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Abstract: Grinding-assisted liquid-phase exfoliation is a widely used method for the preparation
of two-dimensional nanomaterials. In this study, N-methylpyrrolidone and acetonitrile, two com-
mon grinding solvents, were used during the liquid-phase exfoliation for the preparation of MoS2

nanosheets. The morphology and structure of MoS2 nanosheets were analyzed via scanning elec-
tron microscopy, X-ray diffraction, and Raman spectroscopy. The effects of grinding solvents on
the gas-sensing performance of the MoS2 nanosheets were investigated for the first time. The re-
sults show that the sensitivities of MoS2 nanosheet exfoliation with N-methylpyrrolidone were 2.4-,
1.4-, 1.9-, and 2.7-fold higher than exfoliation with acetonitrile in the presence of formaldehyde,
acetone, and ethanol and 98% relative humidity, respectively. MoS2 nanosheet exfoliation with
N-methylpyrrolidone also has fast response and recovery characteristics to 50–1000 ppm of CH2O.
Accordingly, although N-methylpyrrolidone cannot be removed completely from the surface of MoS2,
it has good gas sensitivity compared with other samples. Therefore, N-methylpyrrolidone is preferred
for the preparation of gas-sensitive MoS2 nanosheets in grinding-assisted liquid-phase exfoliation.
The results provide an experimental basis for the preparation of two-dimensional materials and their
application in gas sensors.

Keywords: two-dimensional materials; MoS2 nanosheets; liquid-phase exfoliation; grinding solvent;
gas-sensitive properties

1. Introduction

Given the special structure and potential applications, two-dimensional (2D) mate-
rials such as graphene, boron nitride, and molybdenum disulfide (MoS2) draw plenty
of concerns. Among them, MoS2 as the frontrunner in transition metal dichalcogenides
(TMDCs) materials has gained the most attention [1–4] and is used in a wide variety of
applications [5–11] due to its unique properties [12–14]. MoS2 is at the forefront in the
race of an ideal gas-sensing material because of its large surface-to-volume ratio, enor-
mous number of active sites, and favorable adsorption sites [15,16]. MoS2 manifests two
possible crystal phases, including trigonal and hexagonal structures, with metallic and
semiconducting properties, respectively [17]. The presence of weak Van der Waals force
facilitates the isolation of layers from bulk MoS2. The indirect bandgap of 1.2 eV in bulk
MoS2 is converted to a direct bandgap of 1.8 eV for monolayer MoS2 [3,14,18]. The absence
of dangling bonds provides stability to pristine MoS2 flakes in liquid and gaseous media in
the presence of oxygen, thereby facilitating its gas-sensing application [19,20]. Therefore, a
reliable and low-cost technique is needed to produce 2D-MoS2 for gas-sensing applications.
Currently, several methods including vapor deposition [21], mechanical exfoliation [22],
lithium-ion intercalation [23], liquid-phase exfoliation [24,25], and RF sputtering [26] have
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been utilized to fabricate 2D-MoS2 nanomaterials. Although high-quality MoS2 nanosheets
were prepared by mechanical methods for fundamental research, it is difficult to meet the
need for mass production. Meanwhile, hydrothermal and solvothermal methods yield
few-layer MoS2 nanosheets on a large scale. However, they often require high temperature
and high pressure. Lithium intercalation into the layered structure of 2D-MoS2 is limited
by long lithiation time, high temperature, and sensitivity to environmental conditions.
Instead, grinding-assisted liquid-phase exfoliation is not air-sensitive, does not entail chem-
ical reaction, and generally has acceptable yield [3,27,28]. Coleman et al. [29] evaluated
multiple solvents for ultrasonic exfoliation of materials. They found that the most effective
solvent was N-methylpyrrolidone (NMP), followed by acetonitrile (ACN). Yao et al. [25]
reported that relatively high yields up to 26.7 mg/mL were obtained by incorporating
NMP as a grinding solvent into the exfoliation procedure because the surface energy of
NMP is similar to that of MoS2. As a result, NMP is the preferred solvent in liquid-phase
exfoliation to obtain single or multilayered 2D nano-materials [25,27–31].

The studies suggest that grinding solvent plays an important role in grinding-assisted
exfoliation because its physical properties, such as boiling point [32], surface tension
and energy [29,33], as well as solubility parameters [24], can affect the final exfoliation
materials. Emily et al. reported that the lateral size and thickness of the exfoliated flakes of
MoS2 nanosheets are highly dependent on the solvent. NMP yielded flakes of the highest
quality based on lateral size and flake thickness. The NMP remained on the surface of the
MoS2 nanosheets when ACN was completely removed [34]. Good yields were obtained
when using NMP as a grinding solvent. However, whether the NMP residue affects the
performance of electronic devices is unknown. It may adversely affect the application of
MoS2 nanosheets in gas sensing. To our knowledge, there is no report on the research of
the effects of a grinding solvent on the gas-sensing properties of MoS2.

Therefore, we evaluated the effects of residual NMP on the morphology and gas-
sensing properties of liquid-phase-exfoliated MoS2 nanosheets. We selected ACN, which
has a lower boiling point and easier solvent removal compared with NMP. The morphology
and structure of MoS2 nanosheets were analyzed by scanning electron microscopy (SEM),
X-ray diffraction (XRD), and Raman spectroscopy. The effects of grinding solvents on the
gas-sensing performance of MoS2 nanosheets were investigated for the first time.

2. Materials and Methods
2.1. Preparation of Materials

MoS2, with a purity of 99% and particle size less than 2 µm, was purchased from
Sigma-Aldrich. ACN, NMP, and absolute ethanol (C2H6O) were purchased from Tianjin
Zhiyuan Chemical Reagent Co. Ltd. as analytically pure reagents. The preparation of MoS2
nanosheets via grinding-assisted liquid-phase exfoliation is described as follows:

MoS2 powder (100 mg) was manually ground in a mortar for 2 h, and 0.5 mL of the
chosen solvent was added during the grinding. The sample was then dried in a vacuum
oven at 60 ◦C for 12 h. The dried sample was dispersed in 40 mL of 45 vol% absolute
ethanol and sonicated for 1 h at 120 W with stirring. The dispersion was centrifuged for
another 20 min (1500 r / min) to obtain the MoS2 nanosheets, and the supernatant was
dried in air for further use. For convenience, the MoS2 nanosheets obtained by grinding
with ACN were designated as S1, and those ground with NMP were called S2.

2.2. Characterizations

The morphology of MoS2 nanosheets was observed with a field emission scanning
electron microscope (SEM, JSM-7610F Plus). The crystal structure of MoS2 nanosheets
was characterized by X-ray diffraction (XRD, Bruker D8 Advance, with Cu-Kα radiation).
Raman spectroscopy (Renishaw inVia, Gloucester, Britain) was used to characterize the
defects and functional groups of samples. The I-t and I-V curves of the sensing chip were
measured by Keithley 2636B at room temperature.
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2.3. Device Fabrication and Testing

The MoS2 nanosheets were dispersed in absolute ethanol at 10 mg/mL. Dispersions
(2 µL) were uniformly coated to fabricate a MoS2-based sensing chip with Ag-Pd fork-finger
electrodes. The minimum width and spacing of electrodes was 0.2 mm. The interdigital
electrode was dried at 25 ◦C and aged for 24 h at a voltage of 4 V to obtain a sensing chip
with good stability. The target vapor was produced by thermal evaporation, according
to our previous work [35], and a calculated amount of target liquid was dropped onto a
hot plate in a 1 L container to generate target vapor in the container. Next, 98% relative
humidity was obtained by saturating salt solution (potassium sulphate-K2SO4). Then,
by transferring the sensing chip from the air to the target gas at room temperature, the
Keithley 2636B recorded the change of the current signal of the sensing chip (Figure S1).
The response was defined using the formula

(
IG−IR

IR

)
× 100%, where IR and IG are the

currents of the sensor in the reference gas and target gas, respectively. The response time
and recovery time were defined as the response values of 90% and 10% of the current of
the sensor in contact with the target gas, respectively.

3. Results and Discussion

The XRD patterns of the two types of MoS2 prepared by different grinding solvents
are shown in Figure 1. Compared with JCPDS Card No. 73-1508, the lattice constants were:
a = 3.15938 Å, b = 3.15938 Å, and c = 12.28962 Å. The diffraction peaks 14.39◦, 29.02◦, 32.69◦,
33.51◦, 35.88◦, 39.56◦, 44.27◦, 49.81◦, and 56.01◦ in the figures correspond to (002), (004),
(100), (101), (102), (103), (104), (105), and (106) crystal planes of MoS2, indicating that the
materials were well-crystallized MoS2. The peak intensity of MoS2 nanosheets weakened,
and the FWHM broadening (Figure S2) of the peaks appeared after liquid-phase exfoliation,
indicating that the MoS2 nanosheets were able to be exfoliated, and thus, the size of MoS2
decreases [36–39].
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Raman spectroscopy is effective in distinguishing bulk from exfoliated 2D materials.
Figure 2 shows the Raman spectra of bulk MoS2: S1 and S2. The two Raman peaks
correspond to the high-energy A1g mode and lower-energy E1

2g mode. As shown in
Figure 2a, all the samples displayed the E1

2g and A1g peaks of MoS2. Comparing with peaks
of bulk MoS2, a red shift of E1

2g peak and a blue shift of the A1g peak were observed for
both S1 and S2, respectively. These shifts are associated with nanosheets obtained with
NMP and ACN [40,41]. Figure 2b presents two very broad and intense Raman peaks (1360
and 1580- cm−1) of S2, which may be assigned to NMP [31,36] that was not completely
removed from the surface of MoS2 nanosheets although it was heated and reduced at 60 ◦C
for several hours. In contrast, S1 showed no broad peaks, indicating that ACN was almost
removed.
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A1g and (b) Enlargement of the MoS2 peaks from 1150 cm−1 to 1840 cm−1.

We next investigated the effect of grinding solvents on the morphology of MoS2
nanosheets. The SEM image shown in Figure 3a,b reveals the morphology of the starting
MoS2 powder as a thick layer with dimensions ranging from about 1 to 6.4 µm. The SEM
images presented in Figure 3c,d clearly indicate that the lateral sizes and thicknesses of
layered MoS2 were reduced by combined grinding and sonication. The MoS2 nanosheets
were obtained by grinding with ACN (S1), as shown in Figure 3c,d, and the nanosheets
were uniform in size and well-dispersed, with the majority measuring between 0.1 and
0.5 µm. As shown in Figure 3e,f, exfoliation with NMP (S2) also produced nanosheets
with good dispersion with lateral dimensions of 0.4–1.6 µm. The MoS2 nanosheets ob-
tained by grinding with ACN were smaller than NMP-ground MoS2 nanosheets, which is
consistent with the results reported in the literature [34] and the results of XRD patterns
(Figures 1 and S2).

The gas-sensitive properties of MoS2 nanosheets loaded on ceramic substrates were
tested at room temperature. The results shown in Figure 4a,c indicate gas-sensitive proper-
ties and response time (Figure 4b,d) of S1 and S2 at 98% relative humidity (RH) and 1000
ppm of formaldehyde (CH2O), acetone (C3H6O), and ethanol (C2H6O). The MoS2 layers ex-
foliated with both the grinding solvents showed good stability in three continuous response–
recovery cycles at room temperature. Both of them completed a response–recovery cycle in
40 s and returned completely each time with almost no drift.



Nanomaterials 2022, 12, 4485 5 of 12Nanomaterials 2022, 12, x FOR PEER REVIEW 5 of 12 
 

 

 

Figure 3. (a,b) SEM images of bulk MoS2. (c,d) MoS2 nanosheets obtained by grinding with ACN 

(S1). (e,f) MoS2 nanosheets obtained by grinding with NMP (S2). 

The gas-sensitive properties of MoS2 nanosheets loaded on ceramic substrates were 

tested at room temperature. The results shown in Figure 4a,c indicate gas-sensitive prop-

erties and response time (Figure 4b,d) of S1 and S2 at 98% relative humidity (RH) and 1000 

ppm of formaldehyde (CH2O), acetone (C3H6O), and ethanol (C2H6O). The MoS2 layers 

exfoliated with both the grinding solvents showed good stability in three continuous re-

sponse–recovery cycles at room temperature. Both of them completed a response–recov-

ery cycle in 40 s and returned completely each time with almost no drift. 

Figure 3. (a,b) SEM images of bulk MoS2. (c,d) MoS2 nanosheets obtained by grinding with ACN
(S1). (e,f) MoS2 nanosheets obtained by grinding with NMP (S2).

Figure 5 shows the average response, response time, and recovery time of S1 and S2
for the target analyte. As can be seen from Figure 5a, the sensitivities of MoS2 nanosheets
exfoliation with NMP (S2) were 2.4, 1.4, 1.9, and 2.7 times higher than exfoliation with ACN
(S1) to CH2O, C3H6O, C2H6O, and 98%RH, respectively. These results prove that the MoS2
nanosheets obtained by grinding with NMP have higher gas-responsive properties than
the MoS2 nanosheets with ACN although NMP was not removed completely. At the same
time, it can be seen from Figure 5b,c that both samples have faster response time to the four
analytes, which did not exceed 35 s, and the recovery time did not exceed 4 s.
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Figure 4. Sensing curves in the presence of different target gases of S1 and S2. (a,c) Gas-sensitive
properties of S1 and S2 at 98% RH and 1000 ppm of CH2O, C3H6O, and C2H6O, respectively.
(b,d) Response time of S1 and S2 at 98% RH and 1000 ppm of CH2O, C3H6O, and C2H6O, respectively.
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sensing curves of S1 and S2.

In order to further evaluate the real-time monitoring capability of MoS2 nanosheets
obtained by grinding with NMP (S1), the responses of the S2-based sensor under different
concentrations (50–2000 ppm) of CH2O vapor were evaluated (Figure 6a). The response of
S2 increased with the increase of CH2O concentration. Figure 5b shows a linear response to
changing CH2O concentration, and the correlation coefficient R2 was 0.99, which facilitated
gas-sensing application. Figure 6a,b show that the response time and recovery time of S2
were only 18 s and 0.5 s to 50 ppm CH2O, respectively, and only 11 s and 0.6 s to 100 ppm
CH2O.
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In order to comprehensively evaluate the gas-sensing performance of MoS2 nanosheets
obtained by grinding with NMP, the performances of the MoS2 nanosheet-based sensors
were compared (Table 1). As shown in Table 1, the response time and recovery time
of MoS2 nanosheets obtained by grinding with NMP for 50 ppm CH2O were 18 s and
0.51 s, respectively, which were close to the shortest response time (11 s) and recovery
time (8 s) shown by ZnS and In2O3/MoS2 [42,43]. Nevertheless, compared with the
operating temperature (295 ◦C) of ZnS, the operating temperature of MoS2 nanosheets was
at room temperature (25 ◦C). Therefore, the MoS2 nanosheets exhibited a robust sensing
performance at a low working temperature, with rapid response and recovery. However,
the sensitivity and limit of detection (LoD) of the sensor based on pure MoS2 nanosheets
need to be improved.

Table 1. Sensing performances of recently reported CH2O sensors.

Materials Structure Sensor
Types

Con.
(ppm)

Response
(%)

LoD
(ppb)

Temperature
(◦C)

Response
Time (s)

Recovery
Time (s) Ref.

ZnS 0D nanosphere Resistance 50 9440 - 295 11 8 [42]

In2O3/MoS2 Nanocubes/nonfilm Resistance 50 75 200 RT 14 22 [43]

In2O3 Nanospheres Resistance 1 3.5 1000 180 180 1000 [44]

In2O3/WS2 Nanocomposites Resistance 5 7.5 - RT 98 137 [45]
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Table 1. Cont.

Materials Structure Sensor
Types

Con.
(ppm)

Response
(%)

LoD
(ppb)

Temperature
(◦C)

Response
Time (s)

Recovery
Time (s) Ref.

Au/TiO2 Hybrid films Resistance 5 8.5 100 RT 36 110 [46]

rGo/MoS2 Hybrid films Resistance 10 2.8 - RT - - [47]

Ni-doped
In2O3/WS2

Nanocomposites Resistance 20 32 150 RT 76 123 [45]

rGO/SnO2 Nanocomposites Resistance 0.5 3200 10 125 31 62 [48]

MXene/NH2-
MWCNTs Hybrid films

Self-
powered
voltage

5 35 10 RT 51 57 [49]

MXene/
Co3O4

Hybrid films
Self-

powered
voltage

10 9.2 10 RT 83 5 [50]

MoS2 Nanosheets Resistance 50 66.4 - RT 18 0.5 This
work

Figure 7 shows the I–V curves of S1 and S2 measured with an applied bias voltage
ranging from−2 to 2 V at 1000 ppm CH2O. The I–V curves demonstrated a good ohmic con-
tact between the sensing layers and the electrodes for both samples, which indicates that the
sensor response was attributed to the sensitive material and not the metal–semiconductor
contact.
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The conductivity of the sensing material depends on the adsorption and desorption of
gas molecules on the surface. When the MoS2 sensor is exposed to air, the oxygen molecules
are adsorbed on the surface of the MoS2 nanosheets. Because of the strong electronegativity
of oxygen atom, the adsorbed oxygen molecule captures electrons from the conduction
bands of MoS2 nanosheets and generates ionized oxygen radicals, such as O−2 , O−, and
O2− [51]:

O2gas→ O2ads (1)

O2ads + e− → O−2 (100 ◦C) (2)

O−2 ads + e− → 2O−(100− 300 ◦C) (3)

O−ads + e− → O2−(> 300 ◦C) (4)
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The sensing mechanism of MoS2 nanosheet to CH2O, C3H6O, C2H6O, and 98%RH
have been well-studied and described elsewhere [52–55]. According to these references,
MoS2-nanosheets-based gas sensors exhibit n-type characteristics in our work. The possible
sensing mechanism is as follows: The transfer of electrons from the conduction band
to chemisorbed oxygen decreases the carrier density and increases the depletion layer,
thereby increasing the resistance of the MoS2 nanosheets. At room temperature, when the
MoS2-nanosheet-based sensor is exposed to the target gas, for example, CH2O, the gas is
adsorbed on the surface of the MoS2 nanosheets. These chemisorbed molecules react with
O−2 (ads) to form H2O and CO2. Therefore, the trapped electrons are released back into
the MoS2 nanosheets, which increases the number of conductive channels, leading to a
decrease in sensor resistance (Figure 8).
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Figure 8. Schematic illustration of the sensing mechanism of MoS2 before and after exposure to
target gas.

4. Conclusions

MoS2 nanosheets were prepared with two grinding solvents via grinding-assisted
liquid-phase exfoliation. The effects of grinding solvents on the structure of MoS2 nanosheets
as well as the gas-sensing performance were studied. The structural and gas-sensing prop-
erties of MoS2 were investigated using XRD, SEM, and Raman spectroscopy. The sensing
performance of MoS2 toward four target gases, including CH2O, C3H6O, C2H6O, and 98%
RH, was analyzed at room temperature. The experimental results proved that the MoS2
nanosheets exfoliated with NMP responded better than the MoS2 nanosheets exfoliated
with ACN although NMP was not removed completely. The MoS2 nanosheet-based sensor
also exhibited excellent response. However, the sensitivity and LoD of the sensor need
to be improved. Accordingly, although NMP cannot be removed completely from the
surface of MoS2, NMP exhibits good gas sensitivity compared with other materials. There-
fore, NMP is preferred for the preparation of gas-sensitive materials in grinding-assisted
liquid-phase exfoliation. The results provide an experimental basis for the preparation of
two-dimensional materials and their application in gas sensors.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano12244485/s1, Figure S1: Schematic of sensing test system, Figure S2: The FWHM of XRD
peak of the bulk MoS2, S1 and S2 from Figure 1. The FWHM of bulk MoS2, S1 and S2 are 0.1.31◦,
0.1128◦, 0.112◦, respectively.

Author Contributions: H.W. designed the experiments, analyzed the data, and wrote the paper; X.X.
performed the theoretical analysis; T.S. edited the manuscript and supervised the study. All authors
have read and agreed to the published version of the manuscript.
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