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Abstract: Fe3O4 nanoclusters have attractive applications in various areas, due to their outstanding
superparamagnetism. In this work, we realized a one-step flow synthesis of Fe3O4 nanoclusters,
within minutes, through the sequential and quantitative introduction of reactants and modifier in a
microflow system. The enhanced micromixing performance enabled a prompt and uniform supply
of the modifier oleic acid (OA) for both nanoparticle modification and nanocluster stabilization to
avoid uncontrolled modified nanoparticles aggregation. The size of the nanoclusters could be flexibly
tailored in the range of 50–100 nm by adjusting the amount of OA, the pH, and the temperature. This
rapid method proved the possibility of large-scale and stable production of magnetic nanoclusters
and provided convenience for their applications in broad fields.

Keywords: magnetic nanoclusters; micromixing; one-step synthesis; flow synthesis; oleic acid modification

1. Introduction

Magnetic nanoparticles have attracted extensive attention owing to their outstanding
properties [1–4]. Among other metal nanoparticles, Fe3O4 magnetic nanoparticle has been
a specially popular category that is widely applied in various fields. These fields include
targeted drug delivery [5,6], magnetic hyperthermia [7,8], photothermal therapy [9], contrast
agent in magnetic resonance imaging (MRI) [10,11], biosensor [12], magnetic field-assisted
separation [13,14], catalyst [15–17], and so on. Most of the applications utilized the magnetism
of Fe3O4 nanoparticles, putting forward a high demand for their magnetic response.

In order to utilize the advantage of superparamagnetism instead of ferromagnetism of
the bulk magnet, Fe3O4 with a size smaller than 15 nm is usually required in practice [18].
However, the magnetism of individual nanoparticles is usually too weak to make an effec-
tive magnetic response. Moreover, individual nanoparticles tend to aggregate owing to the
strong surface–surface interaction and the large surface-to-volume ratio, which has a nega-
tive impact on long-term applications [19–21]. To resolve these problems, the controllable
assembly of nanoparticles into nanoclusters, which are larger clusters containing a finite
number of nanoparticles, might provide an appropriate solution [22].

Various methods have been proposed to prepare Fe3O4 nanoclusters with controllable
size and shape. They could be generally summarized into two categories, namely in situ
synthetic method and post-assembly of ligand-grafted nanoparticles. The representatives
of the former category include solvothermal synthesis and thermal decomposition. For
example, Xu [23] employed various biopolymers as structure-directing ligands to synthesize
nanocrystal clusters through solvothermal synthesis and revealed the function of the self-
sacrificing template of the biopolymeric ligand. Moreover, the prepared nanoclusters
were applied as drug delivery vehicles to encapsulate drugs for chemotherapy for cancers.
Aleksey [24] synthesized magnetite nanoclusters that could be used as contrast agents
for MRI by the thermal decomposition method in one step and investigated the effect
of organic acid as surfactant on the size and shape of the products. Besides the above
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substrates, sodium citrate [25] and sodium acetate [26] were frequently utilized as stabilizers
in subsequent works. Although magnetite nanoclusters could be synthesized within one
step with tunable size and morphology, the process is still challenged by some problems,
such as expensive reagents, low production efficiency, poor atomic economy, and so on.

As for the post-assembly, in general, Fe3O4 nanoclusters were synthesized with pre-
formed Fe3O4 nanoparticles, and an external trigger was employed to the system to modify
the interparticle forces and initiate assembly [27]. Some processes applied encapsula-
tion or grafting to realize assembly. Kim [28] encapsulated iron oxide nanoparticles with
amphiphilic block-copolymer and obtained magnetomicelles through the crosslinking of
polyacrylic acid (PAA) shells. Larken [29] obtained uniform clusters containing approxi-
mately 20 particles each, where block copolypeptide poly(EG2-lys)100-b-poly(asp)30 was
bounded to the surface of the nanoparticles through electrostatic interactions to form a
micelle shell that is capable of controlling the size of the clusters through altering the
composition of the block copolypeptide. Zhuang [30] obtained polar-solvent-dispersible
Fe3O4 nanoclusters by using solvophobic interactions. Fu [31] applied a ligand-stripping
method to remove the original capping ligand with diols and induced the creation of
secondary nanoclusters with different sizes. Some works have also introduced operation
modules to synthesize Fe3O4 nanoclusters. For example, Chang [32] used the membrane
emulsification and solvent pervaporation method to synthesize magnetic nanoclusters
with sizes between 100 and 300 nm continuously and coated the clusters with silica for
further functionalization. In summary, colloidal interactions were used in post-assembly,
including Van der Waals force, electrostatic, ligand interactions, and so on, which could be
manipulated under a mild environment, but involved with complex steps and additional
solvents or functional ligands, nevertheless.

Of all the methods, controlling the surface properties of primary particles and the
interaction between particles is a common key point. The agglomeration caused by the
interaction between nanoparticles is a rapid and sensitive process that requires efficient
control methods. In our previous work, water-dispersible Fe3O4 nanoclusters were obtained
via a micromixer, which could realize rapid solvent exchange and accurate size control [33].
This method benefited from the outstanding mixing performance of the micromixer, which
could achieve the even and sufficient allocation of surfactant in a short time. This inspired us
to start from the nano-precipitation process and realize end-to-end continuous preparation
of Fe3O4 nanoclusters by precisely tailoring the grafting behavior of oleic acid (OA) onto
the surface of the nanoparticles during the modification and aqueous self-assembly process
online [34–43]. This method opened up a brand-new opportunity to realize the preparation
of bilayer OA-coated Fe3O4 nanoclusters with stable dispersion and adjustable size in an
aqueous phase and facilitate their subsequent application to a great extent.

2. Experimental
2.1. Materials

Both anhydrous iron(III) chloride (FeCl3, 98%) and iron(II) chloride tetrahydrate
(FeCl2·4H2O, 99%+) were obtained from Acros (Geel, Belgium). Ammonium hydroxide
(NH3·H2O, 28 wt%) was obtained from Peking Reagent (Beijing, China). The surface ligand
oleic acid (C18H34O2, 90%+) was purchased from Alfa Aesar (Lancashire, UK). All the above
chemicals were used without further purification. Water used throughout the experiment
was prepared by an ultrapure water system (Center 120FV-S, The lab, Shanghai, China).

2.2. Characterization

The crystal phase of the cluster was analyzed by using an X-ray powder diffractometer
(XRD, D8-Advance, Bruker, Berlin, Germany). The morphology of the cluster was observed
with a transmission electron microscopy (TEM, JEM2010, JEOL, Tokyo, Japan). Before
TEM measurement, the dispersion sample was diluted with water to a solid content
of 0.2 mg/mL, cast onto the carbon films, and dried at room temperature. The size
distribution of the clusters was measured by using dynamic light scattering (DLS, Malvern
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Panalytical, Malvern, UK). Herein, the polydispersity index (PDI) was applied to represent
the monodispersity of the cluster, which was calculated by using Equation (1)

PDI =
σ2

ZD
2 (1)

where ZD is the intensity weighted mean hydrodynamic size of the collection of particles
measured by DLS, and σ is the standard deviation. To determine the amount of organic
grafting on the surface, thermogravimetric analysis was carried out with a STA 409 PC
apparatus (TGA, NETZSCH, Selb, Germany) at a heating rate of 10 ◦C·min−1, from room
temperature to 600 ◦C, under a nitrogen atmosphere. The magnetic properties of the
cluster were measured by a superconducting quantum interference device (VSM, SQUID,
Quantum Design, San Diego, CA, USA). Fourier-transform infrared spectroscopy (FTIR,
Nexus 670, Nicolet, Madison, WI, USA) was used to characterize the surface of the cluster.
The samples were ground with KBr and pressed to the tablet before measurement. The
contact-angle-measuring instrument (CA, OCAH200, Dataphysics, Filderstadt, Germany)
was used to characterize the hydrophilicity of the cluster. The surface composition of the
cluster was investigated by X-ray photoelectron spectroscopy (XPS, PHI5300, Ulvac-Phi,
Chigasaki, Japan), and the XPS split-peak fitting process was carried out by using the
method used in the literature [44].

2.3. Continuous Synthesis of Bilayer OA-Coated Fe3O4 Nanoclusters

A continuous co-precipitation, in situ modification, and self-assembly method in an
aqueous solution were exploited for the preparation of finite-sized Fe3O4 nanoclusters.
The schematic of the experimental setup is shown in Figure 1. The core of the setup is
the membrane dispersion microreactor reported in our previous work [45], where the
geometric size of the microchannel is 20 mm × 20 mm × 4 mm (length × width × height).
We used a 316 L stainless-steel membrane with an average pore diameter of 5 µm as
the dispersion medium. In a typical synthesis, a mixing aqueous solution containing
Fe (II) (0.2 M) and Fe (III) (0.4 M) was used as the continuous fluid, and 7.3 M ammonia
hydroxide was used as the dispersed fluid. Both of them were delivered at the flow rate of
10 mL/min to mix in the first membrane dispersion microreactor to generate precipitates
immediately. The aqueous solution containing bare Fe3O4 nanoparticles flowed through
a delayed tube with an 18.84 s residence time (residence time 1) and entered the second
membrane dispersion microreactor as a continuous fluid, where the dispersed fluid of
ammonia solution containing 0.1 M OA was introduced at a flow rate of 10 mL/min, to
mix and trigger the modification and self-assembly process. After the slurry was aged for
12.56 s (residence time 2), a black-brown stable water-based magnetic fluid was obtained.
The whole process was conducted at 60 ◦C, within a water bath.Nanomaterials 2022, 12, 350 4 of 14 
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3. Results and Discussion
3.1. Feasibility of Continuous Preparation of Bilayer OA-coated Fe3O4 Nanoclusters

Under the typical synthetic conditions described above, the products were charac-
terized by using XRD, XPS, TEM, FTIR, TGA, and VSM to determine their composition,
structure, morphology, and surface properties. Figure 2 shows the XRD patterns of the
samples. The diffraction peaks at (220), (311), (400), (422), (511), (440), (620), and (533) are
the characteristic peaks of the Fe3O4 crystal with a cubic spinel structure (JCPDS85-1436). It
is known that Fe3O4 can be oxidized to γ-Fe2O3, and γ-Fe2O3 can be further transformed
into α-Fe2O3 at a higher temperature. The diffraction peaks of γ-Fe2O3 and α-Fe2O3 are
at (110), (113), (210), and (213) [46]. In this work, the Fe 2p XPS spectrum (Supplementary
Figure S1a) could be successfully fit to three main peaks and two satellite peaks, and no
peak could be attributed to impurities, such as γ- or α- Fe2O3. The lowest binding energy
peak at 710.6 eV is attributed to Fe2+, with a corresponding satellite peak at 717.5 eV. A
binding energy of the Fe3+ octahedral species was found at 711.6 eV, while that of tetrahe-
dral species was 714 eV. These values are comparable to those in References [47,48], and,
Fe2+/Fe3+ = 0.54, slightly greater than the 0.5 expected from the stoichiometry of Fe3O4.
The above results showed that, although OA was introduced in a short time, it did not
affect the formation of Fe3O4 nanoparticles with a complete crystal structure and even
prevented further oxidation. Additionally, according to Scherrer’s formula, the mean size
of crystal grains was 8.84 nm, which met the requirement of diameters lower than 15 nm
for superparamagnetism.
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Figure 2. XRD pattern of bilayer OA-coated Fe3O4 nanoclusters and bare Fe3O4 nanoparticles under
the same conditions.

From the TEM images (Figure 3a,b), it could be seen that the samples on the carbon
film were quasi-spherical aggregates composed of dozens of Fe3O4 nanoparticles, and the
lattice fringes had spacings of 0.25 and 0.50 nm (Figure 3c) corresponding to the (311) and
(111) crystal planes of Fe3O4, respectively. The size measurement using DLS showed that
the average hydraulic diameter of the clusters was 47.9 nm (PDI = 0.165) (Figure 3d), which
was approximately equal to the size of the double OA layers (about 3.3 nm [49]) and the
magnetite core (about 42 nm in the results of TEM). This initially implied the success of the
in situ modification of OA.
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Figure 4a showed the FTIR spectrum of the samples. The bare Fe3O4 nanoparticles had
a strong absorption peak near 590 cm−1, which corresponded to the stretching vibration
of the Fe–O bond. The bands at 2923 and 2853 cm−1 were attributed to the symmetric
and asymmetric stretch of –CH2, which proved the existence of OA. In addition, the
characteristic peaks belonging to the bare Fe3O4 surface at 3443 and 1630 cm−1 disappeared,
and the new bands at 1531 and 1441 cm−1 appeared, corresponding to the symmetric and
asymmetric stretch vibration of –COO− of OA. According to Zhang [50], the type of
interaction between the carboxylate and metal atom can be distinguished by calculating
the wavenumber separation between these two peaks. As illustrated in Figure 4c, the
wavenumber separation was 90 cm−1, less than 110 cm−1, indicating the existence of
a bidentate bond. Additionally, the stretching vibration peak of C=O corresponding to
free carboxylate appeared at 1710 cm−1, which indicated that a double-molecular layer
on the surface of the sample was formed by the interaction of the hydrophobic tails
owing to the excessive amounts of OA. The contact angle (Supplementary Figure S2)
proved that the prepared clusters had strong hydrophilicity in an alkaline environment,
because the negatively charged –COO− group of the outer physically adsorbed layer
provided hydrophilic and electrostatic repulsion forces for the clusters. In the XPS spectrum
(Supplementary Figure S1b), the three peaks with binding energies of 530.1, 531.2, and
532.6 eV can be fitted by the O 1 s. The strongest peak at 530.1 eV resulted from lattice
oxygen in Fe3O4. The peaks at 532.6 and 531.2 eV correspond to the oxygen of the carboxyl
in the physically adsorbed layer and the oxygen in the bidentate bond, respectively [51–53].
The obvious two steps of weight loss in the results of TGA (Figure 4b) indicated that
the bilayer coating of OA on the surface of Fe3O4 clusters can be achieved by rapid-flow
synthesis. Among them, a slight weight loss of approximately 0.1 wt% was found between
20 and 100 ◦C, which could be attributed to the evaporation of a part of the bound water.
The weight loss between 100 and 325 ◦C (18.5 wt%) was caused by the degradation of OA
physically adsorbed in the outer layer. The weight loss between 325 and 500 ◦C (17.7 wt%)
could be attributed to the degradation of OA chemically adsorbed in the inner layer.
Between 500 and 600 ◦C, the thermogravimetric curve was level, indicating that the surface-
coated OA was degraded completely. (In contrast, XPS spectra and thermogravimetric
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analysis of bare Fe3O4 nanoparticles under the same conditions are supplemented in
Supplementary Figures S1b,d and S3, respectively).
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From Figure 5, it can be seen that the coercivity and remanence of the samples were
zero, exhibiting superparamagnetism with a saturation magnetization of approximately
60.5 emu/g, which was slightly lower than that of bare Fe3O4 nanoparticles (62.9 emu/g)
under the corresponding conditions. This showed that the modification of OA would
not change the superparamagnetic behavior of magnetic particles, but would reduce their
saturation magnetization, due to the decrease of the effective atoms contributing to the
magnetism of the samples. Considering the content of OA, the saturation magnetization of
the magnetite core could reach 94.8 emu/g, which was even higher than the 92 emu/g of the
bulk maghemite, indicating that the prepared clusters had high magnetic responsiveness.
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In a word, Fe3O4 nanoclusters with a bilayer OA coating, narrow size distribution,
and satisfactory saturation magnetization could be obtained within 30 s by performing
continuous flow synthesis, in situ modification, and self-assembly.

3.2. Influence Factors on the Formation of Bilayer OA-Coated Fe3O4 Nanoclusters

To obtain an insight into the process of in situ modification and self-assembly of
Fe3O4 nanoparticles into clusters, a series of experiments were carried out under various
conditions. The experimental conditions and results are summarized in Table 1.

Table 1. Summary of the operating conditions and sample characterization results for the continuous
synthesis of bilayer OA-coated Fe3O4 nanoclusters.

Entry NH3·H2O
(M)

Oleic Acid
(M)

Residence
Time 1

(s)

Residence
Time 2

(s)
pH Temperature

(◦C)
Cluster Size

(nm) PDI

1 7.3 0.1 0 12.56 10.3 60 110.9 0.443
2 7.3 0.1 6.28 12.56 10.3 60 71.1 0.201
3 7.3 0.1 12.56 12.56 10.3 60 70.2 0.197
4 7.3 0.1 18.84 12.56 10.3 60 47.9 0.165

5 7.3 0.1 18.84 6.28 10.3 60 88.6 0.189
6 7.3 0.1 18.84 0 10.3 60 97.55 0.203

7 7.3 0.07 18.84 12.56 10.3 60 57.5 0.172
8 7.3 0.060 18.84 12.56 10.3 60 97.6 0.183
9 7.3 0.055 18.84 12.56 10.3 60 116.2 0.216

10 7.3 0.035 18.84 12.56 10.3 60 - -

11 5.5 0.1 18.84 12.56 10.1 60 62.2 0.174
12 3.7 0.1 18.84 12.56 9.9 60 75.2 0.175
13 2.0 0.1 18.84 12.56 9.7 60 122.6 0.215

14 7.3 0.1 18.84 12.56 10.3 70 49.7 0.165
15 7.3 0.1 18.84 12.56 10.3 50 62.9 0.184
16 7.3 0.1 18.84 12.56 10.3 35 103.2 0.210
17 7.3 0.1 18.84 12.56 10.3 RT - -

3.2.1. Effect of the Residence Time

By changing the residence time 1 of the particles in the microchannel after co-precipitation,
the evolution of the initial particle growing process could be explored. As shown in Figure 6a,
the mean size of the clusters from unaged primary particles was 110.9 nm (PDI = 0.443),
showing a three-peaks distribution with the existence of large aggregates. By increasing the
residence time 1 to 6.28 s, the mean size of the clusters decreased to 71.1 nm, showing a narrow
unimodal size distribution (PDI = 0.201), but there was still a small tailing. When the residence
time 1 was prolonged to 18.84 s, the size of the clusters significantly decreased to 47.9 nm
as the PDI value decreased to 0.165. As for the XRD patterns (Supplementary Figure S4),
with the increase of residence time 1 from 0 to 18.84 s, an obvious increase (45%) of the peak
intensity could be found, proving the improvement of the crystallinity. The results showed
that the primary particles formed by co-precipitation need to age for a certain time to reach
a stable state. Otherwise, the unstable particles with more surface defects and covered with
more –OH groups may result in a significant increase of the grafting of OA in the inner layer
and accelerate the agglomeration rate, as well as be prone to forming unstable aggregates.
In addition, prolonging the time of modification and self-assembly could produce clusters
with smaller and more uniform sizes (Figure 6b). A possible explanation is that more OA was
adsorbed on the outer surface of the cluster to form a denser double-layer coating in favor of
cluster stabilization.
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3.2.2. Effect of the Amount of OA

As shown in Figure 7, when the concentration of OA was decreased from 0.1 to 0.060 M,
the mean size of the clusters increased to 97.6 nm, and the PDI also increased to 0.183. When
the concentration of OA was 0.060 M, a bimodal distribution was observed, including large
clusters with a size of approximately 200 nm and small clusters with a size of approximately
50 nm. When the concentration of OA was further decreased to 0.035 M, the magnetic fluid
was completely unstable, and the bulk aggregates precipitated out of the aqueous phase
quickly. The results showed that there was a threshold value for the amount of OA. A small
amount of OA might be insufficient to stabilize all clusters against aggregation, and an
excessive amount of OA would cause unnecessary waste of raw materials and increase the
cost of the post-treatment process. Based on the monolayer adsorption model proposed
by Shen [54], when a single spherical Fe3O4 nanoparticle (supposing that all nanoparticles
were 8.8 nm spheres) was completely coated with monolayer OA, the theoretical amount of
OA in the OA-modified Fe3O4 nanoparticles was 22 wt%, while 44 wt% OA was required
to form a dense double-layer OA coating. When the amount of OA was more than 22 wt%,
monolayer adsorption on the surface of the particles was preferentially formed via chemical
bonding, inducing the instability of the particles to form clusters. To reduce the surface
energy in the aqueous phase, excessive OA was physically absorbed on the primary layer
with the hydrophobic tails, and the outward hydrophilic group prevented the further
aggregation of the clusters until a stable double-layer coating structure was formed. Since
the binding rate could be accelerated by increasing the concentration of free OA in the
aqueous phase, the coating speed of the outer layer OA could be controlled by adjusting
the amount of OA to realize the effective control of the size of clusters.

3.2.3. Effect of the pH

The isoelectric point of Fe3O4 was at pH = 6.5 [55]. Correspondingly, the pH of
the aqueous environment might influence Fe3O4 nanoparticles in terms of electrostatic
repulsion and surface properties and then affects the adsorption process of OA. We adjusted
the concentration of ammonia hydroxide used in coprecipitation (the concentration of
ammonia hydroxide needed for complete reaction with the iron source was 1.6 M) to
investigate the effect of pH. It could be seen that the preparation process was very sensitive
to the pH (Figure 8). With the decrease of pH from 10.3 to 9.7, the mean size of the
cluster increased to 122.6 nm (PDI = 0.215) with a bimodal distribution. This could be
attributed to the partial protonation of the hydrophilic –COO− group of outer OA layer to
the hydrophobic –COOH group, inducing further agglomeration of the clusters. Notably, it
was found in experiments that, by bubbling with pure nitrogen or adding HCl solution
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until pH ≤ 7, the clusters could precipitate from the aqueous phase, during which the
hydrophilic –COO− group of the outer OA layer was completely transformed to the
hydrophobic –COOH group without destruction of the bilayer-coated structure and the
Fe3O4 core. The separated clusters could also be redispersed in n-hexane to realize the
transfer of magnetic clusters from aqueous phase medium to oil phase medium, which
might have potential applications in various fields.
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3.2.4. Effect of the Temperature

At room temperature, the as-prepared magnetic emulsion was not stable in the aque-
ous phase (Figure 9). The clusters agglomerated heavily and rapidly precipitated out
from the solution during storage. When the temperature of the system increased to 35 ◦C,
relatively stable clusters with a mean size of 103.2 nm were obtained, but the uniformity
was poor. Even a bimodal distribution was found. When the temperature was increased to
60 ◦C, the diameter of the clusters decreased to 47.6 nm, which could remain stable for a
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long time. At this temperature, the physical adsorption process of the outer OA layer was
greatly accelerated, and this could effectively control the aggregation process.
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3.3. Proposed Mechanism of Bilayer OA-Coated Fe3O4 Nanocluster Formation

According to the above analysis and discussion, we attempted to propose a forma-
tion mechanism of bilayer OA-coated Fe3O4 nanoclusters with the combination of nano-
precipitation, in situ modification, and self-assembly process, as shown in Figure 10. In an
alkaline environment, the Fe3O4 nanoparticles prepared by co-precipitation could maintain
stability in the aqueous phase for a short time, due to the strong electrostatic repulsion, pro-
viding a uniform assembly environment. Additionally, the terminal hydrophobic –COOH
group of OA deprotonated to the hydrophilic –COO− group, which was much more easily
grafted to the hydroxyl group on the surface of the Fe3O4 nanoparticles. Thanks to the
excellent mass transfer performance enabled by the micromixer, OA could be quickly
adsorbed on the surface of the particles to form a monolayer coating, preventing the growth
of the initial particles. Meanwhile, the action of the terminal hydrophobic chain of OA
caused the instability and agglomeration of the modified particles to form clusters in the
aqueous phase. Due to OA’s high surface energy in the aqueous medium, hydrophobic tails
of –(CH2)7CH=CH(CH2)7CH3 of excessive OA rapidly oriented to the same hydrophobic
tails of the modified clusters, forming an interdigitated bilayer structure. In addition, the
negatively charged and hydrophilic –COO− group of the outer OA layer was extended
into the aqueous phase, restraining the uncontrollable growth of clusters and maintain-
ing stable dispersion in the aqueous phase, due to the electrostatic repulsion and steric
hindrance effect.
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The mechanism of the bilayer OA-coated Fe3O4 nanoclusters formation implies that
the in situ modification and self-assembly process are tandem processes that are greatly
dependent on the difference between the adsorption rate of the double OA layers. Among
them, the process of nanoparticle modification by the inner OA layer was a reaction-
limited regime, which could be regarded as an instant process. The process of nanocluster
stabilization by the outer OA layer was a diffusion-limited regime, and the adsorption
rate was controlled by the amount of OA, the pH, and the temperature. Accordingly, due
to the shortening of the distance between particles in the system with a high reactant
concentration, the agglomeration caused by monolayer modification of OA was intensified,
causing the particles agglomerate into large aggregates in a short time. Thanks to the
intensified mixing performance of the micromixer, the second layer of OA could reach
the surface of the clusters promptly to inhibit the uncontrollable growth of the cluster. In
contrast, the mixing performance of the stirred tank was not ideal enough to control this
process (Supplementary Figures S5 and S6), owing to its poor mixing performance and
uniformity of space–time. Furthermore, the product was prone to oxidation when exposed
to an oxygen atmosphere for a long time in the batch process; additionally, introducing
inert gas protection would bring extra energy consumption. Therefore, the highly efficient
mixing and oxygen-free environment provided by micromixing technology created the
conditions for the in situ modification and self-assembly of oxygen-sensitive nanoparticles,
and this is more economical and executable for industrialization.

4. Conclusions

In this work, a facile and productive preparation method of Fe3O4 nanoclusters was
provided by the combination of a membrane dispersion microreactor and in situ intro-
duction of excessive OA. With the above continuous flow synthesis mode, the prepared
Fe3O4 nanoclusters had the characteristics of narrow size distribution and relatively high
saturation magnetization (up to 60.5 emu/g with 36.2% OA content). Based on the char-
acterization of XRD, XPS, FTIR, TGA, and so on, the binding modes between the Fe3O4
nanoparticles and double OA layers were confirmed, indicating the effective interaction
during a short period thanks to the enhanced mixing and confinement effect provided by
the membrane dispersion microreactor. The effects of the residence time, amount of OA,
pH, and temperature were studied comprehensively, and the mechanism of the in situ mod-
ification and self-assembly process was proposed. The method enabled the control over the
adsorption rate of the double OA layers. As a result, flexible adjustment of the nanocluster
size in the range of 50–100 nm was available. Compared with the multistep and hour-level
preparation obtained in the batch process, the preparation of bilayer OA-coated Fe3O4
nanoclusters could be completed under a continuous and oxygen-free condition within 30 s.
In a word, the method presented in our work brought a continuous synthesis of uniform
Fe3O4 nanoclusters with the advantages of being effective, economic, controllable, operable,
easy to scale up, and potentially suitable for industry. In addition, the synthesis approach
could be readily generalized for efficient and continuous preparation of other nanoclusters.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/nano12030350/s1. Figure S1: XPS spectra of bilayer OA-coated
Fe3O4 nanoclusters for (a) Fe 2p and (b) O 1 s; and bare Fe3O4 nanoparticles under the same condi-
tions for (c) Fe 2p and (d) O 1 s. Figure S2: Contact angle of bilayer OA-coated Fe3O4 nanoclusters.
Figure S3: Thermogravimetric analysis of bare Fe3O4 nanoparticles under the same conditions.
Figure S4: XRD patterns for nanoclusters obtained with different residence time 1. Figure S5: (a) TEM
images and (b) size distribution of bilayer OA-coated Fe3O4 nanoclusters prepared in batch. Figure S6:
Thermogravimetric analysis of bilayer OA-coated Fe3O4 nanoclusters prepared in batch.
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