations
The following abbreviations are used in this manuscript:

c-DFT Classical density functional theory
TLM Transmission line model
MD Molecular dynamics

Appendix A. Derivation of Pore Cross-Section Averaged Equations

Here we the describe derivation of the pore cross-section averaged equations

∂tρi − βDi∂x(ρi∂xµi) = 0 (A1)

from the original three dimensional system

∂tρi − βDi∇(ρi∇µi) = 0, (A2)

µi = kBT log
(

ρiΛ3
)
+ eZiψ +

δ fexc

δρi
, (A3)

βe∆ψ = −4πlB
n

∑
i=1

Ziρi. (A4)

Please refer to the main document for context and notation.
We consider transport along the slit pore aligned with the x-axis and perpendicular

to z-axis. The aspect ratio of the pore is assumed to be large, and accordingly, we adopt
classical thin-film / lubrication approximation scaling. The pore width H, length L, and
applied voltage U are used as scales for z coordinate, x coordinate, and potentials µi,
respectively. Additionally, for the sake of concreteness we scale Di for different components
with the value of the first component diffusion coefficient D at bulk conditions. Timescale
of the problem is defined by L2/DβeU and characteristic density is βeU/4πlBH2.

After scaling, the dimensionless transport and Poisson equations are

δ∂tρi − δ∂x(Ki∂xµi)− ∂z(Ki∂zµi) = 0, (A5)

δ∂xxψ + ∂zzψ−
n

∑
i=1

Ziρi = 0. (A6)

Here, δ = H2/L2 � 1 and the additional definition Ki = Diρi is introduced.
The system is supplied with boundary conditions enforcing zero fluxes

− Ki∂zµi = 0, z = 0, 1. (A7)

and the value of electrostatic potential

ψ = 1, z = 0, 1. (A8)

at the channel walls.
We seek a formal asymptotic expansion of the densities ρi and the potential ψ in power

series of δ→ 0

ρi = ρ0
i + δρ1

i + . . . ,

ψ = ψ0 + δψ1 + . . . .

Substituting the latter expansion to (A5)–(A8) and collecting terms of the same order,
one can obtain the O(1) problem:

− ∂z

(
K0

i ∂zµ0
i

)
= 0, (A9)
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∂zzψ0 −
n

∑
i=1

Ziρ
0
i = 0, (A10)

− K0
i ∂zµ0

i = 0, z = 0, 1. (A11)

ψ0 = 1, z = 0, 1. (A12)

Here, K0
i = Diρ

0
i , µ0

i = µi
[
ρ0

1, ..., ρ0
n, ψ0]. Solution of the O(1) problem will be discussed

below. Here we only note that using (A9) and the boundary condition (A11), one can also
promptly get

∂zµ0
i = 0. (A13)

Details of O(1) problem are further considered in Appendix B.
O(δ) problem:

∂tρ
0
i − ∂x

(
K0

i ∂xµ0
i

)
− ∂z

(
K0

i ∂zµ1
i + K1

i ∂zµ0
i

)
= 0, (A14)

∂xxψ0 + ∂zzψ1 −
n

∑
i=1

Ziρ
1
i = 0, (A15)

− K0
i ∂zµ1

i − K1
i ∂zµ0

i = 0, z = 0, 1. (A16)

ψ1 = 0, z = 0, 1. (A17)

Here K1
i = Diρ

1
i and

µ1
i =

n

∑
j=1

δµi
δρj

[
ρ0

1, ..., ρ0
n, ψ0

]
ρ1

j +
δµi
δψ

[
ρ0

1, ..., ρ0
n, ψ0

]
ψ1.

The solution of the O(δ) problem is beyond the scope of the study. We limit ourselves
to consideration of dynamical problem in the leading order of approximation and use O(δ)
problem for rigorous derivation of the averaged equations only.

Integrating (A14) over the pore width and using boundary conditions (A16) and
corollary (A13) one can get

∂tρ
0
i − ∂x

(
K0

i ∂xµ0
i

)
= 0. (A18)

Here, f =
∫ 1

0 dz f . The condition (A13) is used here while integrating the second term
of (A14) by parts and to replace µ0

i by µ0
i . The Equation (6) is essentially (A18) written in

dimensional terms after dropping superscripts.

Appendix B. O(1) Problem

Casting the Equations (A10), (A12) and (A13) back to dimensional variables we get

βe∂zzψ0 = −4πlB
n

∑
i=1

Ziρ
0
i , (A19)

ψ0 = U, z = 0, H, (A20)

∂zµ0
i = 0. (A21)

The solution of (A19) with boundary conditions (A20) can be written in the inte-
gral form

βeψ0 = βeU +
4πlBz

H

∫ H

0
dz′(H − z′)

n

∑
i=1

Ziρ
0
i − 4πlB

∫ z

0
dz′(z− z′)

n

∑
i=1

Ziρ
0
i . (A22)
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It follows from (A21) that µ0
i does not depend on the z coordinate µ0

i = µ0
i (t, x).

Substituting the latter to (2) and rearranging terms, one can get the following equation for
the density distribution across the pore

ρ0
i =

1
Λ3 exp

(
βµ0

i

)
E0

i . (A23)

Here,

E0
i = exp

(
−βeZiψ

0 − β
δ fexc

δρi
[ρ0

1, ..., ρ0
n]

)
and further details on fexc can be found in Appendix D.

Formal integration of (A23) over z ∈ [0, H] and the fact that µ0
i = µ0

i (t, x) allow to
eliminate the chemical potential µ0

i and rewrite the equation in terms of average density
ρ0

i as

ρ0
i = ρ0

i
E0

i

E0
i

. (A24)

We look for effectively 1D equilibrium densities’ distributions depending on t and x
only parametrically via the average densities ρ0

i = ρ0
i (ρ

0
i (t, x), z). Once the distributions

are found from (A24) and (A22), one can evaluate (2) at any coordinate z, and thus, get the
potentials as functions of average densities µ0

i = µ0
i (ρ

0
i , ..., ρ0

n).

Appendix C. Notes on Numerical Solution

Numerical solution of the transport Equation (6) involves two different tasks: solution
of the dynamic equations given the potentials as function of densities and evaluation of
potentials themselves.

For a given potential, spatial discretization of the system (6) is performed on a uniform
staggered grid using finite volume method. The resulting system of nonlinear ODEs is
solved by the built-in method of Wolfram Mathematica [52].

The potentials as functions of densities are defined by the solution of the O(1) prob-
lem described in Appendix B. The system of Equation (A24) for i = 1, . . . , n comprises
the fixed-point problem with the right-hand side defined by the dependency of excess
energy variation on densities described in Appendix D and the solution (A22) of the Pois-
son Equations (A19) and (A20). Given ρ0

i , it is solved by the classical Picard iterations
with underrelaxation involving intermediate step of (A19) and (A20) solution for current
densities guess.

For the sake of computational efficiency, the potentials µ0
i are not evaluated “on the

fly" during the solution of the dynamic Equation (6). Instead, the potentials are first
calculated on a sufficiently fine grid in average densities space. Next, smooth interpolation
is built based on the calculated values. Then, the interpolants are used while solving the
dynamic problem.

Appendix D. Density Functional Theory

Here, we describe in detail the thermodynamic model of an electrolyte inside a
nanopore, which is based on classical density functional theory (c-DFT). The version
of this approach developed for neutral molecules is able to take into account the influence
of nanoscale geometrical constraints [41]. The confined fluid model can be extended to
electrolyte fluids accounting for electrostatic correlations and external Coulomb field [42].
We consider an open slit pore stored by neutral electrolyte mixture ∑n

k=1 Zkρk,b = 0 with
known composition and chemical potentials {µ}n

k=1. Such confined system is described in
terms of the Grand Canonical potential Ω and external field:

Ω[{ρi(r)}] = F[{ρi(r)}] +
n

∑
i=1

∫
drρi(r)(Uext,i(r)− µi), (A25)
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where Uext is the external field acting on a fluid molecule, µ is the chemical potential. In
the case of charged molecules, the external fields contains not only wall potential, but also
Coulomb field contribution:

Uext,i = Uw,i + UC,i. (A26)

In our study, we use the hard sphere potential to described non-electrostatic fluid-solid
interactions:

Uw,i(r) =

{
∞ if r < di/2

0 if r > di/2
. (A27)

The slit pore geometry allows us to reduce the spatial density distribution ρi(r) to the
1D function ρi(z) of the normal distance to the solid surface. The Helmholtz energy of ionic
liquids can be written as follows:

F = Fid + Fhs + FC + Fel, (A28)

where Fid is the ideal gas contribution; Fhs is the hard sphere term accounting for ionic ex-
cluded volume effects; FC is the Coulomb interaction; Fel is the residual electric contribution.
Here, only the ideal part is known exactly:

Fid = AkBT
n

∑
i=1

∫
dzρi(z) log

([
Λ3ρ(z)

]
− 1
)

. (A29)

The remaining terms define the excess part of the total Helmholtz free energy:

Fexc = Fhs + FC + Fel (A30)

In accordance with the DFT approach, the equilibrium density distributions are defined
by the following system:

δΩ
δρi

= 0, i = 1, ..., n (A31)

After substitution of expressions for the Helmholtz free energy (A28) and the external
potential (A26), the conditions (A31) take a more explicit form:

ρi = ρ0
i exp[−βUC,i − βUw,i − λi], (A32)

where ρ0
i is the bulk component density, λi is the density derivative of the deviation of the

excess terms from the bulk ones:

λi = β
δ(Fexc − F0

exc)

δρi
(A33)

where F0
exc is the bulk excess free energy corresponding to the homogeneous mixture

{ρ0
k}

n
k=1.
The functional derivative of the Coulomb contribution has the following form:

β
δFC

δρi
= ZilB

n

∑
j=1

Zj

∫
ds

ρj(s)
|s− r| , (A34)

where lB = βe2/4πεε0 is the Bjerrum length. The right hand of expression (A34) can be
rewritten in terms of external Coulomb field UC and the mean electrostatic potential ψ:

Zieψ−UC,i = ZilB
n

∑
j=1

Zj

∫
ds

ρj(s)
|s− r| (A35)
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Using expressions (A34) and (A35) Equation (A32) can be rewritten as follows:

ρi = ρ
(0)
i exp

[
−βUw,i − βZieψ− βδ

Aδρ
(∆Fhs + ∆Fel)

]
(A36)

where symbol ∆ means the difference between confined and bulk energies.
The hard sphere contribution can be calculated using Fundamental Measure The-

ory [41] as:

βFhs[ρ1(z), ..., ρn(z)] = A
∫ H

0
dz′Φ(n0, n1, n2, n3, nv1, nv2) (A37)

where the function Φ depends on the weighted densities nα defined as:

n0 =
n

∑
k=1

1
di

∫ z+R

z−R
ρk(z′)dz′

n1 =
1
2

n

∑
k=1

∫ z+R

z−R
ρk(z′)dz′

n2 =
n

∑
k=1

πdi

∫ z+R

z−R
ρk(z′)dz′ (A38)

n3 =
1
2

n

∑
k=1

∫ z+R

z−R

[
d2

k − (z− z′)2
]
ρk(z′)dz′

nv1 = −
n

∑
k=1

1
dk

z
z

∫ z+R

z−R
dz′(z′ − z)ρ(z′)

nv2 = −2π
n

∑
k=1

z
z

∫ z+R

z−R
dz′(z′ − z)ρ(z′)

We use one of the most popular version [9] of the Φ defined as:

Φ = −n0 log(1− n3) + (n1n2 − nv1nv2)/(1− n3) + 1/(36π)(n3 log(1− n3) + n2
3/(1− n3)

2)(n3
2 − 3n2n2

v2)/n3
3 (A39)

Therefore, the functional derivative of the hard sphere contribution can be calculated
by the following way:

βδFhs
δiρ(z)

= A
∫ H

0
dz′∑

α

∂Φ(nα)

∂nα

δnα

δρi
(A40)

To calculate electrostatic term in Equation (A36), we use the approach described in
ref. [42]:

δ∆Fel
δρi

= −
n

∑
k=1

∫
dsc̄ki(r, s)∆ρk(s) (A41)

where the weighted correlation function defined as

c̄ki(r, s) =

∫
cki(r′, s) fki(r′)∫

dr′ fki(r′)
(A42)

In our work, we use the FMT/WCA-k2 approach, which corresponds to the following
expression of f -function:

fki(r
′) = κ2(r′)Θ(|r− r′| − dki) (A43)

where dki = (dk + di)/2 is the average diameter, and κ is the inverse Debye parameter
given by

κ2(r′) = 4πlB
n

∑
k

ρkZk (A44)
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In accordance with work [42], here we use the approximated analytical expression for
the weighted correlation function in terms of MSA solution:

c̄ki(r
′, s) ' cMSA

ki (|r′ − s|) = βUki(r)
[

1− Bki(r
′)

r
dki

]2
Θ(dki − r) (A45)

where r = |r′ − s| is the scalar distance, Bki depends analytically on Debye parameter κ
(A44) as

Bki =
1 + κdki −

√
1 + 2κdki

κdki
(A46)

Therefore, the weighted correlation function (A42) in slit geometry ρ(z) can be writ-
ten as:

c̄ki(r) = βUki(r)
[

1− 2B1,ki(z)
r

dki
+ B2,ki

(
r

dki

)]
Θ(dij − r) (A47)

where

Bm,ki(z) =

∫ z+dki
z−dki

dz′Bm(z′)κ2(z′)(d2 − (z− z′)2)∫ z+dki
z−dki

dz′κ2(z′)(d2 − (z− z′)2)
(A48)

In our work, we use the same system parameters as in ref. [9] corresponding to the
dimensionless temperature T∗ = d/lB = 0.15. The characteristic dependence of the density
distribution profiles on applied potential is shown in Figure A1. As shown in [9], such
behavior of co- and counter-ions results in the oscillating capacity properties.
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Figure A1. The dimensionless density distributions of positive η1(z) = vρ1(z) and negative
η2(z) = vρ2(z) electrolyte’s components inside pore H∗ = 6 at various applied potentials
U∗ = 0.5 (a), U∗ = 5 (b) and U∗ = 20 (c). These calculations correspond to the bulk density
ρ∗0,1 = ρ∗0,2 = 0.15 at the temperature T∗ = 0.15.

Appendix E. Connection with Transition Line Model (TLM)

Here we supplement the analysis of the first exponential regime’s time scale

τ∗1 =
4

π2
Q∗∞

ρ∗∞U∗H∗
(A49)

by another connection with the result of TLM. In ref. [44] the TLM solution was used to
describe the charging inside nanoporous metal organic frameworks (MOFs) electrodes. The
following equation for the net pore charge after jump-wise application of constant potential
was obtained:

Q(t)
Q∞

= 1− 2
π2

∞

∑
n=0

exp
[
−π2(n + 1/2)2(l/L)2t/τ

]
(n + 1/2)2 . (A50)

Here τ = Cal/σ is the intrinsic relaxation time, Ca is the areal capacity of the pore, l
is the pore volume divided by its surface area, σ is the ionic conductivity inside the pore.
Please note that the exponent in (A50) differs from the given in the original paper by the
factor of 4, because the symmetric pore connected to bulk electrolyte at both ends and
effectively composed of two closed-end pores considered here was studied in [44].
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The series in the right hand of expression (A50) can be approximated by the leading
term n = 0, that result in the following time-scale of the TLM model:

τaTLM =
4

π2
CaL2

σl
. (A51)

For the slit pore geometry l ≈ H/2. Using the notation adopted in this paper the
areal capacitance can be expressed as Ca = Q∞/2U. Finally, the ionic conductivity inside
the pore can be expressed in terms of the electrical mobility of ions m = eD/kBT and ions
density ρ∞ as σ = eρ∞m. Substitution of these expressions to (A51) gives

τaTLM =
4

π2
Q∞kBT

e2ρ∞UH
L2

D
. (A52)

Introducing dimensionless variables H∗ = H/d, U∗ = eU/kBT, Q∗ = Qd2/e,
ρ∗ = ρd3 and t∗ = tD/L2 used in the main document into the latter expression one
can readily obtain that τ∗aTLM = τ∗1 , i.e. TLM time scale is equivalent to the time given
by (A49).
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