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In general case, wavenumbers of surface (interfacial) plasmon-polaritons (SPP,I PP) on the metallic (photo-ex-
cited) surface, neighboring with a dielectric medium, could be calculated according to the common SPP dispersion
relationship [1]
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for the dielectric permittivities em = Re(em) + iSm(em) = &+ iex of the photoexcited (metallized) material and eo = Re(ep)
+i3m(ep) = m+ inz of the contact solid, liquid, or gaseous dielectric. Extremely short nanoripple periods can be achieved
under surface/interface plasmon resonance (SPR) conditions via normal-incidence excitation of counterpropagating ul-
timately short-wavelength surface plasmons at | Re(em)| tending to Re(ep), where in the SPP excitation regime Re(em)
<0 and Re(ep) > 0. The corresponding plasmonic interference results in a standing surface EM pattern with its periodic-
ity of 1/(2K<) [2-9]. In SPR one has Re(em) = —Re(ea), making its peak wavenumber K.. and width dependent only on
Sm(em), while the exact calculations of K. are going beyond the common approximation Re(em) « —Re(ep), |Re(em)! »

Sm(em) with its simplified resulting expression for Kgp = 9{@[& le, ] = 71) [10].

More accurately, K. magnitudes were calculated, using in the SPR description the exact, complete SPP dispersion
equations as follows [11]

1 [b+b* +¢?
Kopp=———F—
A 2a

where the factors g, b and ¢ are defined in the form
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In the SPR, where & = -7 for the resonance condition Re(em) = —Re(ea), for 72~ 0 [12]
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exhibiting the novel term (np?/A) for surface plasmons in comparison to the common relationship no/A for the polari-
tonic-like modes along the light cone. At SPR, its wavenumber position Kwis additionally strongly increased at the low

magnitude &«1 (“undamped SPR) by the factor [\/L] . This means high-wavenumber, short-wavelength plasmons can
82

be efficiently excited in spectral ranges far from the strong interband absorption bands in the photoexcited material and,

in semiconductors and dielectrics, at moderately high EHP densities, since both interband and and intraband transitions

strongly contribute to the magnitude &, Indeed, at high magnitudes & » lal, ;> 1 (“damped SPR), for b » ¢ one has the

common relationship [12]
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representing the low-wavenumber (np/A), near-wavelength surface polariton-like waves. Similarly, under off-reso-
nance, undamped SPP excitation conditions along the light cone — for &1« =7, =0 and &« 1
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where the derived solution exactly represents the low-wavenumber (10/A), near-wavelength surface plasmon-polariton
waves [10].

The prompt dielectric function of the photoexcited material was modeled as a function of electron-hole plasma
(EHP) density per and optical frequency € in the form [13]
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where the plasma frequency QpL(pen) and scattering rate v(pen) were evaluated as follows [3,7,14]
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accounting for the effective optical e-h pair mass mopt*, the high-frequency dielectric constant ent(pen), which due to EHP
screening tends to 1 at near-critical EHP densities pen ~ perit (perit = 5102 cm® in CLN at 1030 nm) defined from Equation (S9)

as Qri(pait) = +/E(2) Q, EHP saturation density for interband transitions psa, temperature Te and Fermi level Er, the
numerical factor C ~10 in different dielectrics [3,6-9] (in crystalline CLN C ~10).
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