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Abstract: Current–voltage characteristics of a quantum dot in double-barrier configuration, as formed
in the nanoscale channel of silicon transistors, were analyzed both experimentally and theoretically.
Single electron transistors (SET) made in a SOI-FET configuration using silicon quantum dot as well
as phosphorus donor quantum dots were experimentally investigated. These devices exhibited a
quantum Coulomb blockade phenomenon along with a detectable effect of variable tunnel barriers.
To replicate the experimental results, we developed a generalized formalism for the tunnel-barrier
dependent quantum Coulomb blockade by modifying the rate-equation approach. We qualitatively
replicate the experimental results with numerical calculation using this formalism for two and three
energy levels participated in the tunneling transport. The new formalism supports the features of
most of the small-scaled SET devices.

Keywords: quantum dot; donor atom transistor; single electron transistor; Coulomb blockade;
variable tunnel barrier

1. Introduction

Advancement in nano-fabrication techniques for the development of silicon (Si)
nanoscale devices has provided a valuable platform for the realization and investigation of
sophisticated devices that can transfer electrons with higher efficiency and accuracy than
the typical metal-oxide-semiconductor field-effect transistors (MOSFETs) [1–6]. Some of
these devices, namely the single-electron transistors (SETs), exploit the physics of Coulomb
blockade (CB) as the basic operational principle. These exotic devices can have target
functionalities towards logic circuits [7], single-electron memories [8], single-charge sens-
ing [9], charge- and spin-based quantum computing [10,11], single electron pump [12],
single photon detector [13], highly sensitive biosensors [14], etc. A double-barrier quantum
dot (QD) geometry formed within such SETs can periodically suppress single electron
transfer due to the subsequent charging energy. This phenomenon is generally known
as the Coulomb blockade [15–18]. Initially, SETs were studied in metallic QDs, where
the discreteness of the energy levels within the QD can be ignored [19–23]. However, in
nanoscale semiconductor-based SETs, where the energy separation between successive
discrete energy levels within the QD is comparable to or higher than the thermal energy,
the scenario is different from the classical Coulomb blockade and is known as quantum
Coulomb blockade (QCB). In this QCB regime, single electron passes through discrete
energy levels of the QD. Such phenomenon is generally observed for nano-scaled SET
devices fabricated in two-dimensional electron gas (2DEG) systems, semiconductor QDs
and dopants as QDs [24–29].

The initial theoretical framework for QCB had been put forward by C.W.J. Beenakkar [30],
which is valid mainly for the linear-response regime. The general procedure to analyze the
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nonlinear regime was pioneered and carried out previously using rate-equation approach
for the SETs with QDs in infinite-barrier configurations [29,31,32]. However, practical SETs
have finite potential barriers, and the gate also typically tunes the heights of the tunnel
barriers due to limitations of the nano-fabrication techniques. Several experimental reports
have already shown the effects of gate-dependent potential barriers [9,33–39]. However,
the theoretical formalism for describing such results has still not been explored sufficiently
and its numerical model still requires further development.

In this article, we present example of variable barrier in experimental results for
devices with QDs formed in the Si nanoscale channels along with an extended theoretical
treatment of the rate-equation approach to apply this to the quantum Coulomb blockade
regime for SETs with variable tunnel barriers. Starting from the Hamiltonian for a QD
coupled to source, drain and gate electrodes, we review the tunneling rates via each
tunnel junctions, discussing in detail the assumptions and our notations under which
this approach has significant accuracy. We also extend the rate-equation approach for the
observation of quantum Coulomb blockade phenomenon in an N-level QD system having
constant and variable tunnel barrier and finally, the numerical models for such systems are
outlined comparatively.

2. Materials and Methods
2.1. Experimental Devices

We present experimental result for two devices, namely Device-A and Device-B. All
devices are fabricated in silicon-on-insulator (SOI) substrates, using standard comple-
mentary metal-oxide-semiconductor (CMOS) fabrication processes, as described in other
works [36,37,39]. The SOI substrates used here had a top Si-layer with a thickness tSOI ≈ 10 nm
and a gate oxide with a thickness tox ≈ 10 nm, while the source, drain and gate electrodes
are formed by aluminum contact.

Figure 1a shows the channel region of Device-A, which represents a nanoscale SOI-FET
having no intentional doping in the channel region. However, some degree of surface
roughness may induce broad QDs in the channel, with potential wells schematically shown
in Figure 1b. Figure 1c shows the channel region of another device (Device-B) having
uniform phosphorus (P) doping (ND ≈ 1 × 1018 cm−3) in the channel region, along with
the source and drain leads. Similar doping condition is valid for the source and drain leads
for Device-A. The potential wells induced by several ionized P−donors in the channel are
schematically illustrated in Figure 1d. Considering the channel dimensions and dopant
concentration, it is estimated that around 5 P−donors are present in the channel (labeled as
Pi, with i = 1–5).
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Figure 1. (a,b) Schematic device structure and schematic potential configuration of Device-A (with a
nominally undoped nanoscale channel). (c,d) Schematic device structure and schematic potential
configuration of Device-B (with uniformly doped channel).
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2.2. Device Configuration for Theoretical Calculations

The primary interest of this report is to solve the tunneling current through a semi-
conductor SET operating in the quantum regime, in a realistic device configuration, as
explained in the previous section. A schematic potential profile of a QD with discrete
energy levels, weakly coupled to the two electron reservoirs via tunnel barriers, in thermal
equilibrium, is shown in Figure 2a. The discreteness of the energy levels in the QD is con-
sidered either in the frame of the quantum-size effect for a situation expected in Device-A
or in the frame of the discrete energy spectrum of P−donors for cases such as expected
in Device-B. The equivalent electrical circuit under consideration is shown schematically
in Figure 2b, together with the applied bias voltage VDS and the gate voltage VG. Both
reservoirs and gate electrode are capacitively connected to the QD through capacitances CS,
CD, and CG, respectively, with the total capacitance of the system being: C∑ = CS + CD + CG.
In this device, the transfer of electrons from reservoirs to the QD or vice versa is governed
mainly by the potential differences between the leads and the QD. We chose the reference
electrostatic potential in such a way that the energy levels in the QD are independent of
the bias voltages [32]. On the contrary, the Fermi energies of the leads are described as a
function of the different capacitances and applied voltages as:

EF
S = e

2CD + CG

2CΣ
VDS − e

CG

CΣ
VG (1a)

EF
D = −e

2CS + CG

2CΣ
VDS − e

CG

CΣ
VG (1b)
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Figure 2. (a) Schematic potential diagram of a double-barrier QD system with the tunnel barriers also
controlled by the gate voltage. (b) Equivalent electrical circuit model of a QD in the double-barrier
configuration with symmetric bias.

We define the problem under the conditions that ensure the observation of quantum
transport features: (a) thermal energy (kBT) is much smaller than the level spacing (∆) of the
QD, while this level spacing itself must be smaller than the charging energy (EC = e2/2C∑)
of the QD; (b) tunnel resistance (Rt) of both barriers is greater than quantum resistance
(h/e2 = 25.81 kΩ) which ensures suppression of the higher-order tunneling processes; (c)
a continuum of states in both electron reservoirs is assumed, ensuring the absence of
discreteness in the local density of states (LDOS) of the leads [1]. Moreover, all types of
internal relaxations and electron-electron interactions within the QD are also neglected in
this model.
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2.3. Theoretical Formalism

The description of the tunneling transport through a QD is performed using the
Anderson Hamiltonian of a QD having single-particle energy levels connected to electron
reservoirs (source and drain) [31,32,40]:

H = HDot + HS(D) + HT (2)

where the Hamiltonian for coupling of the QD to source and drain reservoirs is HT, while
the Hamiltonians for an ideal, isolated QD and for the source (drain) reservoirs are HDot
and HS(D), respectively. Here:

HS(D) = ∑
kσ,i∈S(D)

εkic†
kσickσi (3a)

HDot = ∑
lσ

εlσjb†
lσjblσj + ECNe

2 + NeUext (3b)

HT = ∑
i∈S(D)

∑
klσ

Tklσ,ic†
kσiblσj + (h.c) (3c)

HT = ∑
i∈S(D)

∑
kσ,ψφ

Tkσ,ψφ,ic†
kσi|ψ〉〈φ|+ (h.c) (3d)

Tkσ.ψφ = ∑
l

Tklσ,i

〈
ψ
∣∣∣blσj

∣∣∣φ〉 (3e)

Here εij (eV) are the single-particle states of the QD, whereas |ψ〉 is the many-body
eigenstate of the QD, differing from |φ〉 by a single extra electron on the jth level. In
addition, Uext = ∑

r∈S,D,G
CrVr/CΣ defines the electrostatic work performed to add extra

electrons Ne into the QD.
Following the Fermi golden rule for the total transition rate governed by transition

matrix T between the QD’s energy level and the reservoir:

Γ =
2π
} ∑ |〈ψfinal|T|ψinitial〉|2δ(εinitial − εfinal) (4)

We obtain the tunneling rate from QD to reservoir or vice-versa as [31]:

γφ→ψ, i =
2π
} ∑

kσ
f (εki)

∣∣∣T∗kσ,φψ,i

∣∣∣2δ(εψ − εφ − εk,i − eVi) (5a)

γψ→φ, i =
2π
} ∑

kσ
(1− f (εki))

∣∣Tkσ,ψφ,i
∣∣2δ(εψ − εφ + εk,i + eVi) (5b)

Considering a symmetric-bias configuration, Vi(S,D) =
VDS

2

(
−VDS

2

)
, the total tunneling

rates can be finally written as [32]:

Wφ→ψ,j = ΓS
j f
(

ε̃ j–EF
S

)(
2− nj

)
+ ΓD

j f
(

ε̃ j–EF
D

)(
2− nj

)
(6a)

Wψ→φ,j = ΓS
j

[
1− f

(
ε̃ j–EF

S

)](
nj
)
+ ΓD

j

[
1− f

(
ε̃ j–EF

D

)](
nj
)

(6b)

Here, W is the total tunnel rate via the jth single-particle energy level for adding an
extra electron to configuration |φ〉 at the jth level, with occupation number (nj = either ′0′

or ′1′) and energy redefined as ε̃ j = ε j + EC (eV), connected to both the reservoirs. Here,
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Γ
S (D)
j is the bare tunneling rate of the respective energy level coupled with source (drain),

whereas ′ f (x)′ defines the Fermi function at the temperature T:

f (x) =
1(

1 + e
x

kBT
)

All the tunnel rates W, Γ, and γ bear the same unit, s−1.
The generalized total transition rates, as described in Equation (6a,b), are utilized and

analyzed for two possible situations:

(i) For infinitely high tunnel barriers, it would suffice to consider Γ
S (D)
j = ΓS(D) = constant.

(ii) For finite and bias-dependent barrier, the bare tunneling rate is varying with the bias
voltage as presented below:

ΓS(D)
j =

1
Rt(j)e2

ε j – EF
S(D)

1− exp
(

β(ε j – EF
S(D)

)
) (7)

with Rt(j) (Ω) being the barrier resistance dependent on the energy levels.
Following the rate equation method, the occupation probability (P) can be represented

as [41]:
dPφ
dt

= ∑
ψ

Wψ→φPψ −Wφ→ψPφ (8)

The steady state occupation probabilities P can be found by iterating Equation (8) with
the normalization conditions, ∑

φ
Pφ = 1and dP/dt = W.P = 0.

To solve for the occupation probabilities of each configuration|ϕ〉 for a particular
bias and gate voltage, the current through either of the barriers can be calculated using
Equations (6)–(8). Steady-state current through both the junctions should be equal for
symmetric-barrier configurations and is given by:

IS = |e|∑
φ

∑
ψ

WS
φ→ψPφ (9)

In case of N accessible energy levels in the QD within the bias window of the SET
device, Equation (8) can be generalized as:

−∑N
j=1 W0→1,j W1→0,1 W1→0,2 W1→0,3 . . . W1→0,N

W0→1,1 −W1→0,1 0 0 . . . 0
W0→1,2 0 −W1→0,2 0 . . . 0
W0→1,3 0 0 −W1→0,3 . . . 0

. . . . . . . .

. . . . . . . .

. . . . . . . .
W0→1,N 0 0 0 . . . −W1→0,N

.





P0
P1
P2
P3
.
.
.

PN


= 0 (10)

where Pj =

W01_j ∏N

m = 1
m 6= j

W10_j

Wsum
are the corresponding occupation probabilities of the jth

electronic level with

Wsum =
N

∑
j=1

N

∏
m 6=j

Wφ→ψ, mWψ→φ, j +
N

∏
j=1

Wφ→ψ, j
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In order to understand the underlying physics behind the above formalism better
and to visualize the scenarios described by these equations, we discuss some simple
implementations of the approach in Section 3.2, starting with a few experimental results
that can be explained by such a formalism in Section 3.1.

3. Results and Discussion
3.1. Experimental Evidences for the Effect of Variable Tunnel Barriers of a QD

The structures and technical details for the devices experimentally studied in this
work, specifically, SOI-FETs with undoped channel (Device-A) or uniformly-doped channel
(Device-B) are explained in Figure 1. As mentioned earlier, in Device A, although having
the channel nominally undoped, QDs may be induced by some degree of roughness in the
channel region. This is depicted as QD1 and QD2 in Figure 1a and as broader potential
wells in Figure 1b. ID−VG characteristics measured at low-temperature (5 K) for Device-A
are presented in Figure 3a. In this figure, SET current peaks can be identified, labeled as a1,
a2, a3, a4, b1, and b2. Each of these current peaks has several associated sub-peaks. For a1–a4
peaks, the gap between consecutive subpeaks (∆1) is ~22 ± 3 mV, while for b1, b2 peaks, the
same gap (∆2) is ~50 ± 2 mV. These associated subpeaks are most likely due to transport
mediated by the excited states of their respective QD [42]. Hence, it is reasonable to assume
that the a1–a4 peaks are associated with QD1, while the b1 and b2 peaks are associated with
QD2. The gap between a1 and a2 (EC1) is 139 ± 3 mV. Similar gap is observed between a3
and a4. The energy gap between a2 and a3 is 160 ± 2 mV, which is also the sum of EC1 and
∆1. This is the clear indication of quantum Coulomb blockade phenomenon.

In addition, we observed that the current intensity is gradually increased while we
move from a1 toward a4 peaks, which strongly suggests gradual increment of the tunnel rate
with increasing gate voltage. The relation between a1–a4 peaks is schematically presented
in Figure 3b in correlation with a simplified representation of transport and electrical
characteristics. This simplified picture is emphasizing the expected behavior under the
observation of variable-barrier quantum Coulomb blockade in the QD1 system.

The ID−VG characteristic of Device-B measured at T = 6 K is presented in Figure 3c. The
device configuration of Device-B is basically uniformly doped MOSFET in SOI configuration
as presented in Figure 1d. Five single-electron-current peaks are observed with irregular
spacing before the onset of FET current. These current peaks are separated by Coulomb
energy. The spacing between these current peaks are irregular, which generally originated
from different quantum dots. Considering the devices configuration of the Device-B, these
quantum dots are most likely due to donor present (P−donor in this case) in the channel
region of the device as reported earlier [37–39,43]. Due to the different positions of the
donor atoms in the channel region, all donors have different barrier parameters and that
can be controlled by the gate voltage. The origin of five SET peaks can be directly correlated
to the existence of 5 P−donors in the channel region of the device as estimated from the
device designing. The schematic dopant distribution and potential configuration of this
device structure are shown in Figure 1c,d. We also observed transport through the excited
state of the donor QD with the average separation of excited state from the ground state of
the donor as 8 ± 2 mV. This separation is tentatively consisted with the energy spectrum of
the P−donor [44]. In addition, we also observed that the heights of the current peaks are
gradually enhanced with the increasing gate voltage. This suggests that the tunneling rates
are also tuned by the gate voltage even in the case of donor-induced QDs.
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electron-tunneling current peaks a1–a4 and b1, b2, likely originated from QD1 and QD2, respectively.
(b) Schematic summarization of tunneling transport through the QD1, suggesting the variable-barrier
QCB. Device B (c) ID−VG plot shows the SET transport through isolated P−donors in uniformly-
doped SOI-FET channels.

3.2. Numerical Analysis of Electron Transport

In this section, we numerically demonstrate the transport properties of the single-QD
based SET device in the QCB regime, under the condition that multiple energy levels
are accessible during the electron transport. After calculation of the generalized transi-
tion matrix and occupation probability, the parameters described earlier will be used for
the study of two-level and three-level cases. For the numerical calculation, we consider
both infinite- (i.e., constant-rate) and variable-barrier conditions for the single electron
tunneling processes.

i. Electron Transport through Two Energy Levels:

The tunneling matrix and probabilities are calculated for the QD coupled to the source
and drain reservoirs, when two energy levels are accessible within the bias window, as
shown in Figure 4a. The two energy levels are marked as ε1 and ε2, corresponding to j = 1
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and j = 2, respectively. The tunneling rates corresponding to the tunneling transition in the
1st charge states are:

W0→1,1 = ΓS
1 2 f

(
ε̃1 – EF

S

)
+ ΓD

1 2 f
(

ε̃1 – EF
D

)
(11)

W0→1,2 = ΓS
2 2 f

(
ε̃2 – EF

S

)
+ ΓD

2 2 f
(

ε̃2 – EF
D

)
(12)

W1→0,1 = ΓS
1

[
1− f

(
ε̃1 – EF

S

)]
+ ΓD

1

[
1− f

(
ε̃1 – EF

D

)]
(13)

W1→0,2 = ΓS
2

[
1− f

(
ε̃2 – EF

S

)]
+ ΓD

2

[
1− f

(
ε̃2 – EF

D

)]
(14)
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After replacing the tunnel rates defined in Equations (11)–(14), the Equation (8) can be
written for the steady-state condition as:−(W0→1, 1 + W0→1, 2) W1→0, 1 W1→0,2

W0→1, 1 −(W1→0, 1) 0
W0→1, 2 0 −(W1→0,2)

P0
P1
P2

=
0

0
0

, (15)
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where P0, P1, and P2 are the occupation probabilities of respective electronic configurations
(0,0), (1,0), and (0,1) as schematically depicted in Figure 4b. These are expressed as:

P0 = (W1→0, 1W1→0, 2)/Wsum (16)

P1 = (W0→1, 1W1→0, 2)/Wsum (17)

P2 = (W1→0, 1W0→1, 2)/Wsum (18)

Wsum = W1→0, 1W1→0, 2 + W0→1, 1W1→0, 2 + W1→0, 1W0→1, 2 (19)

Now, the total tunneling current for this configuration can be described as:

I = −(W0→1,1 + W0→1,2)P0 + (W1→0,1)P1 + (W1→0, 2)P2 (20)

The systematic electron incorporation in this device configuration is schematically
presented in Figure 4c following the quantum Coulomb blockade phenomenon. This
process is considered in the numerical model. We consider a QD with a constant energy
separation between successive states of ∆ = 3 meV and EC = 10.66 meV for numerical
calculation of the characteristics of the device. All these calculations are performed at low
temperature of T = 4 K, comparable to the condition for the experimental data. Here, we
accounted for both situations: (i) the tunneling rate is constant considering the infinite
barrier height and (ii) tunneling rate is varying with the applied gate voltage. For the first
case, the calculated ID-VG characteristic for different charge states is plotted in Figure 4d.
Two separate current sub-peaks within a peak can be assigned to SET transport involving
the ground state and the 1st excited state. The level separation of the sub-peaks, ∆, and an
alternative energy separation of EC and EC + ∆ are clear signatures of quantum Coulomb
blockade. The stability diagram (i.e., the plot of ID in the VG−VDS plane) is shown in
Figure 4e, where the excited-state features are also clearly observed as marked by white
arrows in the first charge state. Successive incorporation of charges in the device is visible
in the stability diagram as Ne changes from 0 to 4.

Now, we discuss about the more realistic situation where the tunnel barriers modulate
according to the biasing condition. The simulated results with the modified formula for
variable tunnel rate as presented in Equation (7) are shown in Figure 4f,g. The impact of
systematic increment of the gate voltage on the tunnel barriers can easily be noticed from
Figure 4f as the systematic increment of the SET current peak heights. This supports the
interpretation of the observed SET current features in our experimental data. The stability
diagram of the device is also simulated and presented as a contour plot of |ID| in VG−VDS
plane (Figure 4g). The systematic enhancement of the current intensity of conducting region
of the stability diagram is clearly visible when Ne changes from 0 to 4, consistent with the
recent experimental observations.

ii. Electron Transport through Three Energy Levels:

In this section, we extend the model for three spin-degenerate states available for
charge transport through the QD. The tunneling probabilities and current are calculated
using the matrix mentioned in the above sections. The simulated ID-VG features for
constant- and variable-height tunnel barriers are presented in Figure 5a,b, respectively. In
each SET current peak, we observed three subpeaks as expected due to the accessibility of
three energy levels in the bias window. The realistic device feature for the variable-height
barrier case is also clearly observed in the Figure 5b. The stability diagram corresponding
to infinite- and variable-height barrier cases are presented in Figure 5c,d, respectively.
The systematic incorporation of additional energy levels in the transport path is depicted
by white arrows in Figure 5c,d. The features of quantum Coulomb blockade and the
differences between infinite- and variable-height barrier configurations are clearly visible in
these figures, confirming the feasibility of our approach towards the qualitative replication
of the experimental data.
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4. Conclusions

We presented low-temperature transport characteristics of nanoscale single-electron
tunneling transistors made in SOI-FET configuration using silicon quantum dots and
P−donor induced QDs. These devices depicted the quantum Coulomb blockade effect
along with the influence of bias dependent tunnel barriers. To support the experimental
findings, a generalized theoretical formalism for variable barrier quantum Coulomb block-
ade phenomenon is developed by modifying the rate equation approach. We emphasized
on the quantum transport regime, showing how the addition energy for successive electron
transfer events oscillates between EC and EC + ∆ correlated to spin degeneracy of the
energy levels along with the modification of tunnel rate due to variation in the tunnel
barrier. To qualitatively reproduce the experimental findings of realistic devices, we have
numerically calculated the current voltage characteristics for the constant and variable
tunnel barrier conditions. We showed that the numerical results for QD with two and
three levels accessible for tunneling transport. The modified theoretical formalism closely
replicates the nano-scaled SET devices fabricated in two-dimensional electron gas (2DEG)
systems, semiconductor QDs, and dopants as QDs.

For the practical operation towards target functionalities, it becomes important to
account for the effect of barrier height in the design of the device geometry. The approach
described here can help to understand such nanoscale devices in a more appropriate
manner, allowing the development of useful functionalities towards low-power electronics,
single-electron memories, or single-charge advanced sensing devices.
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