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Abstract: Manufacturing thick electrodes for Li-ion batteries is a challenging task to fulfill, but
leads to higher energy densities inside the cell. Water-based processing even adds an extra level
of complexity to the procedure. The focus of this work is to implement a multi-layered coating
in an industrially relevant process, to overcome issues in electrode integrity and to enable high
electrochemical performance. LiNi0.8Mn0.1Co0.1O2 (NMC811) was used as the active material to
fabricate single- and multi-layered cathodes with areal capacities of 8.6 mA h cm−2. A detailed
description of the manufacturing process is given to establish thick defect-free aqueous electrodes.
Good inter-layer cohesion and adhesion to the current collector foil are achieved by multi-layering,
as confirmed by optical analysis and peel testing. Furthermore, full cells were assembled and rate
capability tests were performed. These tests show that by multi-layering, an increase in specific
discharge capacity (e.g., 20.7% increase for C/10) can be established for all tested C-rates.

Keywords: multi-layer coating; aqueous electrode processing; NMC811; thick electrode

1. Introduction

The demand for Lithium-ion batteries (LIBs) used in xEVs has grown steadily over the
past years alongside the interest to increase driving range and lower prices. A decrease in
manufacturing cost combined with more environmentally friendly cell production methods
are key aspects in battery research, helping e-mobility to establish itself as a day-to-day
form of transportation.

One way of tackling the issue of high production costs is to exchange the organic
solvent, used in state-of-the-art electrode slurry formulations, with water [1–3]. Commer-
cially available cathodes are produced with polyvinylidene fluoride (PVDF) as the binder
material. Unfortunately, due to its low solubility, PVDF is commonly dissolved in the high-
priced N-methylpyrrolidone (NMP) organic solvent. Furthermore, expensive measures
must be implemented to properly trap and filter the highly toxic NMP, which evaporates
during the drying process of the electrodes. Binder materials, which are essential compo-
nents in slurries, must fulfill several requirements. First, they are essential to guarantee
good adhesion between the particle components as well as to the current collector foil.
Uniform coatings rely on well dispersed slurries, which in turn depend on properly chosen
binders. Moreover, the harsh environment inside the battery cell also requires chemically
inert materials. Aqueous slurry preparation is advantageous, as it eliminates the utilization
of both PVDF and NMP, leading to an overall reduction of material and production costs.
Additionally, evaporation of water is not only more efficient but also needs up to 90% less
energy during the drying process [4].
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Although there are several advantages associated with replacing NMP by water, there
are also some disadvantages due to the reactions of the cathode active materials with
water. For example, cathode active materials are prone to react with water, causing extra
complexity to the whole procedure. Li+ ions are leached from the lattice of the cathode
active material, which is accompanied by the oxidation of the transition metal cations
and loss of charge capacity. Furthermore, the leached Li+ ions induce a raise in the pH
of the slurry, due to the formation of LiOH. However, oxide layers on aluminum current
collectors are only stable up to a pH lower than 8.6 [5] before the Al foil corrodes. The
corrosion is not only associated with an increase in interface resistance, but also with the
evolution of hydrogen gas, which can result in large cavities inside the electrode layer. To
prevent the development of defects during and after the coating process, several strategies
exist to regulate pH values during slurry mixing. The usage of different acids, such as
phosphoric acid [6–8], hydrochloric acid [9,10], poly acrylic acid [11] or acetic acid [12]
is the most common method for maintaining the pH of the slurry within an adequate
range between 4 and 8.6. The utilization of certain acids has another positive effect on
the Li+ leaching mechanism. For example, adding phosphoric acid to the slurry can lead
to the formation of an insoluble layer of phosphate compounds deposited on the surface
of the active material particles, which suppress the ongoing leaching of transition metal
cations from LiNixMnyCozO2 (NMC) [13,14]. Zhu et al. showed that the viscosity of the
slurry is also affected by the amount of acid added [12], as increasing the quantity of
acetic acid leads to an increase in viscosity. Especially when targeting thick coatings, the
viscosity has a significant influence on the film quality, which is influenced by the solid
content of the slurry and binder characteristics. The solid loading of the slurry impacts
the sedimentation rate of the coating and needs to be balanced carefully with solvent
evaporation [15]. Binder concentration and molecular weight also affect the rheological
behavior [15,16] and, consequently, the morphology of the electrode. In addition, a certain
viscosity is necessary to maintain the desired thickness and shape of the electrode after the
coating and drying process.

Increased energy densities can be realized by maximizing the ratio of active to inactive
material [17–19]. Reducing separator and current collector materials leads not only to an
increase in energy density, but also reduces the time required for cell assembly [19–21].
Energy density can further be increased by manufacturing thicker electrodes. However,
thick electrodes tend to exhibit lower rate capabilities due to higher charge transfer resis-
tance and blocked pore structures. The use of slurry additives and adjustment of coating
parameters are widespread strategies to create crack free thick films. Controlling capillary
pressures during the drying procedure by adding isopropyl alcohol to the slurry to regulate
surface tensions [18] is one approach to reduce crack formation. Vapor grown graphite
tubes as a replacement for carbon black can also help to minimize the amount of pinholes
as recommended by Sahore et al. [22]. Beside maintaining mechanical integrity of the
coating, a homogeneous distribution of the electrode material components are desirable,
as accumulations of binder material can lead to unwanted side effects and diminished
electrochemical performance. Binder migration is a large challenge during drying, thereby
necessitating well optimized coating parameters. For example, the higher concentration
of binder particles near the electrode-separator interface is a phenomenon that can be
observed during the drying of thick coatings [23–27]. Light binder particles float on top
of the layer due to a lack of liquid linkage between the surface and current collector. As a
result, ion pathways are blocked and Li+ transport is impeded. The absence of binder at
lower regions is also problematic for adhesion between coating and current collector [28].

This manuscript presents an alternative strategy to circumvent these difficulties in
thick layer manufacturing by multi-layer coating. Applying multiple layers of coating on
top of each other can help control film properties in a desired manner. Graded porosity
was already investigated and presented as an interesting opportunity in the past [29–33].
Reduction in resistance, a more uniform overpotential distribution, and an increase in
diffusivity of Li-ions are affected by establishing low porosity regions near the substrate and
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areas with high porosity in the vicinity of the separator [29–32]. However, implementing
such a gradient is complicated as several subsequent calendaring steps are necessary, which
reduces the expected positive effects [33]. Multi-layering also opens the doors to realize
different material combinations inside the electrode. Blends of active materials can lead
to higher ionic current densities [34], improvements against overcharging [35] and higher
discharge rates [36]. For example, NMC442 cathodes [37] and graphite anodes that were
fabricated [38] via dual layered slot-die coating show better electrochemical performance
when the binder content of the top layer is reduced.

The purpose of this manuscript is to highlight the benefits of using multi-layering as a
method to achieve high energy densities in cathode production. An industry oriented roll-
to-roll (R2R) process was used to demonstrate the procedure using NMC811 as the cathode
active material, which was coated in aqueous slurries. The resulting improvements in
mechanical integrity and electrochemical performance are displayed. Due to its simplicity
for industrial implementation, this technique is a stepping stone for the fabrication of
unique electrode architectures. To the best of our knowledge, no defect free water-based
NMC811 cathodes were established before with presented high areal capacity using the
multi-layer approach.

2. Materials and Methods

Two different cathode coatings were performed—one thick single-layer (SL) of Ni-
rich lithium nickel manganese cobalt oxide (NMC811) and one multi-layer (ML) coating
with similar total electrode thickness. Each of the electrodes were analyzed with respect
to their physical properties. In addition, coin cells were assembled to investigate their
electrochemical performance.

2.1. Electrode Preparation

The cathode coatings consist of 92 wt% NMC811 powder (BASF SE, Ludwigshafen
am Rhein, Germany; davg = 7.8 µm) as active material, 3 wt% carbon black (C-NERGY™
SUPER C65, TIMCAL Ltd., Bodio, Switzerland; davg = 37 nm) and 2 wt% artificial graphite
(C-NERGY™ KS6L, TIMCAL Ltd.; d50 = 3.5 µm) as conducting agents, 2 wt% of CMC
(WALOCEL™ CRT 2000 PA, DuPont de Nemours Inc., Wilmington, DE, USA) and 1 wt% of
poly(meth)acrylate (PMA) (JSR SX8684(A)-64, JSR Micro NV, Leuven, Belgium) as binder. A
total of 0.16 g of 1M phosphoric acid (H3PO4) per g of NMC811 was added prior to addition
of NMC to control the pH-value throughout the mixing process. All solid components used
in this study were dried over night at 105 °C.

Slurry mixing was done in a 250 mL container using a dissolver (DISPERMAT CV3-
PLUS, VMA GETZMANN GMBH, Reichsdorf, Germany). Under constant stirring at
200 rpm, carbon black (CB) and artificial graphite (KS6L) were added to a 2 wt% CMC
solution, following 10 min of stirring at 2000 rpm. H3PO4 was added, followed by another
2 min of stirring. NMC811 was added at 3000 rpm for 8 min. Finally, PMA was added
at maximum 500 rpm stirring for 2 min to keep material integrity, terminating in a solid
content of 60%. The pH was measured (SevenCompact S210, Mettler Toledo, Columbus,
OH, USA) to monitor that values are below 8.6 before coating.

Electrode casting was performed continuously on a R2R coating machine (SC 30,
COATEMA Coating Machinery GmbH, Dormagen, Germany) on 22 µm aluminum foil
(Norsk Hydro ASA, Oslo, Norway). Three consecutively arranged drying chambers were
set to temperatures of 45, 55 and 50 °C. The flow rates at the air inlet and outlet valves were
set to 70 m3 h−1 and 98 m3 h−1, respectively. The coating speed was fixed at 0.3 m min−1.
The gap size of the coating knife was set to 550 µm for the thick single-layer, whereas for
the multi-layer coatings, the wet thickness of the bottom layer was set to 250 µm and of the
top layer was set to 330 µm. The bottom layer was fully dried before adding the second
coating. To remove residual water, all samples were dried at 80 °C under vacuum for 12 h.
Afterwards, the porosity ε of the electrodes was calculated by using Equations (1)–(3),
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where ρc, mc and Vc are the density, mass, and volume of the coating, respectively and ρph
is the sum of all bulk densities ρi with respect to their share pi of the coating:

ρc =
mc

Vc
, (1)

ρph = ∑
i

piρi, (2)

ε = 1 − ρc

ρph
. (3)

Dried electrode sheets were calendared at 55 °C roll temperature (GK 300L, SAUER-
ESSIG Group, Vreden, Germany) to a target porosity of 40% and a final thickness of
approximately 205 µm including the current collector foil.

In the full cell investigations, anodes fabricated at the pilot line facilities were used
as standard counter electrodes. All anodes used in this study were made of 90 wt% high
energy density graphite (HED graphite 918-A2, Targray Technology International Inc,
Kirkland, QC, Canada.; d50 = 14.93 µm), 4 wt% carbon black (C-NERGY™ SUPER C65,
TIMCAL Ltd.) and 6 wt% PVDF (Solef® PVDF, Solvay SA, Brussels, Belgium). The slurry
was prepared in a planetary mixer (HIVIS DISPER MIX Model 3D-2, PRIMIX Corporation,
Awaji-shi, Japan). First the active material and the carbon black were mixed together.
PVDF, which was dissolved in an 8 wt% solution of NMP, was added and the slurry was
mixed with increasing rotational speed. Additional NMP was added to dilute to a final
solid content of 50%. The anode was coated on 11 µm copper foil (Carl Schlenk AG, Roth,
Germany) with a wet thickness of 560 µm and afterwards dried and calendared to a porosity
of 38%. A practical specific capacity for the graphite active material was assumed to be
350 mA h g−1. An areal capacity of 9.5 mA h cm−2 for graphite anodes leads to a N/P ratio
of 1.1.

Coating parameters and electrode materials are changed as little as necessary com-
pared to a standardized manufacturing process to demonstrate the feasibility of the water
based multi-layering technique to an existing production procedure.

2.2. Cell Assembly and Electrochemical Analysis

For coin cell tests, cathodes and anodes were cut into discs of 1.5 cm and 1.6 cm
diameter, respectively. The anodes were dried at 120 °C and the cathodes at 80 °C un-
der vacuum for 12 h before being transferred in vacuum into an Ar-filled glove box
(O2 < 0.1 ppm, H2O < 0.1 ppm) (LabMaster Glove Box MB200-G, MBRAUN, Garching,
Germany). Then, 2032 coin cells (CR2032) were assembled with 1.1 mm springs, 1.5 mm
spacers and a Celgard 2500 separator. In total 150 µL of the electrolyte were added before
crimping (MSK-110 Hydraulic Crimping Machine, MTI Corporation, Richmond, CA, USA)
at 60 bar pressure.

After a resting time of 4 h, cycling tests were performed on an Arbin BT-21084, as-
suming 200 mA h g−1 capacity for the cathode active material. Two cycles with a C-rate of
C/20 were carried out for formation, followed by five preconditioning cycles at C/10. The
discharge capacity for further tests was adjusted to be in-line with the capacity of the third
C/10 cycle. Thus, further tests were carried out with a specific capacity of 146 mA h g−1

and 177 mA h g−1 for SL and ML electrodes, respectively. Constant current constant voltage
(CCCV) rate capability tests with symmetric charge/discharge rates of C/5, C/2, 1C and
C/10 were also conducted in a voltage window of 3 to 4.2 V. To determine the long term
cycling behavior, 50 cycles at a C-rate of C/5 were performed for both cell types.

Electrochemical impedance spectroscopy (EIS) was used to investigate the influence of
multi-layering on the kinetics during cycling within the cell. Measurements were performed
at 4.2 V/100% state of charge (SOC) during the two formation cycles at a C-rate of C/20.
Potentiostatic electrochemical impedance was measured between 20 kHz and 100 mHz
with a voltage amplitude of 10 mV on a Biologic MPG-2 instrument. Cyclic voltammetry
(CV) measurements were performed to compare reduction and oxidation processes for
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SL and ML electrodes in half cell configurations. The applied range of potential was set
between 2.8 V and 4.5 V with a scan rate of 0.05 mV s−1 on an Arbin BT-21084.

2.3. Slurry and Electrode Properties

Surface topologies and cross-sectional imaging of the electrode samples were carried
out via a digital microscope (VHX7000, Keyence Corporation, Osaka, Japan), to evaluate
coating homogeneity and investigate inter-layer transitions of the multi-layered electrodes.
The electrode samples were also investigated via scanning electron microscopy (SEM)
at an electron acceleration voltage of 5 kV (SUPRA 40, Carl Zeiss AG, Oberkochen, Ger-
many). Furthermore, the adhesive strength of the coating to the current collector foil
was characterized using a 180° peel test (EKM-5KN, Jinan Marxtest Technology Co., Ltd.,
Jinan, China).

Viscosity measurements were performed under ambient conditions (DV-II+Pro Vis-
cometer, AMETEK Brookfield, Middleboro, MA, USA), and dynamic viscosity was recorded
with respect to increasing shear rates between 0 and 14 s−1.

3. Results and Discussion
3.1. Characterization of Slurries and Electrodes

Since the pH of the slurry has a huge impact on the process, the pH evolution was
carefully monitored to stay below the recommended coating limit of 8.6 [5] to suppress
possible corrosion of the Al substrate. This is also important with regard to the emergence
of agglomerations within the slurry reported to occur when the pH of 10 is exceeded
in the slurry mixing process as described above in Section 2.1. Viscosity measurements
showed a shear thinning behavior of 18 Pa s at zero shear rate and 4 Pa s at the shear rate
applied during the coating process. Porosity and areal capacity were calculated based
on the measured thicknesses and mass loadings in SL and ML electrodes. The values of
the measured parameters are given in Table 1. Coating thicknesses are slightly higher
than 200 µm for both types of electrodes. The as-coated porosity values of the SL and
ML samples are calculated to be almost identical with each other, attaining values of 52.7
and 52.6% for the SL and ML electrodes, respectively. Both coatings show the same areal
capacity of 8.6 mA h cm−2, which was calculated assuming a 200 mA h g−1 specific capacity
for the NMC811 active material. The lower layer constitutes a 43% share of the overall
bi-layer electrode thickness. On average, a porosity of 59.3% was calculated for the base
layer with an areal capacity of 3.1 mA h cm−2.

Table 1. Coating parameters after coating and drying.

Electrode Type Total Thickness [µm] Porosity [%] Areal Capacity
[mA h/cm2]

Single-layer 202 ± 2 52.7 ± 0.3 8.6 ± 0.1
Multi-layer 208 ± 4 52.6 ± 0.2 8.6 ± 0.2

Bottom layer 89 ± 5 59.3 ± 0.9 3.1 ± 0.0

Investigating the surface of each coating, it is evident that a continuous film without
defects of any kind was fabricated (Figure 1a,c). Even before calendaring, a smooth
homogeneous surface was present in both samples. This is a huge improvement considering
the high thickness and aqueous processing of the electrode [18,22].

Analysis of cross sectional images taken via digital microscope are shown in Figure 1b,d
for single- and multi-layer electrodes, respectively. Both samples are determined to have
a thickness of 190 µm after calendaring to 40% porosity, verifying the measurements via
a thickness gauge. Slightly inhomogeneous distribution of lighter gray particles is no-
ticeable for SL samples, but overall no severe irregularities, such as entrapped air, cracks,
or delamination from the substrate are recognizable. No distinct transition line between
top and bottom layer is visible for the multi-layer sample, which is evidence of a good
mechanical connection of both layers. SEM images of the multi-layer sample are displayed
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in Figure 2. Merging of the layers is visible in agreement with the analysis via digital mi-
croscope. Images of higher magnification reflect an intertwining behavior of the secondary
NMC811 particles of the top and bottom layers, which is necessary for strong cohesion. The
indistinguishability of the two layers can also be accredited to the slight “dissolution” of
the surface of the bottom layer into the freshly applied electrode slurry of the upper layer
during coating. Furthermore, the surface film of the prime coating absorbs the slurry of the
second coating forming a diffuse transition layer. This is a key aspect in guaranteeing good
mechanical linkage of both layers.

Figure 1. Digital microscope images of (a) SL top-view, (b) SL cross-section, (c) ML top-view, (d) ML
cross-section after drying in air.

20µm

40µm

Figure 2. SEM image of the transition area from top to bottom layer of a multi-layer coated sample.

The significantly higher porosity of the lower layer also implies either a change in
porosity of the layer itself due to the coating of the upper layer, or a porosity gradient with
remarkably higher porosity in the vicinity of the current collector. Assuming no porosity
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transition of the base after the second coating, the porosity of the top layer should be 47.5%.
According to both Qi et al. [30] and Fang et al. [31] this lower porosity of the top layer
would lead to a decreased cell performance as they suggest an electrode design with an
opposite porosity gradient (higher porosity at the top of the electrode with decreasing
porosity in the direction of the current collector) to reduce electrode resistance and enhance
performance at high C-rates by increasing Li-ion diffusivity. However, the higher observed
porosity of the upper layer, as well as the observed bubbles which develop after the second
coating is applied, imply that cavities inside the base layer are filled with applied slurry.
Figure 3 illustrates this mechanism. First, the slurry of the second coating comes in contact
with the low porosity base layer (Figure 3a). As the water evaporates, porosity decreases
in the top layer (Figure 3b) and the particles from the top layer migrate, and occupy the
cavities in the bottom layer. This causes a mixing of both coatings (Figure 3c) and results in
an increase in porosity of the initial layer (Figure 3d). This influences the porosity gradient
to generate lower porosity values near the substrate foil and higher porosity values closer
to the coating surface.

a) b) c) d)

Figure 3. Visualization of the trickling behaviour after the second coating is applied. Particles in red
and green, of the first and second layer, respectively. (a) situation right after coating the second layer,
(b) sedimentation of particles during water evaporation, (c) mixing of second and first layer particles
creating a diffuse interface, (d) coating after full solvent evaporation with higher porosity close to the
current collector.

The results of the peel testing measurements confirm significant improvement follow-
ing the multi-layer approach. In comparison to SL samples with ∼45 Nm−1, ML coatings
show values of ∼66 Nm−1 (Figure 4). Therefore, on account of the second coating, an
increase of approximately 45% in adhesion can be achieved. The reason for this vast en-
hancement is due to more homogeneously distributed binder particles, which is enhanced
by the multi-layer processing.

3.2. Electrochemical Performance of Cells

Rate capability tests were performed to assess the electrochemical performance of both
cell configurations. Results of statistically significant cells are displayed for clear visualiza-
tion (Figure 5a). Formation cycles are not presented in the graph. It is worth mentioning,
that after preconditioning at C/10 for 5 cycles, the C-rate was adjusted according to the
measured cell discharge capacity of cycle number 3 (these preconditioning cycles are labels
as C/10* in Figure 5a). Therefore, all cathodes are exposed to the same C-rate independent
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of the actual specific capacity of the cathode after the preconditioning cycles. In accordance,
the ML cells show higher specific discharge capacities throughout all the tests, even though
the same C-rates are applied. Especially for low current densities, cells with ML cathodes
outperform the SL samples by over 20%, which is a remarkable enhancement considering
that both electrodes are fabricated using the same materials. Therefore, changing the coating
procedure has a positive impact on material distribution inside the coating. The beneficial
effect of multi-layering is even more pronounced for lower C-rates. For thick electrodes,
limiting effects on Li+ diffusion are evident at high current densities, and resulting losses in
discharge capacity can not be compensated fully by multi-layering. Therefore the difference
in capacity is slightly less distinct for 1C. Approximate improvements of the discharge
capacities are listed in Table 2. When returning back to C/10, both cell configurations show
initial high capacities, implying that cycling at high rates is not detrimental to their stability.
Long term cycling tests show no significant decrease in specific discharge capacity after
50 cycles at C/5 for SL and ML electrodes (Figure 5b). Moreover, the coulombic efficiency
for both SL and ML electrodes is determined to be close to 100%.
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Table 2. Increase of discharge capacities by multi-layering, compared to single-layer cathodes.

C/10* C/5 C/2 1C C/10

Improvement [%] 23.3 18.6 11.7 10.3 20.7

Specific capacities of representative charge and discharge cycles are selected for com-
parison at each C-rate and are plotted in Figure 6 against applied voltages. The specific
discharge capacity data as a function of C-rate are also given in Table 3. SL cells show values
of 146 mA h g−1, 128 mA h g−1 and 59 mA h g−1 for C/5, C/2, and 1C, respectively. ML
cells have the overall highest specific discharge capacity of 171 mA h g−1 at C/5, whereas
at C/2 and 1C, capacities of 136 mA h g−1 and 65 mA h g−1 are measured. Substantial
differences in discharge capacity between the two types of electrodes are present for low
current densities. For single layers only the region close to the electrode/separator interface
is electrochemically active, since Li ion diffusion lengths are not sufficient enough to reach
underlying areas [39]. However, in ML electrodes, areas located closer to the current collec-
tor foil also contribute to specific discharge capacity. Figure 6 shows the voltage-capacity
curves of the SL and ML electrodes at C-rates of C/5 (a), C/2 (b) and 1C (c). All of them
show a sloping profile, which is characteristic for NMC cathode active materials. In all
cases, the charge and discharge capacities of the cells with the ML electrodes are larger than
those for the SL electrodes, despite the fact that all electrodes have the same mass of active
material. At high current densities, the benefits of multi-layering on Li-ion diffusion com-
pensate for the drawbacks accompanied by electrode thickness itself [40]. Li-ion mobility
definitely poses the most difficulties for thick electrodes to compete at high C-rates.

The potentiostatic contribution to the specific charge capacity is represented by the
plateau at 4.2 V in Figure 6. Its length is directly proportional to the resistance inside
the electrode during charge at constant voltage. The presence of multiple layers causes
additional interfacial resistances within ML coated electrodes. Especially at C/5 (Figure 6a),
a distinct difference in potentiostatic specific charge capacity is noticeable. At low C-rate
in particular, a great part of the capacity is reached due to a elongated constant voltage
step during charge. Nevertheless, it is worth mentioning that at C/5 higher specific charge
capacities are already reached before the constant voltage step takes place.

The cyclic voltammograms shown in Figure 7 were recorded to compare the reduction
and oxidation reactions of SL and ML electrodes during cycling. Both electrode types show
no peak at 3 V, indicating the absence of Mn3+ [41]. Two pairs of oxidation/reduction
peaks were observed for each sample. The small reduction peaks for SL and ML at
around 3.9 V are not visible in the CV during oxidation due to overlapping with the lower
voltage reduction peaks. Table 4 displays the potentials of oxidation/reduction peaks and
corresponding polarizations for each electrode type. SL cells show oxidation peaks at
Vox1 = 3.90 V and Vox2 = 4.27 V and reduction peaks at Vred1 = 3.63 V and Vred2 = 4.09 V,
with a polarization of ∆V1 = 0.27 V and ∆V1 = 0.18 V respectively. The polarizations for
ML cells are ∆V1 = 0.24 V for peaks at Vox1 = 3.86 V and Vred1 = 3.62 V and ∆V1 = 0.16 V for
Vox2 = 4.25 V and Vred2 = 4.09 V. Comparing both electrode types, no significant differences
in peak position and polarization are noticeable. However, ML samples show a larger area
underneath the curve, which is in direct proportion to the capacity of the cell and is in
accordance with the capacity difference shown in the rate capability test mentioned above.
Besides the higher capacities, no obvious difference of the reaction kinetics were observed
via CV measurements.



Nanomaterials 2022, 12, 317 10 of 15

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0
3 . 0
3 . 2
3 . 4
3 . 6
3 . 8
4 . 0
4 . 2

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0
3 . 0
3 . 2
3 . 4
3 . 6
3 . 8
4 . 0
4 . 2

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0
3 . 0
3 . 2
3 . 4
3 . 6
3 . 8
4 . 0
4 . 2

 S L  c h a r g e
 S L  d i s c h a r g e
 M L  c h a r g e
 M L  d i s c h a r g e

vo
lta

ge
 [V

]

s p e c i f i c  c a p a c i t y  [ m A h g � � ]a )

C / 5

 S L  c h a r g e
 S L  d i s c h a r g e
 M L  c h a r g e
 M L  d i s c h a r g e

vo
lta

ge
 [V

]

s p e c i f i c  c a p a c i t y  [ m A h g � � ]b )

C / 2

 S L  c h a r g e
 S L  d i s c h a r g e
 M L  c h a r g e
 M L  d i s c h a r g e

vo
lta

ge
 [V

]

s p e c i f i c  c a p a c i t y  [ m A h g � � ]c )

1 C

Figure 6. Voltage profiles of single-layer (SL, red) and multi-layer (ML, green) electrodes at (a) C/5,
(b) C/2, and (c) 1C.

Table 3. Comparison of specific discharge capacities for different C-rates for SL and ML cells.

C-Rate Electrode Type Specific Discharge Capacity [mA h g−1]

C/5 SL 146
ML 171

C/2 SL 128
ML 136

1C SL 59
ML 65
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Figure 7. Cyclic voltammograms of single-layer (SL, red) and multi-layer (ML, green) electrodes
between 2.8 and 4.5 V, with a scan rate of 0.05 mV s−1.

Table 4. Comparison of anodic and cathodic peak positions and corresponding polarization from CV
measurements for SL and ML half cells.

Electrode Type Vox1 [v] Vred1 [v] ∆V1 [v] Vox2 [v] Vred2 [v] ∆V2 [v]

SL 3.90 3.63 0.27 4.27 4.09 0.18

ML 3.86 3.62 0.24 4.25 4.09 0.16

EIS measurements were performed to help describe the transfer phenomena inside
the cells during the formation cycles. The equivalent circuit used for the fitting is displayed
in Figure 8. Re corresponds to the bulk resistance resulting from the cell components
(current collector, separator) and the electrolyte. The resistance contribution from the solid
electrolyte interphase (SEI) formed on the graphite anode is fitted using RSEI and a constant
phase element QSEI, expressing its behavior as the non ideal capacitor. The charge transfer
resistance Rct and the double-layer capacitance represented by Qdl show the contribution
of charge transfer behaviour between the electrolyte and the electrode. The diffusion at low
frequencies is represented by the Warburg element (W).

Figure 8 shows Nyquist plots of SL and ML cells during the first and second cycle at
4.2 V. The intercept of Re(Z) at the high frequency region shows similar values in Re for
both samples, as shown in Table 5 and Figure 9a. This is expected, since all components
apart from the cathodes are identical for each cell. The high to medium frequency semicircle
shows the contribution of SEI formed during the first cycle on the anode side. At different
stages of charge and discharge for the SL and ML electrodes the fitted data is comparable,
highlighting the fact that the developed cathode in this work has no negative impact on the
development of the SEI and its stability.

The mid to low frequency semicircle illustrates the charge transfer process, where
a significant difference was observed between the charge transfer resistance of SL and
ML electrodes. The higher specific discharge capacity, as shown in Figure 6, for the
multi-layer cells, is attributed to the lower Rct value. Heubner et al. [42] investigated the
influence of electrode porosity and thickness on cell performance, with respect to limiting
processes. They conclude that among other effects, decreased porosity leads to an increase
in charge transfer resistance. Available areas for charge transfer reactions are reduced due
to an increase in contacts between particles and particles with current collector foil and
a reduction in the total contact area with the particles and the electrolyte [42]. The pore
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size distribution in the ML electrode facilitates access of Li-ions from the electrolyte in the
whole multi-layer electrode and thus lowering the Rct. Figure 9 displays the acquired data
for both electrode types and shows that a lower Rct is achieved and a stable performance
is established throughout cycling. The short inclined line at low frequencies represents
the Li diffusion into the active material. Similar values for SL and ML samples lead to the
conclusion that multi-layering does not negatively influence the diffusion of the Li-ions in
the electrode and the mass transport controlled region of the cathode.

Re

RSEI

Rct
W

Qdl

QSEI

Figure 8. Equivalent circuit used to fit the measured impedance spectra and Nyquist plots of 1st and
2nd cycle at 4.2 V for single and multi-layer cathodes.
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Figure 9. Comparison of resistance contributions (a) Re, (b) RSEI, and (c) Rct for SL and ML cells
during the 1st and 2nd cycle at 4.2 V.

The advantage of better adhesion in ML samples is not expected to be fully realized
in coin cell configurations, since the high pressure inside the cells suppresses the delami-
nation. Therefore, we anticipate a more pronounced benefit in pouch-cell configurations.
Considering all electrochemical results, more homogeneous binder distribution and the
resulting increase in charge transfer leads to higher discharge capacities in ML cells. In
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addition, better electrochemical performance roots from a porosity gradient generated
inside the cathode – as suggested in literature [30,31].

Table 5. Impedance parameters derived from the fitting of equivalent circuit models for SL and
ML electrodes.

Electrode Type Re [Ω] RSEI [Ω] Rct [Ω] QSEI [mF] αSEI Qdl [mF] αdlA χ2

1st cycle 4.2 V SL 1.14 17.08 27.29 4.90 0.45 2.85 1 0.006
ML 1.27 17.97 12.81 5.91 0.45 7.36 0.99 0.009

2nd cycle 4.2 V SL 1.06 12.58 15.88 6.50 0.45 4.23 0.98 0.004
ML 1.19 11.48 3.05 6.48 0.45 7.90 1 0.005

4. Conclusions

Aqueous fabrication of thick NMC811 electrodes was performed using an industrially
relevant coating procedure. pH regulation with phosphoric acid and optimized coating pa-
rameters lead to smooth thick cathode films with superior areal capacities of 8.6 mA h cm−2.
It was demonstrated that multi-layer electrodes of equal active material loading can be
fabricated in a subsequent tape casting procedure. The absence of morphological defects
was confirmed for the presented manufacturing technique. Both electrodes exhibit suffi-
cient mechanical integrity to be processed on a standard roll-to-roll system. Multi-layer
casted cathodes show improved adhesion to the Al current collector, exemplified by a
45% higher adhesion strength for the ML electrodes compared to SL. In addition, optical
inspection revealed a diffuse boundary between the separately coated layers, confirming
good intra-layer adherence. ML electrodes show an improved electrochemical performance
during rate capability tests compared to SL electrodes, expressed by higher specific dis-
charge capacity for all investigated C-rates. It is worth mentioning that, especially for low
current densities, improvements of over 20% are measured. This occurs due to more evenly
distributed material inside the cathode coating and a possible gradient in coating porosity.
All findings emphasize the potential of using multi-layering as a technique to gain energy
density through increased electrode thickness. This technique can be easily adapted to R2R
processing and a variety of electrode fabrication applications on an industrial scale. This
study shows that by multi-layering, great improvements in electrochemical performance
and mechanical stability can be achieved within aqueous fabrication of high energy density
cathodes. It also opens up new possibilities for multiple design options by implementing
various material components and properties into the electrode. The 3D architectures can
be easily integrated within coatings in a consecutive large scale casting method. Future
work will investigate cell performance for different material gradients, such as binder,
conducting agents, and particle size in a two or more layer electrode design. Opportunities
to decrease tortuosity and thereby shorten Li-ion pathways can be realized by varying film
composition through multi-layer coating. This will be the subject of future investigations.
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The following abbreviations are used in this manuscript:

CB carbon black
CCCV constant current constant voltage
CMC carboxymethyl cellulose
CV cyclic voltammetry
EIS electrochemical impedance spectroscopy
ML multi-layer
NMC lithium nickel manganese cobalt oxide
NMP N-Methyl-2-pyrrolidone
N/P ratio negative/positive capacity ratio
PMA poly(methyl)acylate
PVDF polyvinylidene fluoride
R2R roll-to-roll
SEI solid electrolyte interphase
SEM scanning electron microscopy
SL single-layer
SOC state of charge
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