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Abstract: The effect of aluminum oxide (Al2O3) nanoparticles (NPs) as a reinforcing agent of
Polyamide 12 (PA12) and Polylactic acid (PLA) in fused filament fabrication (FFF) three-dimensional
printing (3DP) is reported herein for the first time. Alumina NPs are incorporated via a melt–mixing
compounding process, at four different filler loadings. Neat as well as nanocomposite 3DP filaments
are prepared as feedstock for the 3DP manufacturing of specimens which are thoroughly investigated
for their mechanical properties. Thermogravimetric analyses (TGA) and Raman spectroscopy (RS)
proved the nature of the materials. Their morphological characteristics were thoroughly investigated
with scanning electron and atomic force microscopy. Al2O3 NPs exhibited a positive reinforcement
mechanism at all filler loadings, while the mechanical percolation threshold with the maximum
increase of performance was found between 1.0–2.0 wt.% filler loading (1.0 wt.% for PA12, 41.1%, and
56.4% increase in strength and modulus, respectively; 2.0 wt.% for PLA, 40.2%, and 27.1% increase
in strength and modulus, respectively). The combination of 3DP and polymer engineering using
nanocomposite PA12 and PLA filaments with low-cost filler additives, e.g., Al2O3 NPs, could open
new avenues towards a series of potential applications using thermoplastic engineering polymers in
FFF 3DP manufacturing.

Keywords: fused filament fabrication (FFF); 3D printing (3DP); polymer nanocomposites; nanopar-
ticles (NPs); melt-processing; Polyamide 12 (PA12); Polylactic acid (PLA); additive manufacturing
(AM); rapid prototyping; mechanical properties; aluminum oxide (Al2O3)

1. Introduction

Three-dimensional (3D) printing (3DP), which has evolved over the last three decades
from the initial reporting and is defined as rapid prototyping, is nowadays considered as
one of the most promising and disruptive manufacturing technologies [1,2]. More specifi-
cally, 3DP is an additive manufacturing (AM) technology, in which 3D objects consisting
of different materials, e.g., metals [3,4], ceramics [5,6], polymers, i.e., thermoplastics [7],
thermosets [8] and elastomers [9], and composites [10] are constructed in a sequential layer-
by-layer manufacturing approach directly from computer-aided design (CAD) models. As
such, 3D objects consisting of different materials [11,12], complex geometries [13,14], and
by-design and tailored final component bulk properties, i.e., mechanical [15], thermal [16],
electrical [17], magnetic [18], catalytic [19], antimicrobial [20], etc., could be easily realized
due to the unique nature of 3DP, compared to traditional manufacturing methods (injection
molding, plastic forming, CNC machining, etc.) To that end, several high-end applica-
tions have been reported; namely, in the biomedical field [21], e.g., implants [22], scaffolds
for tissue engineering [23], surgical equipment [24], medical diagnostic tools [25], tissue
and organ printing [26], etc., up to 4D printed structures for robotics applications [27,28],
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all employing 3DP as the main manufacturing and fabrication technology alternative to
traditional manufacturing methods.

It was back in 1982 when Hideo Kodama reported the first 3D printed part [29]. Since
then, there have been reported various 3DP technologies for the manufacturing of polymers,
metals, ceramics, and composite parts with variable shapes and properties, arising both
from the selection of the materials used as feedstock, as well as the proper 3DP AM process
parameters [30]. There are various 3DP AM technologies; for instance: (i) Binder Jetting,
(ii) Selective Laser Sintering (SLS), e.g., direct metal laser sintering and selective laser
sintering of thermoplastic polymeric powders, (iii) Stereolithography, e.g., using photopoly-
merizable polymeric materials, (iv) Fused Filament Fabrication (FFF), (v) Digital Light
processing (DLP), and (vi) Material Jetting and Drop on Demand (DOD) [31]. Amongst
others, in the FFF process, a thermoplastic polymeric filament is heated up to temperatures
higher than its melting point (Tm). At this state, the polymeric material is extruded from a
nozzle that moves in XYZ space. FFF has received continuous scientific and technological
interest, especially when it comes to the manufacturing of thermoplastic polymeric material
components [32,33] and/or polymer composites, e.g., nanocomposites [34,35] and fiber-
reinforced composites [36,37]. To date, several achievements have been made on the level
of the 3D printer as a machine; namely, the printer’s accuracy, automation, printer parts,
e.g., nozzles, heat-able beds, etc., while all could affect the quality of the final manufactured
parts [38]. However, thermoplastic materials with “niche” and/or enhanced mechanical,
magnetic, thermal, and electrical properties compared to pure polymer is still a field of
ongoing research to endow a multi-functional character to the final printed parts [39].

Poly-Lactic Acid (PLA) is a biocompatible and biodegradable polyester thermoplastic
in nature with unique mechanical strength and ease of melt-processing, making it thus
one of the most widely-used feedstock materials in FFF 3DP technology [40,41]. PLA
has a relatively high melting point (Tm in the range of ~150–160 ◦C), which makes it a
promising candidate material for engineering applications, apart from the well-known and
various biomedical applications. Polyamide 12 (PA12) is an “engineering” thermoplastic as
well, with high potential for 3DP applications, especially in the FFF process, belonging to
the huge family of polyamides known for their unique toughness, strength, impact, and
resistance to fracture upon being exposed to a great level of deformation [42]. In general,
PA12 has been extensively used in SLS 3DP processes already back in 2010 [43] and is not so
commonly used in FFF apart from recent studies [17,42,44]. On the other hand, its market
price together with the combined physicochemical properties and the ease of processing
in 3DP could make it an ideal material for rapid prototyping purposes up to advanced
applications, e.g., structural parts with unique toughness properties. The literature review
on PA12 and PLA in FFF 3D printing shows the potential of the polymers in the process
and the focus of the research about them.

Polymeric materials [45], as well as polymer nanocomposites, have lately received
considerable attention in FFF 3DP [46], since they could offer a facile approach to improving
the 3DP part’s properties; for instance, (i) the quasi-static, dynamic, and thermomechanical
properties of the host polymeric matrix [47], (ii) nano-inclusions could induce crystalliza-
tion of the polymer matrix, especially for semi-crystalline polymers, with the nanofillers
functioning as nucleating agents, which can have a positive effect then on the mechanical
properties, the thermal stability, etc. [48], and (iii) 3DP parts with multi-functional prop-
erties, e.g., sensing, electrical, optical, actuation, etc., can be realized [49]. Nanoparticles
(NPs) with different geometries, i.e., 0D: spherical, e.g., SiO2, ZnO, Al2O3 NPs; 1D: wires
or tubes, e.g., carbon nanotubes (CNTs); 2D: platelet-like, e.g., graphene, clays, etc., and
at different loadings have been incorporated via melt–mixing processes in thermoplastic
polymeric filaments used further for FFF 3DP. Carbon nanotubes (CNTs) and Graphene
(Gr) have been used to enhance the mechanical properties as well as endow electrically
conductive 3DP parts [50]. These works highlight the effect of the nanoparticles’ addition
as fillers in polymer matrices, which enhance and expand their properties, making them
suitable for a wider range of industrial applications.
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Research on aluminum oxide (Al2O3) has been presented on phase composition, chem-
ical composition, and morphology of the powder [51]. The behavior of alumina as a filler
has also been investigated, aiming to improve the dispersion in the composites and the
adhesion in 3D printing processes [52–55]. Alumina NPs have numerous physicochemical
properties, e.g., optical transmission, electrical insulators, chemically inert, they maintain
their thermal stability even at increased temperatures, etc. Additionally, alumina NPs
are a nano-additive often used in the industry of thermoplastics [56]. Relatively, the use
of Al2O3 NPs in 3DP polypropylene (PP)/Al2O3 nanocomposites, with the tensile and
flexural strength to be increased by approx. 4% and 19% for the PP/Al2O3 (1.0 wt.%)
nanocomposite has been recently reported. Alumina has been used as filler in composites
with polyamides [57]. In this work, alumina was not in nanoparticle form. The composites
were developed using a solvothermal method and composites were not compatible with
the 3D printing process. The study reports a reinforcement in the mechanical properties
of the composites; still, it focuses mainly on the thermal and electrical properties of the
developed composites. In another study in the literature, polyamide with alumina has been
investigated in coatings [58]. AM PA12 with alumina composites has been investigated so
far for biomedical applications [59]. A chemical process was followed for the preparation
of the composites, which did not use NPs as fillers. Specifically, this work focused on inves-
tigating the effect of artificial saliva on the tensile properties of the composites. The effect
of aging and sterilization on their physicochemical properties has also been reported [60].

Research in nanocomposites of PLA with alumina is focused on the thermal and elec-
trical properties of the composites [61], but not on 3D printing as a manufacturing process.
PLA in fiber form has also been used for the preparation of composites with alumina,
employing the electrospinning process [62]. Poly(butylene adipate-co-terephthalate) and
alumina nanoparticles have been combined for the reinforcement of PLA but not in 3D
printing applications [63]. In the blends developed in the work, the results were not very
promising in the flexural tests due to the poor dispersion of the alumina in the blends, while
the impact strength was significantly increased. In film applications, alumina has been
introduced in the PLA polymer, aiming to improve the optical, morphological, structural,
and mechanical properties of the polymer [64]. In 3D printing, composites using PLA as
the matrix material and alumina as filler combined with graphene have been presented,
focusing on the thermal conductivity of the developed composites [65]. This work did
not investigate the mechanical properties of the composites, which were prepared with a
process compatible with the laser sintering AM procedure. To date, there is no study having
been reported on the utilization of Al2O3 NPs as a filler for mechanical reinforcement of 3D
printed PA12 and PLA thermoplastic materials, nor an in-depth study of the mechanical
and fracture properties of the manufactured 3DP specimens. The motivation herein was to
develop nano-compounds in a form compatible with the FFF 3D printing process, with an
improved mechanical response, aiming to expand the fields of use of the process, in areas in
which superior mechanical response from the build parts is the required specification. Ad-
ditionally, a prerequisite in the work was to follow an industrial-ready procedure, without
significantly increasing the overall cost of the materials and the preparation procedure.

In this study, for the first time, two different thermoplastics in nature and polar semi-
crystalline polymeric materials, namely PA12 and PLA, with different macromolecular
architectures and side functional groups have been reinforced with Al2O3 NPs inorganic
low-cost fillers towards the production of nanocomposite filaments used to manufacture
3DP nanocomposite specimens. The reinforcement mechanism has been compared for the
two polymeric matrices, with the PA12 showing a slightly more pronounced mechanical
properties’ enhancement, while the filler loading was kept constant at 1.0, 2.0, 3.0, and
4.0 wt.% in both cases to understand the basic process-structure-property relationship for
PA12 and PLA Al2O3 nanocomposites.
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2. Materials and Methods
2.1. Materials Used in the Work for the Preparation of the Nano-Compounds

Polyamide 12 (PA12) of AESNO TL grade (Arkema S.A., Rilsamid PA12 AESNO
TL, Colombes, France) in fine granules form was purchased from Arkema (Colombes,
France). PA12 has a Melt Volume-Flow Rate (MVR) of 8.0 cm3/10 min at 235 ◦C/5.0 kg,
Vicat Softening Temperature at 142 ◦C (according to ISO 306/B50), Melting Temperature
of 180 ◦C (according to ISO 11357-3), and density of 1.01 g/cm2 (according to ISO 1183)
according to the supplier’s specifications. Polylactic Acid (PLA) in the form of coarse
powder as a multi-functional thermoplastic polymer, used in various engineering as well as
bio-related applications and is a biocompatible and biodegradable polymer, was received
from Plastika Kritis SA (Heraklion, Crete, Greece) with a commercial batch name 3052D
grade and a molecular weight of 116.000 g/mol. Both polymer grades used throughout
this study as the matrix material for the fabricated nanocomposites are appropriate for
melt mixing processes and contain heat stabilizing, lubrication, and UV stabilizer additives,
according to the suppliers’ technical data sheets. The aluminum oxide (Al2O3) nanoparticles
(NPs) that have been used as mechanical reinforcement blended fillers, both for PA12 and
PLA matrices in this study, are spherical in shape with an average NP diameter of ~180 nm
(grade NG04SO103) and procured from Nanographi (Nanografi Inc., Ankara, Turkey).

2.2. Preparation of the Filament and Process Parameters for FFF 3D Printing of the PA12, PLA,
with Al2O3 Filler Nanocomposites

In the work, nanocomposites were prepared with increasing loading. Specimens were
fabricated and tested, and the results were evaluated. Then, the filler loading was increased.
When the mechanical properties of a specific loading started to decline, the experimental
course was terminated. Nanocomposites were prepared from the beginning with the same
process and material grades. All the tests were conducted with the same conditions to have
comparable results.

The reinforcement effect of the alumina additive was investigated in the two ther-
moplastics. Additionally, another criterion was to test low filler concentrations which
would not change other parameters and aspects of the polymers significantly, such as their
rheology. At the same time, higher filler concentrations would have an effect on the cost of
the produced nanocomposites. A threshold analysis was carried out in the work for the
reinforcing effect of alumina in the two polymers, keeping the other parameters as close as
possible to the properties of the pure polymers.

Following this analysis and specifications, initially, PA12 and PLA as received thermo-
plastic materials were physically mixed in raw powder form with 1.0, 2.0, 3.0, and 4.0 wt.%
of Al2O3 NPs solid filler content, respectively, using a mechanical homogenizer. With this
pre-compounding process, raw materials were mixed at the predefined concentration ratios
mentioned above and different mixtures were prepared for each nano-compound studied
in the work (polymer and filler loading).

Predetermined quantities for each nano-compound were dried at 80 ◦C in an oven
overnight prior to the filament extrusion process. Hereafter, the PA12/Al2O3 and PLA/Al2O3
nanocomposites, namely the 3DP nanocomposites extruded as filaments or as FFF fabri-
cated printed samples, are denoted as PA12/Al2O3 (1.0 wt.%), PA12/Al2O3 (2.0 wt.%),
PA12/Al2O3 (3.0 wt.%), PA12/Al2O3 (4.0 wt.%), and PLA/Al2O3 (1.0 wt.%), PLA/Al2O3
(2.0 wt.%), PLA/Al2O3 (3.0 wt.%), PLA/Al2O3 (4.0 wt.%) for the 1.0, 2.0, 3.0, and 4.0 wt.%
different additive concentration, respectively.

Raw materials were first converted into 3DP filaments. A two-step process was
followed to achieve as good dispersion of the alumina additive in the matrices as possible.
Raw materials in powder form were fed into a Noztek extruder (Noztek, Shoreham-by-Sea,
UK) for the initial mixing of the raw materials. The filament was shredded into pellets
(3 devo shredder, 3 devo, Utrecht, The Netherlands). The pellets were then used in an
additional extrusion process for the manufacturing of the 3DP filament with a 1.75 mm
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diameter, suitable for FFF (3D Evo Composer 450 materials mixing extruder featuring a
single screw, 3D Evo B.V., Utrecht, Netherlands).

Initial tests both for the PA12 and PLA matrix materials have been performed to
optimize the filament extrusion parameters, namely, (i) mixing speed, (ii) appropriate
screw for the mixing/compounding process, and (iii) extrusion temperatures. More specifi-
cally, the 3D Evo Composer 450 has four (4) heating zones through the overall extrusion
path/chamber, while the 3DP filament diameter is monitored continuously with an in-built
sensor within an acceptable range of 1.68 mm ± 0.07 mm, to adjust the extrusion speed
in-line with the extrusion process. As such, one can achieve a high quality of the pro-
duced filament with real-time filament diameter metrology, guaranteeing thus the filament
diameter accuracy across its length. Neat thermoplastic PA12 and PA12/Al2O3, as well
as neat PLA and PLA/Al2O3 3DP filaments, were processed under the same extrusion
parameters, respectively. Specifically, for neat PA12 and PA12/Al2O3 3DP filaments, the
following temperature was set for each heating zone: close to the nozzle—210 ◦C, mid-
dle zones—220 ◦C, and close to the hopper—185 ◦C. For neat PLA and PLA/Al2O3 3DP
filaments, the parameters, respectively, have been: 195 ◦C, 205 ◦C (middle stage), and
175 ◦C close to the hopper. In both cases, the screw rotational speed was set to 8.5 rpm
and the machine’s built-in rewinder was employed to rotational speeds appropriate to
achieve the required filament diameters for all the different systems (3devo Composer
450 operates in the range of 3–15 rpm). Moreover, an extra air duct of the machine directly
after the extruder’s nozzle was employed to support the filament’s cooling procedure,
having a direct effect on the roundness of the filament. It is worth mentioning that high
quality of filament, i.e., in diameter homogeneity, roundness, dispersion of nanoparticles,
etc., is a prerequisite towards consistent and high-quality FFF 3DP objects. All produced
filaments were dried at 80 ◦C overnight, before being used to manufacture the different
3DP specimens.

The FFF 3DP process manufactured the pure thermoplastic PA12 and the PA12/Al2O3
specimens as well as neat PLA and PLA/Al2O3 3DP specimens using an Intamsys 3D
Printer (Funmat HT 3D FFF technology, Intamsys Technology Co. Ltd., Shanghai, China).
In the beginning, for neat PA12 and PLA polymeric matrices, as well as for the polymer
nanocomposite filaments, 3DP trials were performed using different parameters to deter-
mine the optimum set of 3DP experimental conditions yielding high-quality 3DP specimens.
Finally, for PA12 and PA12/Al2O3 nanocomposites the following parameters were used:
100% solid infill, 40 mm/s print speed, 45 degrees deposition orientation angle (raster an-
gle), 0.20 mm layer height, 270 ◦C nozzle temperature, and 90 ◦C bed temperature, while for
PLA and PLA/Al2O3 nanocomposites: 100% solid infill, 40 mm/s print speed, 45 degrees
deposition orientation angle, a layer thickness of 0.20 mm, 210 ◦C nozzle temperature, and
50 ◦C bed temperature. Most of the filament extrusion and 3DP parameters for PA12 [44]
and PLA [66], especially that of the neat polymeric materials, have been developed in our
previous studies.

Figure 1 depicts schematically the steps of the methodology implemented in this
research article to manufacture the different specimens, i.e., starting from raw materials
towards the preparation of 3DP filaments, the 3DP process of the different specimens, as
well as finally the mechanical and morphological characterization analyses. Figure 2 sum-
marizes the optimum 3DP parameters for the different systems to fabricate specimens, the
dimensions of the 3DP specimens used for different mechanical characterization techniques,
and the real 3DP manufactured specimens (representative samples for tensile, flexural, and
impact tests).
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(HORIBA Scientific, Kyoto, Japan). A laser beam with an excitation wavelength of 532 nm 
and a maximum output power of 90 mW was employed. A 50× objective with 0.5 numer-
ical aperture and 10.6 mm working distance (LMPlanFL N, Olympus) delivered the exci-
tation light and collected the Raman activity. For each spectrum, the spectral was set at 40 
to 3900 cm−1, with an acquisition time of 10 s and 5 accumulations. 

Thermogravimetric analysis (TGA) in a nitrogen atmosphere was carried out for 
PA12, and PLA as well as for the PA12/Al2O3 and PLA/Al2O3 nanocomposite 3DP speci-
mens. TGA measurements were conducted employing a Perkin Elmer Diamond TG/TDA 
(Waltham, MA, USA) apparatus with a heating pattern from 30 °C to 550 °C and a step of 
10 °C/min. 
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specimens towards the final testing and characterization (A) weight of the raw materials, (B) raw
materials drying process, (C) filament extrusion, (D) filament inspection, (E) filament drying, (F) 3D
printing of the samples, (G) mechanical characterization (a screenshot from a tensile test is shown in
the picture), (H) morphological characterization with Scanning Electron Microscopy (SEM).
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neat PA12 and PLA and the Al2O3 nanocomposites (real representative tension, flexural, and impact
specimens are depicted).

2.3. Characterization Techniques

Raman investigations were performed with an LabRAM HR Raman Spectrometer
(HORIBA Scientific, Kyoto, Japan). A laser beam with an excitation wavelength of 532 nm
and a maximum output power of 90 mW was employed. A 50× objective with 0.5 numerical
aperture and 10.6 mm working distance (LMPlanFL N, Olympus, Tokyo, Japan) delivered
the excitation light and collected the Raman activity. For each spectrum, the spectral was
set at 40 to 3900 cm−1, with an acquisition time of 10 s and 5 accumulations.

Thermogravimetric analysis (TGA) in a nitrogen atmosphere was carried out for
PA12, and PLA as well as for the PA12/Al2O3 and PLA/Al2O3 nanocomposite 3DP speci-
mens. TGA measurements were conducted employing a Perkin Elmer Diamond TG/TDA
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(Waltham, MA, USA) apparatus with a heating pattern from 30 ◦C to 550 ◦C and a step of
10 ◦C/min.

Tapping Mode Atomic Force Microscopy (AFM) was carried out using a Microscope-
Solver P47H Pro scanning probe microscope (NT-MDT, Moscow, Russia) in ambient condi-
tions. Commercially available silicon cantilevers were used with a tip radius of about 10 nm,
a tip cone angle of 20◦, and a cantilever spring constant of 35 N/m at a scanning frequency
of 1 Hz. The surface roughness values of all extruded filaments used for 3DP were deter-
mined after the 2nd flattening operation from the overall captured area of 10.0 × 10.0 µm2

of the corresponding samples’ height images.
The microstructure of the side surface of the 3DP specimens as well as the cracked sur-

faces in the tensile experiments on the 3DP specimens was examined using SEM characteri-
zation by a Jeol JSM-IT700HR (Jeol Ltd., Tokyo, Japan) field emission SEM in high-vacuum
mode at 20 kV acceleration voltage. A Secondary Electron (SE) detector was used for the
observation of the samples. To avoid charging effects, samples were Au sputter coated
(5 nm thin film). Energy Dispersive X-ray Analysis (EDS) has been performed for Al2O3
NPs without a sputtered Au layer.

Tensile tests were conducted according to the ASTM D638-02a international standard.
All tests were performed at a room temperature of 23 ◦C. Three-point bending flexural tests
were conducted following the ASTM D790-10 international standard. 3DP specimens had
dimensions of 64.0 mm length, 12.4 mm width, and 3.2 mm thickness, and the support span
was set to 52.0 mm. An Imada MX2 (Imada inc., Northbrook, IL, USA) machine in tension
(elongation rate of 10 mm/min) and flexural mode setup (testing speed: 10 mm/min),
respectively, were employed for the tensile and three-point bending tests. Impact tests
were carried out following the ASTM D6110-04 international standard. Notched specimens
had dimensions of 80.0 mm (length) × 8.0 mm (width) × 10.0 mm (thickness). A Terco
MT 220 (Terco, Huddinge, Sweden) Charpy’s impact apparatus was employed in the
tests. For all the mechanical tests performed in this study, six (6) specimens have been
assessed for pure as well as PA12/Al2O3 and PLA/Al2O3 3DP nanocomposites, and
the average values together with the corresponding standard deviations are reported.
Moreover, the same 3DP parameters have been used to manufacture the tensile, flexural,
and impact test specimens. Finally, as a part of the mechanical test campaign, microhardness
measurements were conducted according to the ASTM E384-17. The 3DP specimens’
surface was thoroughly polished before each measurement. An Innova Test 300-Vickers
(Innovatest Europe BV, Maastricht, The Netherlands) testing machine was employed,
while the applied force was set to 100 gF, and a duration of 10 s was selected for the
indentation. Imprints were measured for six (6) different specimens of the neat PA12 and
PLA, as well as the PA12/Al2O3 and PLA/Al2O3 nanocomposites. All parameters of the
mechanical test campaign have opted for 3D specimens based on our previous detailed
parametric study [67].

3. Results and Discussion
3.1. Raman and EDS Analysis of Neat PA12, PLA, PA12/Al2O3, and PLA/Al2O3 Nanocomposites

In Figure 3A, the major Raman peaks arising from PA12 are presented, while no
significant differences were observed between the PA12 and the samples with Al2O3
nanoparticles. Clearly, C–O–C stretching was identified at 1060, 1105, and 1293 cm−1. CH2
and CH2 deformations were identified at 1418 and 1441 cm−1, respectively. Lastly, CH2
symmetric stretching and deformation were identified at 1434 cm−1, 2850 cm−1, 2884 cm−1,
and 2923 cm−1 (Table 1). As is seen in Figure 4A, the major Raman peaks are due to
PLA. The addition of Al2O3 NPs in PLA showed no significant changes in the Raman
spectrum. From the analysis of neat PLA, the major Raman peaks were identified, and
their related assignments are presented in Table 2. The range of the Raman peaks found is
between 870 cm−1 and 2996 cm−1. EDS spectra for all 3DP PA12/Al2O3 and PLA/Al2O3
nanocomposites showing the existence of atomic Al arising from the Al2O3 incorporated
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nanoparticles in the PA12 and PLA polymer matrix are shown in Figures 3B–E and 4B–E,
respectively, for all the different filler loadings.
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existence of atomic Al arising from the Al2O3 incorporated nanoparticles in the PLA polymer matrix.



Nanomaterials 2022, 12, 4292 9 of 24

Table 1. Major Raman peaks identified and their related assignments.

Wavenumber (cm−1) Raman Peak Assignment

1060 C–O–C stretching [68]
1105 C–O–C stretching [68]
1293 C–O–C stretching [68]
1434 CH2 deformation [68–70]
2850 CH2 symmetric stretching [70]
2884 CH2 symmetric stretching [70]
2923 CH2 asymmetric stretching [70]

Table 2. Major Raman peaks identified and their related assignments.

Wavenumber (cm−1) Raman Peak Assignment

870 C–COO stretching [71]
1115 CH3 rocking [71]
1374 C–H bending [72]
1449 CH3 bending [71]
1761 C=O stretching [71]
2888 C–H antisymmetric stretching [73]
2945 C–H stretching and bending [72]
2996 CH3 asymmetric stretch [73]

3.2. TGA Analysis

TGA investigations have been performed to reveal the temperature stability of the
different materials in this study under a nitrogen atmosphere [74]. Moreover, TGA graphs
proved indirectly the nature of the different nanocomposites and the existence of the
specific filler loading in each specimen, via the observed remnant material at tempera-
tures where the polymer matrix (PA12 or PLA) has been totally decomposed. Figure 5
shows the TGA (Figure 5A), and DTG (Figure 5B) curves of 3DP PA12, PA12/Al2O3
(1.0 wt.%), PA12/Al2O3 (2.0 wt.%), PA12/Al2O3 (3.0 wt.%), PA12/Al2O3 (4.0 wt.%), and
PLA, PLA/Al2O3 (1.0 wt.%), PLA/Al2O3 (2.0 wt.%), PLA/Al2O3 (3.0 wt.%), PLA/Al2O3
(4.0 wt.%). As it can be observed, PA12 is more thermally stable compared to PLA, with
the onset temperature of decomposition (Td

on) at 420 ◦C, whereas PLA is at 330 ◦C. At
temperatures above 500 ◦C, both polymeric materials have been fully decomposed, and
the remnant material in some curves corresponds to the Al2O3 nanofillers. The remaining
mass after the completion of the TGA agrees with all nano-compounds studied herein.

From the insets in the TGA and DTG curves representing a small temperature win-
dow of the whole thermogram, it can be deduced that the addition of Al2O3 nanofillers
slightly increased the thermal stability of both polymeric matrices, since the Td

on has been
shifted to slightly higher temperatures. It can be deduced thus that the thermal stability
of the polymer nanocomposites has been slightly improved by the existence of Al2O3
nanoparticles. Regarding the DTG graphs, a slightly different response is reported. In the
PLA polymer, the addition of alumina shifts the highest weight loss ratio to slightly lower
temperatures, and the rate is increased. On the other hand, the alumina introduction in the
PA12 thermoplastic shifts the highest weight loss ratio to slightly higher temperatures, and
the rate is slightly decreased. Still, differences are not significant and can be attributed to
the different interactions of the additive with the different polymers. Finally, TGA and DTG
analyses proved that the temperatures selected in the study for polymer processing, i.e.,
either the 3DP filament melt mixing and extrusion processes or the 3DP filamentous FFF
3DP manufacturing, are far below the decomposition temperatures of the neat polymeric
matrices (PA12 and PLA).
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of 3DP printed PA12, PLA, and their Al2O3 nanocomposites at 1.0, 2.0, 3.0, and 4.0 wt.% filler loadings.

3.3. 3DP Filament Diameter Optical Metrology

Figure 6 depicts the real-time monitored filament diameter of neat polymer matri-
ces (PA12 and PLA), as well as for the two highly loaded nanocomposites, namely the
PA12/Al2O3 (4.0 wt.%) and PLA/Al2O3 (4.0 wt.%) during a period of 30 min total extrusion
time. It is well-known that for FFF 3DP manufacturing, an “almost” industry standard is to
work with filaments exhibiting a 1.75 mm diameter. In the study, the 3D Evo Composer
450 single screw extruder has been employed (3D Evo B.V., Utrecht, The Netherlands) with
an in-built sensor that measures the filament diameter continuously during the extrusion
process. It can be observed that in all cases presented in Figure 6, the filament diameter
is within an acceptable range of 1.68 mm ± 0.07 mm, which is achieved by the extruder’s
function to adjust the extrusion speed in-line with the extrusion process to achieve such
a constant filament diameter across its length maintaining and thus the aforementioned
accuracy tolerances. It is worth mentioning that high quality of filament, i.e., in diame-
ter homogeneity, roundness, dispersion of nanoparticles, etc., is a prerequisite towards
consistent and high-quality 3DP objects. Moreover, it is of utmost importance to have
filaments with a constant diameter. The measured diameter of the filament is a parameter
considered by the slicer software when defining the 3DP process. The microscope images
from the side surface of the filament, in all nano-compounds prepared in the work, reveal a
smooth, defect and void-free surface, indicating a good quality filament, showing that the
parameters used in the work were the appropriate ones.
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3.4. AFM Surface Roughness Analysis of Neat Polymer and Nanocomposites 3DP Filaments

Figures 7 and 8 show the 3D AFM topography images captured from the different
3DP extruded filaments in this study, utilized finally for the FFF 3DP manufacturing
process of specimens for mechanical characterization. Specifically, Figure 7 depicts the
topography images together with the respective roughness values (Rq: root-mean-square
roughness, Ra: average roughness of a surface, Rz: the difference between the tallest “peak”
and the deepest “valley” in the surface) of PA12, PA12/Al2O3 (1.0 wt.%), PA12/Al2O3
(2.0 wt.%), PA12/Al2O3 (3.0 wt.%), and PA12/Al2O3 (4.0 wt.%). On the other hand, the
topography for PLA, PLA/Al2O3 (1.0 wt.%), PLA/Al2O3 (2.0 wt.%), PLA/Al2O3 (3.0 wt.%),
and PLA/Al2O3 (4.0 wt.%) filaments are shown in Figure 8. A general observation is that
in all cases, the surface roughness of filaments increases with the addition and increased
amount of Al2O3 nanoparticles in the respective polymer matrix; however, it remains
that the nanoscale is an important characteristic for the filament quality which can affect
the consecutive 3DP process. The increase in surface roughness could be attributed (i) to
some plausible existence of nanoparticles onto the filament surface, and (ii) PA12 and PLA
polymer chains’ different conformation from the neat polymeric material, e.g., probably
due to some polymer crystal formation caused by the incorporated Al2O3 nanoparticles.

The addition of the Al2O3 filler has a different effect on the surface roughness of the
nanocomposites. Although PA12 pure has lower surface roughness than PLA pure, the
nanocomposites having PA12 as the matrix material have higher surface roughness values
than the corresponding PLA ones. The measured surface roughness values are very low,
and the differences overall are not significant. Any differences can be attributed to the
different rheological properties of the studied thermoplastics, which affect the surface
structure of the materials. The addition of the aluminum oxide filler has a different effect
on the structure of each thermoplastic. Additionally, measurements were taken at random
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positions, so differences are expected, also due to the topography of the microscale region
the measurements were taken.
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3.5. Scanning Electron Microscopy (SEM) Analysis of Al2O3 NPs and the Side Surface of the 3D
Printed Specimens

In Figure 9, Al2O3 powder SEM images at two different magnifications (Figure 9A,B),
together with the EDS spectrum (Figure 9C) are shown. The nature and nano-dimensions
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of particles are clearly observed with the spherical shape of the Al2O3 nanocrystallites. In
the EDS analysis, the Al peak dominates the spectrum, as expected, verifying the existence
of the Al element in the nanofiller (Figure 9C). The size of the NPs were verified in the SEM
images. The Carbon element is expected in the EDS graphs for the 3D printed samples
since they are made with polymeric materials, which are organic materials [75]. On the
EDS graph for the alumina powder (Figure 9C), the powder is placed in a carbon tape to
be inspected with SEM; therefore, the presence of carbon is expected in the graph, even
though it is not an element of alumina. It should be mentioned that EDS is an indicative
process regarding the presence of the elements; it is not for precise stoichiometric ratio or
precise quantification of the concentration of an element since measurements are taken
in a small region. High peaks are indicative of a high concentration of an element in the
region under observation, but this is mainly for qualitative assessment, not an accurate
quantitative one. Therefore, the expected exact ratio for Al and O in the alumina could not
be reliably determined with the EDS results since additional measurements should have
been taken.
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Figure 9. SEM images of Al2O3 powder at two magnifications: (A) 25,000×, (B) 75,000×, and (C) the
corresponding EDS spectrum acquired from the Al2O3 powder.

Figures 10 and 11 show the side surface morphology of all 3DP PA12/Al2O3 and
PLA/Al2O3 nanocomposites, respectively, indirectly highlighting the 3DP specimens’ ex-
ternal structure, which is the result of the additively deposited layers and the underlying
interlayer fusion. In Figure 10, two different magnifications, i.e., 30× and 150× are de-
picted, while in Figure 11 the side morphology of the samples is presented at 25× and 150×
magnification levels. For all specimens, an excellent build structure and fusion between the
layers could be observed, which highlights the high quality of the produced feedstock 3DP
filaments, as well as the optimum 3D printing parameters selected for the specimens’ man-
ufacturing in this research work. Moreover, the high quality of interlayer fusion without,
e.g., discontinuities, voids, cracks, etc., could produce parts with layers that have strong
interfacial shear strength, thus producing 3DP parts with a superior mechanical response.
The defect-free interlayer fusion arises also from the fact that the alumina nanofillers have
been most likely efficiently, and at the “nano-level”, dispersed in the polymer matrix. In
any other case, they might have created some micro-aggregates impeding the polymer
chain interdiffusion at the interphase between the layers, resulting thus in a microscopically
observed deteriorated interlayer fusion. Moreover, this effect could have been caused
even by the 3DP process, since micro-aggregates could result in the nozzle clogging being
responsible for the quality of the final 3DP part via introducing inhomogeneities, defects,
discontinuities, etc., all plausibly observed by SEM side surface morphology analyses. Only
in the case of PA12/Al2O3 (3.0 wt.%), and (g, h) PA12/Al2O3 (4.0 wt.%) 3DP nanocom-
posites, some non-homogeneous in surface morphology side filaments and printed layer
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thickness could be observed, which is most likely attributed to an increased polymer melt
viscosity affecting the 3D printing filamentous extrusion process slightly.
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3.6. Tensile Properties of Filaments and 3DP Specimens: Neat PA12, PLA, and Their
Al2O3 Nanocomposites

Tensile tests have been performed for the neat PA12, PLA, and the nanocomposite
filaments at the first level (Figure 12), as well as on 3DP dog-bone tensile test specimens
in the second stage (Figure 12). Figure 12A shows a representative neat polymer filament
under testing, while Figure 12B is a nanocomposite filament. In Figure 12C,D, the tensile
strength and the modulus of elasticity properties are summarized, respectively, for all the
different extruded and produced filaments in this research work (mean values together
with the corresponding standard deviation are shown). For all extruded filaments, Al2O3
NPs had a positive reinforcement effect for the different filler loadings. Namely, the highest
increase was observed in tensile strength at 1.0 wt.% for PA12 (34.1%), and PLA (49.3%),
while for the tensile modulus at 2.0 wt.% for PA12 (66.8%) and PLA (51.7%).
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A rather similar pattern is observed in the two polymers, with an increase in the tensile
strength at the 1 wt.% concentration and a decreasing trend with the further increase of
the alumina filler concentration in the nano-compounds. Still, even at the higher loading
of 4 wt.%, the tensile strength is higher than the pure material for both polymers. The
reinforcement is significantly more intense in the PLA polymer than in the PA12 polymer.

Figure 13A,B present the comparative and representative Tensile stress (MPa) vs. strain
(%) curves for PA12 and PA12/Al2O3 nanocomposites, as well as for PLA and PLA/Al2O3
nanocomposites, respectively (all curves for 3DP dog-bone shaped specimens described
by the specific ASTM, with all details given in the Experimental section). As previously
described for the extruded filaments, in Figure 13C,D, the tensile strength properties
and modulus of elasticity values are summarized, for all the different 3DP dog-bone
specimens (mean values together with the corresponding standard deviation). For all the
3DP specimens, Al2O3 NPs also exhibited a positive reinforcement effect for the different
filler loadings. Especially, the highest increase has been experimentally determined for
tensile strength and modulus at 1.0 wt.% for PA12 (41.1% and 56.4%, respectively), while at
2.0 wt.% for PLA (40.2% and 27.1%, respectively). The stress–strain curves of the pure 3DP
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polymeric materials coincide with the characteristic behavior observed in our previous
study, where meticulous work was performed to identify the effect of the strain rate on the
tensile properties (strength-stiffness) of different thermoplastic materials widely used in
FFF 3DP [76].
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From the above analyses, it can be easily realized that Al2O3 NPs have a more promi-
nent reinforcement mechanism for tensile strength and modulus of elasticity at 1.0 and
2.0 wt.%, both for the extruded filaments, as well as for the respective 3DP specimens.
On the other hand, there has been a marginal improvement for the 3.0 and 4.0 wt.% filler
loadings, which most likely indicates that the mechanical percolation network of Al2O3
spherical NPs within the PA12 and PLA thermoplastic polymeric matrices is achieved
above 1.0 and up to 2.0 wt.%. Several plausible mechanisms have been reported that might
lead to mechanical reinforcement of 3DP nanocomposite polymeric materials, especially
strength and stiffness, which are amongst others: (i) the optimum polymer melt rheology
and temperature during 3DP melt processing, (ii) the strong polymer matrix-filler interac-
tion, (iii) an adequate and high-quality of nanoparticles’ dispersion in the polymer matrix
(percolation), via optimum filament compounding-melt mixing extrusion process, and
(iv) the size and geometry of the filler as well as its surface chemistry [77]. In our study,
it can be concluded that above 2.0 wt.%, the tensile properties for both the filaments as
well as the 3DP specimens are not any more affected, while higher filler loadings cannot
induce any positive reinforcement mechanism. As such, one should focus in the range of
1.0–2.0 wt.%, since higher filler loadings can result in a knock-down mechanism for the
nanocomposites’ mechanical properties, i.e., due to less polymer chain mobility in the melt
state that can affect 3DP processability and specimens’ interlayer fusion [78,79], possible
nanoparticle agglomeration due to their extremely high surface area [80], which might lead
to stress concentration upon mechanical loading [81], etc.
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3.7. SEM Morphological Analysis of the Tensile Test Specimen Fractured Surfaces

Fractography analyses represented by the corresponding SEM images of tensile speci-
men fractured surfaces are presented in Figure 14 (PA12 nanocomposites) and Figure 15
(PLA nanocomposites). For the PA12/Al2O3 nanocomposites (Figure 14), in all cases apart
from the PA12/Al2O3 (1.0 wt.%) (Figure 14A), a relatively ductile fracture mechanism
can be observed with rough fractured surfaces and 3DP filaments in the fractured surface.
However, no distinct filaments from the different additively manufactured/deposited
layers can be observed, neither interlayer nor intralayer voids, being a sign of high-quality
interlayer fusion and optimum 3DP manufacturing parameters selected in this study. For
the PLA/Al2O3 nanocomposites (Figure 15), in all cases, a relatively brittle fracture mecha-
nism can be seen with some typical morphology of polymeric materials’ brittle fracturing.
Again, the high quality of the sample’s cross-section/fracture surface can be observed
without visible intralayer voids (apart from some voids appearing in PLA/Al2O3 (4.0 wt.%
specimen), indicating the optimum 3DP parameters which have been selected for PLA and
PLA/Al2O3 nanocomposites in this study.
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3.8. Flexural Tests Results of 3D Printed Pure PA12, PLA, and Their Al2O3 Nanocomposites

Figure 16A,B show the comparative and representative flexural stress (MPa) vs. strain
(%) curves for PA12 and PA12/Al2O3 nanocomposites, as well as for PLA and PLA/Al2O3
nanocomposites, respectively (all curves for 3DP specimens described by the specific
ASTM, with all details given in the Experimental section). Figure 16C,D summarize the
flexural strength and flexural moduli values for all the different 3DP specimens (average
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values and standard deviation). For all specimens, namely, PA12 and PLA nanocomposites,
Al2O3 NPs endowed a prominent reinforcement mechanism for the flexural properties, as
previously observed for the case of tensile properties comprehensively discussed in the
previous paragraph. Specifically, the highest increase has been experimentally determined
for flexural strength and modulus at 1.0 wt.% for PA12 (32.3% and 40.9%, respectively),
while at 2.0 wt.% for PLA (35.9% and 34.8%, respectively). It is worth mentioning that the
flexural properties of 3DP specimens agree with the properties determined in the tensile
experiments, in terms of nanoparticle filler loading and trend in the increase of flexural
modulus and strength properties for PA12 and PLA nanocomposites. In the flexural tests, a
clear reinforcement is observed on the polymers with the addition of alumina. Even the
lowest flexural strength values reported are higher than the corresponding values of the
pure polymers for concentrations up to 4 wt.%, which were studied in the work.
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3.9. Tensile-Flexural Toughness, Impact Strength, and Micro-Hardness Properties

In Figure 17, the tensile toughness (Figure 17A), flexural toughness (Figure 17B),
impact strength (Figure 17C), and micro-hardness (Vickers (HV)) (Figure 17D) properties
of neat PA12 and PLA, as well as of their respective nanocomposites at 1.0, 2.0, 3.0, and
4.0 wt.% of Al2O3 filler loading are presented. More specifically, the tensile toughness
has shown its maximum increase for the 4.0 wt.% nanocomposites, namely 40.8% for the
PA12/Al2O3 (4.0 wt.%) and 35.6% for the PLA/Al2O3 (4.0 wt.%) nanocomposite. The
flexural toughness was maximum for PA12/Al2O3 (1.0 wt.%) with a 24.9% increase and
PLA/Al2O3 (2.0 wt.%) with a 31.6% increase. For all filler loadings, the tensile and flexural
toughness has been increased indicating that the Al2O3 nanoparticles’ existence increased
the material’s resistance to fracture via inhibition of some crack initiation or crack growth
and propagation upon applying a quasi-static tensile or flexural mechanical stress field. The
impact strength (Figure 17C) has shown the best performance for PA12/Al2O3 (3.0 wt.%)
with a 30.1% increase, and PLA/Al2O3 (4.0 wt.%) with a 30.2% increase, while for micro-
hardness it has been the same trend, namely for PA12/Al2O3 (3.0 wt.%) 27.6% increase, and
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PLA/Al2O3 (4.0 wt.%) 39.0% increase. The results are quite reasonable for the toughness-
related, impact, and micro-hardness properties, which exhibit a trend to be higher and more
positively affected with the increased filler loading. This has to do as previously mentioned
with some crack-related mechanism that allows the material to “absorb” a higher amount of
mechanical energy up to the fracture point, even if the pure tensile and flexural properties’
performance (strength, modulus) had been found to be affected by a generated/achieved
mechanical percolation threshold in the range between 1.0 and 2.0 wt.% of filler loading.
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4. Conclusions

In this work, PA12 and PLA nanocomposite 3DP filaments have been produced via
versatile and scalable melt–mixing/compounding processes, with the aim to be used in
FFF 3DP as feedstock materials and improve the mechanical properties of the 3DP-built
manufactured specimens. The aim of the work was achieved, and alumina improved the
mechanical response of the prepared nanocomposites in all concentrations studied.

Different filler Al2O3 loadings, namely 1.0, 2.0, 3.0, and 4.0 wt.% have been incorpo-
rated in PA12 and PLA, respectively, as two polymeric materials widely used as thermoplas-
tic matrices in 3DP with a high potential towards a great variety of engineered applications,
e.g., mechanical parts in machines, interior parts in automotive, marine, etc. Next, the devel-
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oped filaments were used to manufacture 3DP standard samples in geometries according to
different ASTM protocols, and an extensive mechanical properties test campaign has been
followed to investigate the effect of the Al2O3 nanofillers in the mechanical reinforcement
of PA12 and PLA, respectively. Specifically, to assess the response of the developed 3DP
nanocomposites to nano-filler loading, the 3DP samples were comprehensively charac-
terized via mechanical (tensile, flexural), impact, micro-hardness, physicochemical, and
fractographic analyses. As a summary, the overall mechanical properties of the 3DP, PA12
and PLA nanocomposites investigated in this study are illustrated in the histogram of
Figure 18.
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Figure 18. Spider graph summarizing the experimentally determined mechanical properties of pure
PA12 and PLA compared to PA12/Al2O3 and PLA/Al2O3 3DP nanocomposites at 1.0, 2.0, 3.0, and
4.0 wt.% of Al2O3 filler loading. The shaded area presents the mechanical response of the pure
materials. Legend shows which color corresponds to which material in each graph.

It can be observed that the incorporation of Al2O3 nanoparticles in both polymeric
matrices improves the mechanical properties of the neat polymer for concentrations up
to 2 wt.%. Only the toughness values, the impact strength, and the microhardness for the
different nanocomposites are found to be more positively affected by further increasing
the nanoparticle filler loadings, especially at 3.0 and 4.0 wt.%, which is more possibly
explained as previously mentioned due to some crack related mechanism, i.e., the highest
filler loading allows the material to “absorb” a higher amount of mechanical energy up to
the fracture point, even if the pure tensile and flexural properties performance (strength,
modulus) have been found to be affected by a generated/achieved mechanical percolation
threshold found in the range between 1.0 and 2.0 wt.% of filler loading. It can be deduced
that commercially available PA12 and PLA reinforced with Al2O3 nanoparticles could be a
viable solution for engineering applications where strength, stiffness, toughness, impact,
and microhardness properties are critical to be enhanced.

The effect of alumina on two popular thermoplastics in FFF 3D printing (PA12 and
PLA) was investigated and determined within the contents of this work. Based on the
results of the work, in future work, binary inclusions using alumina as one of the fillers
can now be investigated for the development of multi-functional nanocomposites in FFF
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3D printing. Additional properties of the nanocomposites investigated herein can also be
studied, such as electrical properties, optical properties, and others.
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Nomenclature
3DP 3D Printing
ABS Acrylonitrile Butadiene Styrene
AM Additive Manufacturing
AFM Atomic Force Microscopy
ASTM American Society for Testing and Materials
CNC computer numerical control
CNTs carbon nanotubes
CAD computer-aided design
DLP Digital Light processing
DOD Drop on Demand
DTG Derivative Thermogravimetry
E Tensile Modulus of Elasticity
FFF Fused Filament Fabrication
MVR Melt Volume-Flow Rate
NPs Nanoparticles
PA12 Polyamide 12
PLA Polylactic Acid
Ra Average Surface roughness: Average profile height deviations from the mean line
Rz Surface roughness: Min-Max peak to valley height of the profile, within five sampling lengths
SEM Scanning Electron Microscopy
SLS Selective Laser Sintering
STL Standard Tessellation Language
TGA Thermogravimetric Analysis
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