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Abstract: Hybrid structures often possess superior properties to those of their component materials.
This arises from changes in the structural or physical properties of the new materials. Here, we
investigate the structural, electronic, and gas-adsorption properties of hybrid structures made from
graphene/hexagonal boron nitride and 2H-molybdenum disulfide (G/BN@MoS2) monolayers. We
consider hybrid systems in which the G/BN patch is at the Mo plane (model I) and the S plane
(model II). We find that the implanted hexagon of G or BN in MoS2 alters its electronic properties:
G@MoS2 (I,II) are metallic, while BN@MoS2 (I) is an n-type conducting and BN@MoS2 (II) is semicon-
ducting. We study the molecular adsorption of some diatomic gases (H2, OH, N2, NO, CO), triatomic
gases (CO2, NO2, H2S, SO2), and polyatomic gases (COOH, CH4, and NH3) on our hybrid structures
while considering multiple initial adsorption sites. Our results suggest that the hybrid systems may be
suitable materials for some applications: G@MOS2 (I) for oxygen reduction reactions, BN@MoS2 (I,II)
for NH3-based hydrogen production, and G@MoS2 (I) and BN@MoS2 (I,II) for filtration of No, Co,
SO2, H2S, and NO2.

Keywords: transition metal dichalcogenides; boron nitride; graphene; hybrid structures; molecular
adsorption; density functional theory

1. Introduction

The dimensionality of material structures plays an important role in determining
their physical and chemical properties [1]. Two-dimensional (2D) materials have attracted
considerable attention in improving the performance of electronic and optoelectronic
devices [2,3]. In recent years, many studies focused on 2D materials such as graphene (G) [4],
hexagonal boron nitride (h-BN (BN)) [5], graphitic carbon nitride [6,7], phosphorene [8],
MoSi2N4 [9,10], PdPSe [11], and other materials.

Transition metal dichalcogenides (TMDs, e.g., MoS2) are 2D layered structures with many
applications in electronics [1]. Due to an intrinsic band gap ranging from 0.4–3.1 eV [12,13], they
have recently received much attention. Furthermore, TMDs monolayers can possess high
mobility for charge carriers at room temperature, which makes them attractive materials
for optoelectronics and energy-harvesting applications [14].

Molybdenum disulfide monolayers, TMD-(MoS2), have two phases 2H-MoS2 (two
layers per hexagonal unit cell) or 1T-MoS2 (one layer per trigonal unit cell). Several
experimental techniques can change the physical and chemical properties of the MoS2
structure: doping [15], surface functionalization by metal atoms [16], ion bombardment [17],
and defect formation [18]. Density functional theory (DFT) is widely used to investigate
the effect of substitutional doping with nonmetal, halogen, and transition atoms [19,20] on
the electronic and magnetic properties of 2H-MoS2. The ferromagnetic behavior of Co- [21]
and Fe- [22] doped MoS2 monolayer were demonstrated. Furthermore, it is found that the
substitutional doping of MoS2 can enhance its electrochemical catalytic response [23].
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Heterostructures have also been studied experimentally and theoretically, as they may
help tailor material properties to specific applications. A hybrid made from G patched by
BN has been successfully fabricated and was found to possess an electronic gap [24–26].
Such periodic structural defects may lead to two enhancements in a material’s electronic
properties: (1) they may cause a change in the conducting state of the structure (e.g.,
semiconductor to metal), because of the redistribution of some of the electronic states
resulting from interaction between the constituents of the hybrid, and (2) the interface
between the constituents may form electrostatic traps which can be utilized for molecular
adsorption properties of the material.

By using a hydrothermal method, heterostructures of MoS2/G [27], MoS2/WS2 [28],
MoSSe/MoS2 [29], MoS2/WSe2 [30], NiTe2/MoS2 [31], and TiO2/MoS2 [32] were suc-
cessfully synthesized. In-plane 1T-/2H-MoS2 heterostructures were experimentally and
theoretically studied, and were found to be effective for ion storage, photodegradation, and
hydrogen evolution reaction [33–35]. Furthermore, the electronic properties of MoS2/BN
and MoS2/G, MoS2/MoSi2N4 layered heterostructures were investigated under an external
electric field and a strain potential [36].

Hybrid structures can be built between 1D and 2D material platforms (no constraint
of lattice matching) such as carbon nanotubes with MoS2 monolayer [37]. A hybrid of
Au nanoflakes mixed with MoS2 monolayer was prepared [38]. Additionally, the ZnO
nano particles on the MoS2 monolayer were synthesized and the enhanced Raman and
photoluminescence emissions were observed [39]. Additionally, the composite of MXene-
Graphene/Hexagonal-Boron Nitride Structures was recently studied [40].

In this work, we investigate the structure and electronic properties of hybrid G/BN@2H-
MoS2 monolayers using first principles calculations. The hybrid structures are constructed
from a monolayer of 2H-MoS2 with an embedded patch of G or BN in the Mo or S layers.
We also investigate the adsorption of H2, OH, N2, NO, CO, CO2, NO2, H2S, SO2, COOH,
CH4, and NH3 on the considered hybrid structures.

2. Computational Methods

All calculations are performed using density functional theory (DFT) on the basis of
the projector augmented wave method (quantum espresso package) [41]. First, the energies
and wave functions are calculated within the generalized gradient approximation (the
Perdew–Burke–Ernzerhof exchange–correlation functional) [42]. The cell-volume and ionic
position relaxations of all structures are carried out until all the atomic forces on each
ion are less than 10−4 eV/Å. A vacuum region of ~ 16 Å is used to avoid the interaction
between the layers in the z-direction. We use norm-conserving pseudopotentials with a
50 Ry energy cutoff and a 9 × 9 × 1 k-point grid. The valence electron configurations 4s2

4p6 4d5 5s1 for Mo and 3s2 3p4 for S atoms are used to calculate their potentials. The Van
der Waals correction is considered [43]. A 6 × 6 × 1 G/BN@MoS2 supercell is created
by embedding a patch of graphene/BN into MoS2 monolayer. Löwdin charges are used
to calculate the charge transfer between the monolayers and molecules. Spin-polarized
calculations show that all the considered heterostructures in this study are nonmagnetic.
The stability of the considered hybrid structures is estimated by calculating their formation
energies (Eform) using the following equation:

E f orm =
Ehyb − EMoS − Epat

nhyb (1)

where Ehyb and EMoS (nMoEMo + nSES) are the total energy of the hybrid sheet and the total
energy of the constituent atoms of the sheet, respectively, with a total number of the atoms
in the hybrid structure (nhyb). The energy of the patch is Epat = nC EC for the G-patch and
Epat = nB EB + nNEN for the h-BN-patch, where nx is the total number of the x atom (x = Mo,
S, C, B, N). The adsorption energy (Eads) of a molecule on a sheet is calculated by:

Eads = Esheet+molecule − Esheet − Emolecule , (2)
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where Esheet+molecule, Esheeat and Emolecule are the total energies of the sheet with the adsorbed
molecule, the sheet, and the isolated molecule, respectively.

3. Structural and Electronic Properties of Hybrid Monolayers

To investigate the effect of G and BN patches on the electronic properties of the MoS2
sheet, we first calculate the structural parameters and electronic properties of the pristine
MoS2 sheet to establish a reference. The lattice constant of the optimized structure is 3.22 Å
with an S-Mo bond length of 2.42 Å, which agrees well with the corresponding experimental
values of 3.18 Å and 2.41 Å (2.41 Å) [44].

Now, we investigate the effect of G-patch on the structural properties of the MoS2 sheet.
Interface models with different edge terminations (Mo or S) have been considered [45]. The
electronic properties are found to be strongly dependent on the termination, which can
be correlated with the existence of polar C-Mo bonds or defects caused by the C-S bonds
at the interface. The two relaxed G@2H-MoS2 structures are shown in (Figure 1b,c). The
first hybrid structure (Figure 1b), built by removing one Mo atom and six S atoms has the
G-patch connected to Mo atoms. The other hybrid structure is created when the G-patch is
formed in the S layer, after the removal of 3 S atoms, giving a total number of 111 atoms in
the supercell (Figure 1c). The patch’s boundary constitutes the main defect in the MoS2
monolayer, which may change the physical and/or chemical properties of MoS2. Structural
relaxation yields a local symmetric distortion in the Mo sites surrounding the carbon atoms.
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The Mo–Mo distance decreases from 3.22 Å to 3.02 Å with no significant change in the
Mo-S bonds (~2.41 Å) for hybrid and pristine cases. The C-C bond length in the hybrid
structures is 1.42 Å (1.47 Å) for the first (second) model, which is close to the corresponding
value in pristine graphene (1.42 Å). The average C-Mo and C-S lengths are 2.13 Å and
1.79 Å, respectively, which are smaller than the S-Mo of 2.41 Å due to the small size of the
C atom compared to the S atom.

Turning to the first h-BN@MoS2 hybrid structure (Figure 1d), we see that it is also
slightly buckled with ~0.35 Å, especially inside the BN patch. The average bond length for
Mo–Mo decreases from 3.21 Å to 3.05 Å. The bond length of B-N in the structure is 1.45 Å,
which is the pristine h-BN value [5]. We find the optimized bond lengths for N-Mo and
B-Mo bonds are 2.14 Å and 2.09 Å, respectively. These are smaller than S-Mo (2.41 Å) due
to the small size of the B and N atoms compared to the S atom. The second hybrid structure
(Figure 1e) has an optimized B-N bond length of 1.47 Å, while the N-Mo and B-Mo bond
lengths are 2.21 Å and 2.27 Å, respectively—larger than N-Mo and B-Mo bonds of the first
configuration. We notice that no buckling occurs, which causes the Mo–Mo bond length to
be 3.21 Å. We calculate the formation energy Eform of the hybrid structures using Equation
(1) and find the pristine energy to be −7.09 eV, while the energies of the hybrid structures
range between −7.14 and −7.17 eV, reflecting the stability of the studied hybrid structures.

Now, we discuss the electronic properties of the hybrid structures. To establish a
reference, we first discuss the properties of the pristine MoS2. The DOS of pristine MoS2
is shown in (Figure 2a). The band gap is 1.73 eV, which is in good agreement with the
reported experimental (theoretical) value of 1.80 eV (1.74 eV) [44,46,47]. The electronic
states near the top of the valence band and the bottom of the conduction band are mainly
composed of Mo states which agree with the previous literature [48]. Figure 2b,c show the
DOS/PDOS of hybrid structures (models I and II) of G@2H-MoS2. The G-patch makes
the semiconducting MoS2 metallic sheet. The hexagonal carbon patch disturbs the DOS
of the MoS2 for both hybrid structures, giving rise to midgap states that cover most of the
bandgap region of MoS2. The DOS is also shifted towards lower energy compared to the
pristine structure. The Mo states are dominant among the midgap states (Figure 2b). The
effect of the G-patch in the second configuration, (Figure 2c), is very similar to the first
configuration. At the Fermi energy, the density of states of the second model is larger than
the corresponding states of the first model, which can be attributed to the number of Mo
and S atoms in the second model being larger than in the first model. The DOS of the first
hybrid structure of h-BN@MoS2 is shown in Figure 2d. The Fermi energy is shifted towards
the bottom of the conduction band, which means the hybrid structure is n-type conducting.
The created state narrows the band gap to 0.72 eV compared to the bandgap of the pristine
structure. The Mo states are dominant in the energy range from −1.8 to 2.4 eV. The top
of the valence band and bottom of the conduction band are disturbed compared to the
pristine structure due to the h-BN-patch. For the second configuration (Figure 2e), the effect
of the BN-patch is very similar to the pristine (Figure 2a), which means the hybrid structure
is semiconducting, similar to the pristine. The disturbance appears only at the edge of the
conduction band due to the created states. The Mo states prevail in the energy range of
−1.8 to 3.3 eV. The bandgap becomes 1.2 eV, which is smaller than that of the pristine and
larger than that the corresponding value for the first hybrid configuration.
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4. Molecular Adsorptions

Now, we discuss the adsorption properties of the hybrid sheets compared to the
pristine MoS2. We consider the following gases: diatomic (OH, NO, CO, N2, H2), triatomic
(NO2, H2S, SO2, CO2), tetratomic (COOH, NH3), and polyatomic (CH4). The relaxed
structures are used with distinct starting sites for the adsorption. For the pristine MoS2,
we place the gas on the top of the hollow site (HP), (Figure 3a), which has been shown to
be the most favorable site [49]. For the hybrid structures, we used two starting positions:
the first position on top of the hexagon center of the G/h-BN-patch (HG/HBN) for the first
configuration (Figure 3b,d) and (HGMo/HBMo) for the second configuration (Figure 3c,e).
The starting and ending locations for all adsorbed molecules are shown in Figure 3a–e.
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We started the relaxation from multiple initial positions close to the hexagon center
of the G/BN patch, as well as on the pore edge (including the Mo and S atoms at the
edge, Figure 3). We find that for some molecules, there are multiple final positions. The
adsorption energies of various final locations are discussed below. The adsorption energy
Eads is calculated using Equation (2).

In Figure 4, we show the adsorption results of four molecules. From left to right, the
subfigures show the adsorption energy (first column), the charge transfer between the sheet
and the adsorbent (second column), and the shortest distance between the adsorbent atom
and the sheet atom (third column). Each subfigure considers nine cases: the pristine, and
four hybrid systems, each with two starting locations for the adsorbent. The starting and
ending locations are shown on the adsorption energy subfigures above the bar representing
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the adsorbent, while the shortest distance between the adsorbent atom and the sheet atom
is shown in the corresponding bar in the distance subfigure.
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Figure 4. (a–o) From left to right, the adsorption energy (Ead (eV)), charge transfer (∆Q (e)) and
the and closest distance (D(Å)) between the gas (Xm) and the sheet (Xs) for diatomic gases. From
top to bottom H2, OH, N2, NO, and CO gases are considered. The initial and final positions (Y,
Z) of the adsorbed gases before and after optimization are shown in the adsorption energy figures
(first column).

We first report the bond lengths of the isolated adsorbents. These are 0.75 Å and 0.98 Å
for H2 and OH, respectively, which are similar to experimental values of 0.74 Å [50] and
0.97 Å [51], respectively. After structural optimization, the bond lengths of both molecules
do not change for the pristine and the hybrid structures. The bond lengths of the iso-
lated N2, NO, and CO are 1.09 Å, 1.16 Å, and 1.14 Å, respectively, similar to experimen-
tal bond lengths (1.10 Å, 1.15 Å, and 1.13 Å [51,52], respectively). The bond lengths of
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these molecules do not change on the hybrid structures except for the NO molecule on
G@MoS2 (II), where the N-O length increases to 1.27 Å.

For H2, we find the largest adsorption energy, 0.24 eV at C1, is on the G@MoS2 (II)
sheet. All other hybrid sheets adsorb the H2 molecule by approximately 0.08 eV. Our results
are very close to the previous published results for pristine MoS2 (0.06 eV) [53] and pristine
G (0.08 eV) [54].

For the OH molecule, it is physisorbed on the pristine MoS2 sheet with 1.71 eV, in
agreement with published results [55]. On the other hand, it is chemisorbed on G@MoS2 (II)
at (HGMo, C1), B@MoS2 (I) at (HBMo, B2), B@MoS2 (II) at (HBMo, B1), and G@MoS2 (I) at
(S, S) (Figure 4d), with energies of 8.26 eV, 6.16 eV, 5.17 eV and 2.06 eV, respectively. The
closest distances from the sheets are 1.35 Å between Cs and Om, 2.85 Å (Mos-Om), 1.36 Å
between Bs and Om, and 1.79 Å (Ss-Om), respectively (Figure 4f), where the subscripts “s”
and “m” refer to the sheet and molecule, respectively.

The charge transfer from the sheet to the OH is largest (~−0.29e) for G@MoS2 (I)/(II) and
BN@MoS2 (I), which adsorb OH at S atom as the initial and final position with the closest
distance of 1.35 Å (Figure 4e), while it is −0.19e for BN@MoS2(II). Note that the length of
O-H bond remains unchanged for all considered systems. The charge transfer from the
sheets to the OH matches the nature of OH as an acceptor group. The hybrid G@MoS2 (I)
can thus be used for oxygen reduction reaction under certain conditions [56].

Our calculated N-N bond length (1.10 Å) is close to the previous reports (1.09 Å) [57],
and it does not change significantly when we add it to our considered sheets. The
G@MoS2 (I) structure chemisorbs N2 at (HG, C2) (Figure 4g) with 2.24 eV and a distance
of 4.02 Å (Cs-Nm) (Figure 4i). All other hybrid structures physisorb N2 weakly with an
average adsorption energy of ~0.13 eV, which is slightly larger than the adsorption energy
on the pristine system (0.07 eV) (Figure 4g). The charge transfer from the molecule to most
hybrid structures is ~0.03e (Figure 4h).

The last two diatomic gases are NO and CO. The bond lengths of the isolated NO,
CO are 1.16 Å, and 1.14 Å, respectively, which match published values (1.15 Å and
1.13 Å [58,59]). The N-O bond slightly increases to 1.20 Å for most of the considered struc-
tures while the C-O bond shows no significant change. The largest adsorption energy is
3.24/4.24 eV for NO/CO on the G@MoS2 (II) at (HG, HMoS2)/(HG, HG), (Figure 4j,m),
with charge transfer of 0.1/0.06e, (Figure 4k,n), and at a distance of 2.14/3.37 Å for
(Mos-Nm)/(Cs-Cm) bonds, (Figure 4l,m). The NO is also chemisorbed on BN@MoS2 (I) at
(HBN, H MoS2) with energy of 2.29 eV, (Figure 4j), a charge transfer of −0.1e, (Figure 4k), and
at a distance of 2.14 Å (Mos-Nm) (Figure 4l). The pristine and hybrid structures thus adsorb
NO more strongly than CO. The adsorption of NO/CO on the hybrid structures is generally
stronger than that of graphene (0.03/0.01 eV [60]) and h-BN (0.03/0.02) eV [61]. Adsorption
of NO/CO on the hybrid systems is also superior to that on MoS2 doped Au, Pd, Pt, and Ni
(1.62/1.38 eV for NO/CO [62]), which indicates that our hybrid systems may be considered
for NO/CO filtration. Summarizing our results for the diatomic molecules, the hybrid
structures (especially G@MoS2 (I)) are suitable for the physisorption and chemisorption for
N2, NO, and CO. However, all the considered structures adsorb the H2 very weakly. For
charge transfer, OH and H2 act as acceptors, while N2 and CO act as donors.

We now move to triatomic gases and begin our discussion by H2S. Our calculated
H–S bond length and H-S-H angle for the isolated molecule are 1.37 Å and 92.1◦, in good
agreement with the corresponding published values (1.34 Å and 92.1◦ [63]). For adsorption
on most systems, we observe no significant change in the bond length, while the angle
slightly increases to approximately 92.5◦. BN@MoS2 (II) at (HBN, N1) adsorbs the H2S
chemically with the energy of 2.40 eV (Figure 5a) with a large charge transfer of 0.51e,
(Figure 5b), and the distance of 2.07 Å (Bs-Sm) (Figure 5c). H2S dissociates on BN@MoS2 (II)
while it is physisorbed on the remaining gases.

For SO2, the bond length S–O and the O–S–O angle are 1.48 Å and 120.2◦, respec-
tively, in good agreement with published values (1.43 Å and 119.5◦ [64]). When we place
SO2 on the considered sheets the bond length does not change but the angle changes to
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(118.97◦, 116.82◦) for G@MoS2 (I), (118.33◦, 117.67◦) for G@MoS2 (II), (100.46◦, 112.15◦) for
BN@MoS2 (I) and (118.00◦, 118.59◦) for G@MoS2 (II) at the two possible final positions
of the molecule. SO2 is chemisorbed by BN@MoS2(I) at (HMoS2, B1) with an energy of
2.71 eV (Figure 5d), a charge transfer of –0.57e (Figure 5e), and a distance of 1.38 Å (Bs-Om)
(Figure 5f). The largest physisorption for H2S is on BN@MoS2 (I) at (HBN, HBN) with
energy, charge transfer, and distance of 1.96 eV, –0.29e and 1.58 Å (Bs-Om), respectively,
(Figure 5d–f).
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H2S, SO2, NO2, and CO2 gases are considered. The initial and final positions (Y, Z) of the adsorbed
gases before and after optimization are shown in the adsorption energy figures (first column).

For NO2, the bond length and the angle of the isolated molecule are 1.21 Å and 133.5◦,
respectively, which agree with the reported values (1.20 Å and 134.3◦ [65]). On G@MoS2 (II),
NO2 has a bond length of 1.24 Å and an angle of 125.1◦. It is physisorbed at (Mo, Mo)
with an energy of 0.47 eV, a charge transfer of −0.31e, and a distance of 2.76 Å (Cs-Om)
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(Figure 5h,i). On BN@MoS2 (II), the bond length and angle are reduced to (1.22 Å,130.00◦)
and (0.93 Å,106.30◦) for its two instances, (Mo, N2) and (HBMo, HMoS2). The molecule is
chemisorbed in both cases with energies of 2.59 and 4.83 eV (Figure 5g), charge transfers of
–0.1e and –0.15e (Figure 5h) and (Bs-Om) distances of 3.15 and 2.12 Å (Figure 5i), respectively.
On all other systems, NO2 dissociates.

The last triatomic gas we study is CO2. Our calculated C-O bond length and O-C-O
angle for the free gas are 1.18 Å and 180◦ (the corresponding literature values are 1.16 Å
and 180◦.00 [65]). There is no significant change in the bond length and the angle when
we add the CO2 to the different studied systems. The molecule is weakly physisorbed
on all structures, with an energy of a fractional eV. The adsorption energy ranges from
0.15 to 0.38 eV, which is better than the corresponding values (0.14 to 0.25 eV) obtained for
2H-@MoS2 nanosheets, nanotubes, and nanopores [66].

Turning to the last gases group, polyatomic gases (COOH, NH3, and CH4), the car-
boxyl molecule COOH (Figure 6a–c) has an angle (∠O-C-O) of 131.23◦ with two bond
lengths of 1.19 Å and 1.34 Å [67]. When the COOH is adsorbed on the pristine and hybrid
sheets, the angle slightly changes to: 129.47◦ for pristine, (128.58◦, 127.88◦) for G@MoS2(I),
(125.50◦, 125.50◦) for G@MoS2(II), (124.96◦, 124.90◦) for BN@MoS2(I), and (129.90◦, 129.71◦)
for BN@MoS2 (I), at the two different final positions for every hybrid structure. However,
the bond lengths of COOH did not change significantly. We also notice that the molecule is
closest to the sheet with a Cs-Cm distance of 1.52 Å for the G@MoS2(II) system (Figure 6c).
In all cases, the charge transfer with the sheets is very weak. Most importantly, COOH
is chemically adsorbed by G@MoS2 (II) at (HGMo, C1) with an energy of 3.65 eV with-
out any charge transfer (indicating covalent bond). All other hybrid sheets physically
adsorb the COOH gas with an average energy of ~1.2 eV. Our calculations show that the
adsorption energy of COOH reaches 1.75 eV on our hybrid structures compared to 1.6 on
hybrid 1T-@2H-MoS2 monolayer which may be utilized in many applications such as the
decomposition of organic dyes [34].

Regarding the isolated NH3 and CH4 gases, the bond length and angles are 107◦ and
1.02 Å for NH3 [68], and 109.47◦ and 1.10 Å for CH4 [68]. When they are adsorbed on
the considered sheets, the bond lengths and the characteristic angles of these molecules
do not significantly change compared to the corresponding isolated cases. The largest
physisorption for NH3 (Figure 6d) is on BN@MoS2 (I) with1.80 eV at (Mo, HBN) with
a distance of 1.58 Å (Bs-Nm) and a charge transfer of 0.50e (Figure 6e,f). BN@MoS2 (I)
improves the adsorption energy of NH3 compared to pristine G and h-BN (0.03 eV [60,61]).
For CH4, the most significant adsorption energy is 2.66 eV for BN@2H-MoS2(II) at (Mo, B1)
and the closest distance between the molecule and the sheet is 2.71 Å (Cs-Hm) with a charge
transfer of −0.04e (Figure 6g–i). All considered monolayers adsorb them with energy less
than 2.00 eV (physisorption). To summarize, the adsorption energies of COOH are larger
than those of NH3 and CH4 of the ability to redistribute the charge over the length of
COOH. We also notice that NH3 acts as a donor, which matches some experimental results
of NH3 adsorption on a G sheet [69].

Although we have considered hybrid structures with a small G/BN patch, we expect
our results to be applicable to structures with bigger patches of various shapes. This is
because the adsorption properties largely depend on the structural defects at the border
of the G/BN patch rather than the inner part of the patch. The adsorption capacity will
vary with the G/BN concentration but will roughly depend on the square root of the
concentration.
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Figure 6. (a–i) From left to right, the adsorption energy (Ead (eV), charge transfer (∆Q (e) and the
closest distance (D(Å)) between the gas molecule (Xm) and the sheet (Xs) for polyatomic gases. From
top to down COOH, NH3, and CH4 gases are considered. The initial and final positions (Y, Z)
of the adsorbed gases before and after optimization are shown in the adsorption energy figures
(first column).

5. Conclusions

In this work, first principle calculations are employed to study the structure, elec-
tronic, and molecular adsorption properties of graphene/hexagonal boron nitride@2H-
molybdenum disulfide (G/BN@MoS2) monolayers. We consider systems where the G/BN
patch is at the Mo plane (model I) and the S plane (model II). The G@MoS2 systems are
metallic, while the BN@MoS2 (I) is n-type semiconducting, and BN@MoS2 (II) is semi-
conducting. Compared to the pristine G, BN, and MoS2, the hybrid systems have higher
adsorption energies for the considered gases (diatomic gases: H2, OH, N2, NO, CO, tri-
atomic gases: CO2, NO2, H2S, SO2, and polyatomic gases: COOH, CH4, and NH3). OH is
physisorbed on G@MoS2 (I,II), which can be used for oxygen reduction reactions. NH3 is
physisorbed on BN@MoS2 (I,II), making them a suitable material for NH3-based hydrogen
production. H2, CO2, and CH4 are weakly physisorbed on all hybrid structures. We also
find that chemisorption occurs for: NO and CO on G@MoS2 (I), SO2 on BN@MoS2 (I), and
H2S and NO2 on BN@MoS2 (II), which makes these hybrid systems suitable for use as filter
materials for these toxic gases.
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