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Abstract: In search of a more effective process of ethane oxidative hydrogenation, different operation
modes (thermal and microwave heating) are compared. The catalyst Mo1-V0.3-Te0.13-Nb0.11-Ox

was prepared by hydrothermal synthesis and characterized by a set of physicochemical methods
(XRD, N2 adsorption, SEM, EDX). The direct microwave heating of the catalyst layer is proposed as
an alternative way of energy-saving ethane-to-ethylene oxidation by a Mo-V-Te-Nb-Ox system. A
substantial decrease in the reactor temperature upon the microwave-assisted process is accompanied
by extremely high catalyst selectivity, which remains at a very high level of 98+%.
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1. Introduction

Catalytic dehydrogenation processes are widely used in modern oil refining and petro-
chemistry. Dehydrogenation catalysts occupy third place in the industrial production of
catalysts in terms of production and use after cracking and hydrotreating catalysts. The de-
hydrogenation of lower paraffins (C2–C4) is a significant problem, which is associated with
the low reactivity of alkanes, the reversibility of the non-oxidative dehydrogenation process,
high process temperatures, low selectivity, and stability of catalysts in the case of oxidative
dehydrogenation. The use of oxidative dehydrogenation allows one to significantly reduce
the temperature of the process. Due to the growing demand for the processing of natural
and associated gases of oil refining, the issue of developing new catalysts and oxidative
dehydrogenation technologies that will allow converting the main components of these
gases—ethane, propane, and butane—into corresponding olefins is acute [1].

Several alternatives attract the attention of researchers in search of the improvement
of thermal catalytic processes, including microwave and plasma technologies and the
application of an external electric field [2–6]. Earlier, we tested the latter approach in the
study of the electro-heating of a Mo-V-Te(Fe)-Nb-Ox system that is active in the oxidative
dehydrogenation of ethane (ODE) [7]. It was concluded that the peculiarities of ODE in
this system upon the electrical treatment of the catalyst layer can be explained by thermal
heating without additional electronic effects.

The advantages of processing various catalysts in the microwave field in comparison
with thermal activation have been demonstrated previously for several processes. In some
cases, a considerable decrease in the onset temperature of many catalytic processes due to
the formation of hot spots in the bulk volume of the catalyst was observed, as well as non-
trivial changes in the selectivity of the catalytic processes associated with non-equilibrium
microwave heating conditions being caused by the microwave field and non-thermal
effects [8–16].

Nanomaterials 2022, 12, 4459. https://doi.org/10.3390/nano12244459 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12244459
https://doi.org/10.3390/nano12244459
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0003-2841-4304
https://doi.org/10.3390/nano12244459
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12244459?type=check_update&version=1


Nanomaterials 2022, 12, 4459 2 of 9

A quaternary oxide system, Mo-V-Te-Nb-Ox, was widely investigated due to its unique
ability to selectively catalyze ODE [17–24]. From the electro-conductivity viewpoint, these
mixed oxides demonstrate semiconductor properties, with a rather high conductivity at
temperatures of the catalytic process. On the other side, this system demonstrates a strong
interaction with microwave (mw) radiation. The effective absorption of the mw-power was
confirmed by our preliminary testing of the catalyst Mo-V-Te-Nb-Ox. Therefore, this sample
seemed to be suitable for studying the catalytic process upon direct mw-treatment. For
the reaction under study, Te-containing four-component oxide looks like the best selective
catalytic system. Attempts to change the chemical composition or add some doping agents
to the catalyst’s composition have not been successful until now [25,26].

A catalytic bed consisting of small particles of the pure catalyst provides good per-
meability for cold gas flow, and microwave radiation supports heat release directly inside
the catalytic particles. Therefore, the idea of this work was to monitor a possible role of
the in situ microwave treatment of the Mo-V-Te-Nb-Ox catalyst bed in ODE in search of a
possible improvement of the process activity/selectivity.

2. Results
2.1. Catalyst Characterization

The crystallinity and phase composition of the catalyst was determined by X-ray
diffraction (2θ range of 5◦ to 60◦). XRD analysis of the catalyst was obtained (Figure 1), and
post-catalytic tests are identical and indicate the presence of a well-crystallized mixture
of M1 and M2 phases in accordance with the literature data [27]. It is known from the
literature that the active and selective catalysts of the MoVTeNb composition are a mixture
of two crystalline phases (M1 + M2) and may also contain a small number of amorphous
impurities [17].
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the Supplementary Materials (Figure S1). The surface area of the catalyst determined by 
the BET method (Brunauer–Emmett–Teller) is 9.1 m2/g, which is also consistent with the 
literature data [17,27]. The sample contains mainly mesopores. The mesopore size distri-
bution for the Mo-V-Te-Nb-O catalyst (calculation by the BJH (Barrett, Joyner, and 
Halenda) method, desorption branch of the isotherm) is shown in Figure S2. The shape of 
the N2 adsorption isotherm at high relative pressures shows that there are macropores in 
the sample that are not determined by nitrogen adsorption. 
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—characteristic peaks of the hexagonal phase (M2).

The N2 adsorption isotherms measured at −196 ◦C for the catalysts are presented
in the Supplementary Materials (Figure S1). The surface area of the catalyst determined
by the BET method (Brunauer–Emmett–Teller) is 9.1 m2/g, which is also consistent with
the literature data [17,27]. The sample contains mainly mesopores. The mesopore size
distribution for the Mo-V-Te-Nb-O catalyst (calculation by the BJH (Barrett, Joyner, and
Halenda) method, desorption branch of the isotherm) is shown in Figure S2. The shape of
the N2 adsorption isotherm at high relative pressures shows that there are macropores in
the sample that are not determined by nitrogen adsorption.

The elemental composition of the catalysts obtained by the EDX method is presented
in Table 1. A micrograph of the sample is presented in Figure 2.
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Table 1. The elemental composition of the catalysts obtained by the EDX method (at. %).

Spectrum Mo V Te Nb O

1 17.88 5.72 2.25 1.82 72.32
2 17.15 5.59 2.29 1.83 73.13
3 16.61 5.33 2.24 1.72 74.10

Average 17.21 5.55 2.26 1.79 73.18

Standard
deviation 0.64 0.20 0.03 0.06 0.89

Max. 17.88 5.72 2.29 1.83 74.10
Min. 16.61 5.33 2.2 1.72 72.32
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Figure 2. A micrograph of the catalyst sample. The selected areas (1–3) on the surface of the catalyst
were used to determine the composition by the EDX method and correspond to spectra 1–3 in Table 1.

The study of the catalyst surface by the EDX method shows that its composition is
fairly homogeneous. In the three selected areas, the maximum standard deviation of the
composition for four elements (Mo, V, Te, and Nb) is 0.64 at. %.

According to the results of the EDX study, the composition of the catalyst corre-
sponds to the composition determined by the ratio of precursors at the preparation stage:
MoV0.32Nb0.11Te0.13O4.25. EDX mapping has revealed a uniform distribution of elements
over the crystal phase of catalysts (Figure S3).

The XPS analysis demonstrates the presence of Mo, Nb, V, Te, and O. The calculated
formula of the catalyst composition (per 1 Mo atom) is MoV0.30Nb0.11Te0.13O4.29. XPS
spectra in the regions characteristic of Mo, V, and Nb are presented in SI (Figure S4). Table 2
summarizes the binding energies and oxidation states of the elements in the MoVTeNbO
catalyst. The results obtained show that all elements are in the highest oxidation states.
After treatment with microwave radiation, the oxidation state of the elements in the catalyst
does not change (Figure S4).
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Table 2. Binding energies and oxidation states of the elements in the MoVTeNbO catalyst.

XPS Line Binding Energy, eV State

Mo 3d5/2 233.2 Mo+6

Nb 3d5/2 207.4 Nb+5

V 2p3/2 517.1 V+5

Te 3d5/2 577.0 Te+6

It should be noted that there is a good agreement between the results of determining
the composition of the catalyst obtained using “surface science” methods (EDX, XPS), as
well as the composition of the catalyst, determined using the ICP OES method.

2.2. Catalyst Testing

The reaction under study is exothermic, and heat release inside the bed of the undi-
luted catalyst working in the undiluted gas mixture can cause some additional rise in the
temperature. However, the use of the embedded thermocouple permits us to measure quite
precisely the average temperature inside the catalyst bed, as it was demonstrated in the
preliminary testing of the catalyst mw-heating in air. Therefore, the results of the catalytic
testing of the Mo-V-Te-Nb-Ox sample with mw-heating in the quartz reactor can be pre-
sented as temperature dependences (Figures 3 and 4, Table 3). The results of conventional
testing, with the heating of the sample by an outer oven, are presented for comparison in
Figure 5. The long-term testing of the catalyst demonstrated that after 10 h of work, the
conversion of ethane decreases from 30 to 28% without any selectivity loss.

Nanomaterials 2022, 12, x FOR PEER REVIEW 4 of 9 
 

 

Mo 3d5/2 233.2 Mo+6 
Nb 3d5/2 207.4 Nb+5 
V 2p3/2 517.1 V+5 
Te 3d5/2 577.0 Te+6 

It should be noted that there is a good agreement between the results of determining 
the composition of the catalyst obtained using “surface science” methods (EDX, XPS), as 
well as the composition of the catalyst, determined using the ICP OES method. 

2.2. Catalyst Testing 
The reaction under study is exothermic, and heat release inside the bed of the undi-

luted catalyst working in the undiluted gas mixture can cause some additional rise in the 
temperature. However, the use of the embedded thermocouple permits us to measure 
quite precisely the average temperature inside the catalyst bed, as it was demonstrated in 
the preliminary testing of the catalyst mw-heating in air. Therefore, the results of the cat-
alytic testing of the Mo-V-Te-Nb-Ox sample with mw-heating in the quartz reactor can be 
presented as temperature dependences (Figures 3 and 4, Table 3). The results of conven-
tional testing, with the heating of the sample by an outer oven, are presented for compar-
ison in Figure 5. The long-term testing of the catalyst demonstrated that after 10 h of work, 
the conversion of ethane decreases from 30 to 28% without any selectivity loss. 

 
(a) 

 
(b) 

Figure 3. ODE with mw-heating of the undiluted sample Mo-V-Te-Nb-Ox (0.37 g; 0.3 cc): (a)—con-
version of reagents; (b)—selectivity of C2H4 formation; gas mixture [75%C2H6+25%O2], flow rate = 
660 cm3/h, GHSV = 2200 h−1. 

  

0

20

40

60

80

100

150 200 250 300 350 400

C
on

ve
rs

io
n,

 %

Temperature, oC
Ethane Oxygen

Figure 3. ODE with mw-heating of the undiluted sample Mo-V-Te-Nb-Ox (0.37 g; 0.3 cc):
(a)—conversion of reagents; (b)—selectivity of C2H4 formation; gas mixture [75%C2H6 + 25%O2],
flow rate = 660 cm3/h, GHSV = 2200 h−1.
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Table 3. Temperatures of X%-conversion of ethane (T) and corresponding values of selectivity of
ethylene formation (S) on the catalyst Mo1V0.3Te0.13Nb0.11Ox tested in different conditions.

X, %
Oven Heated mw-1 (Pure) mw-2 (Diluted)

T, 0C S, % T, 0C S, % T, 0C S, %

10 320 98.8 223 98.7 305 98.8
15 338 98.6 233 98.2 328 98.6
20 348 98.4 242 97.5 340 98.2
25 357 98.1 250 96.8 351 97.9
30 364 97.8 258 96.0 362 97.7
35 371 97.3 267 95.2 370 97.0
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3. Discussion

The results of the physico-chemical study indicate that mw-irradiation does not affect
the catalyst structure (phase composition, crystallinity, surface area, element composition,
and oxidation state). As to the thermal treatment, some destruction of the catalyst was
observed at temperatures above 450 ◦C.

A comparison of the conversion curves (Figures 3a, 4a and 5a) demonstrates a rather
strong positive effect of mw-heating: the catalytic process is shifted by ~100 ◦C to lower
temperatures. Therefore, the process of the oxidative dehydrogenation of ethane to ethylene
on the Mo-V-Te-Nb-Ox catalyst can be realized under milder conditions.

However, it is necessary to take into account that the mw-heating of the granulated
layer of mw-absorbing material, Mo1V0.3Te0.13Nb0.11Ox, causes heat recovery directly inside
the catalyst particles, with further heat dissipation to the cold gas flowing inside the reactor.
In other words, the system under investigation demonstrates the mosaic distribution
of temperatures throughout the bed, and the embedded thermocouple measures some
averaged (integrated) values (Figures 3 and 4). As a result, a direct comparison of these
data with results obtained under the conditions of a uniform temperature field (Figure 5)
is complicated.

On the other hand, the properties of the samples working in different heating condi-
tions can be compared qualitatively by plotting the results as a dependence of the activ-
ity/selectivity vs. ethane conversion (Table 2). From these data, one can see that in cases of
mw-heating, the rise in the conversion is accompanied by a gradual loss in the selectivity
being quite similar to one observed upon external oven heating (Table 2). Consequently,
even when mw-heating the pure Mo1V0.3Te0.12Nb0.15Ox, no measurable improvement of
the process selectivity can be achieved
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4. Materials and Methods
4.1. Catalyst Preparation

The 4-component Mo1V0.3Te0.13Nb0.11Ox sample was synthesized hydrothermally
according to Finashina et al. [18]. Washed and dried powder was calcined in pure N2 at
600 ◦C, then pressed, crushed, and sieved to obtain the fraction 0.3–0.5 mm. The charge
of the sample (~0.3 cc, 370 mg) was placed for catalytic testing in the middle of a quartz
tube (inner diameter 7 mm) and plugged from both sides by quartz wool. After the first
set of catalytic testing, the catalyst charge was unloaded, mixed with a portion of crushed
quartz (same fraction 0.3–0.5 mm; 1:1 by volume), and placed back into the micro-reactor
for repeated catalytic testing.

4.2. Catalyst Testing

The aim of this work was to perform a comparative study in the ODE of pure
and diluted Mo-V-Te-Nb-Ox catalysts under conditions of conventional thermal or mi-
crowave heating.

To conduct the reaction under conditions of microwave heating, the quartz reactor
was placed into a cylindrical metallic resonator (working frequency ~3.8 GHz) connected
to a laboratory microwave setup (maximum output power 50 W). The use of the resonator
device permitted us to concentrate mw-power inside the reactor zone, providing extremely
high efficiency of power absorption (close to 98%). Therefore, the catalyst bed was heated by
mw-power in the middle of the resonator connected by waveguides with a G4-80 microwave
generator (2.5–4.0 GHz range of working frequencies) and power amplifier. The average
temperature inside the catalyst layer was measured using a thin embedded thermocouple
connected to an M5-78V thermoelectric converter. The mw-heating of the thermocouple
itself in the empty reactor was negligible. The temperature of the catalyst was regulated by
varying both the microwave radiation frequency and power.

As to the gas flow, the catalyst was tested at an atmospheric pressure in the gas
mixture [75% C2H6 + 25% O2] at the gas flow rate of 2200–2500 h−1. For this gas mixture,
the conversion of ethane theoretically can reach ~66% (at 100% selectivity and complete O2
consumption). In our tests, the ethane conversion was kept at a level <40% to avoid the
complete removal of the oxidant from the gas phase.

The probes of the outgoing flow were analyzed by gas chromatography. Ethane,
ethylene, water, O2, and CO2 were detected as the main components of the mixture, with
a trace admixture of acetic acid. The undiluted catalyst (mw-1) was tested first, and then
measurements were repeated with the sample diluted by quartz (1:1 by vol.) (mw-2).

4.3. Catalyst Characterization

XRD. The phase composition of the materials was studied by X-ray diffraction (XRD)
analysis. X-ray diffraction patterns were recorded using an ARL X’TRA diffractometer
(Thermo Fisher Scientific, Basel, Switzerland) with CuKα radiation (40 kV, 40 mA) with a
scanning rate of 1.2◦ per minute over the scanning range of 5 < 2θ < 60◦. ICCD data were
used for the identification purpose.

N2 adsorption−desorption analysis was conducted using an ASAP 2020 Accelerated
Surface Area and Porosimetry instrument (Micromeritics, Unterschleißheim, Germany)
equipped with an automated surface area measurement unit at −196 ◦C using BET calcula-
tions for the surface area.

SEM-EDX. The morphology, particle size, and elemental composition on the catalyst
surface were studied via scanning electron microscopy (SEM) using an LEO EVO 50 XVP
electron microscope (Carl Zeiss, Aalen, Germany) equipped with an INCA Energy 350
energy dispersive spectrometer (Oxford Instruments, Abingdon, Great Britain).

XPS. The oxidation states of the elements in the MoVTeNbO catalyst were determined
by XPS. The spectra were measured using a Kratos Axis Ultra DLD spectrometer with
Al-Kα irradiation (E = 1486.6 eV). The C1s (285.0 eV) line was used for calibration.
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ICP-OES. The contents of the elements in the catalysts were determined by inductively
coupled plasma-optical emission spectrometry (ICP-OES) with a Varian 715-ES spectrome-
ter after the dissolution of the solid sample in an acid mixture of HNO3:HF:HCl in a 1:1:3
volume ratio.

5. Conclusions

Thus, an energy-saving approach with the mw-heating of the catalytic bed provides
a considerable lowering of the averaged reactor temperature but is unable to change the
selectivity of the catalyst working in a non-uniform temperature field.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12244459/s1, Figure S1: N2 adsorption isotherm; Figure S2:
Mesopore size distribution for the Mo-V-Te-Nb-O catalyst (calculation by the BJH method, desorption
branch of the isotherm); Figure S3: Elements distribution over the crystal phase in the Mo-V-Te-Nb-O
catalyst (by EDX); Figure S4: XPS of the MoVTeNbO catalyst: Nb 3d (a), V 2p (b), Mo 3d (c), and Te
3d (d).
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