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Abstract: Nanofluids have unique features that make them potentially valuable in a variety of medic-
inal, technical, and industrial sectors. The widespread applications of nanotechnology in modern
science have prompted researchers to study nanofluid models from different perspectives. The
objective of the current research is to study the flow of non-Newtonian nanofluid over an inclined
stretching surface immersed in porous media by employing the Darcy–Forchheimer model. Both
titanium oxide (TiO2) and aluminum oxide (Al2O3) are nanoparticles which can be found in blood
(based fluid). The consequences of viscous dissipation, thermal radiations, and heat generation are
also incorporated. Boundary layer approximations are employed to model the governing system of
partial differential equations (PDEs). The governing PDEs with their associated boundary conditions
are further altered to a dimensionless form by employing appropriate transformations. The results of
the transformed model are collected using local non-similarity approach up to the second level of
truncation in association with the built-in finite difference code in MATLAB (bvp4c). Additionally,
the impacts of emerging factors on the fluid flow and thermal transport features of the considered
flow problem are displayed and analyzed in graphical forms after achieving good agreement between
accomplished computational results and published ones. Numerical variations in drag coefficient and
Nusselt number are elaborated through the tables. It has been perceived that the enhancement in Cas-
son fluid parameter diminishes the velocity profile. Moreover, it is noted that the porosity parameter
and Lorentz’s forces reinforce the resulting frictional factor at the inclined stretching surface.

Keywords: Casson nanofluid; inclined stretching surface; Darcy–Forchheimer model; non-similarity; bvp4c

1. Introduction

Turning nanoparticles into colloidal dispersions in liquid media, which is part of a
new classification of heat transmission in fluids, creates what is known as nanofluids in
today’s nanotechnology era. Nanoparticles such as metals, metal oxides, etc., are frequently
employed as nanofluids with a solid phase due to their efficient benefits such as low density,
chemical stability, and simplicity of preparation. The physically and chemically interlinked
features of nano-sized particles and molecule-based nanofluids play a considerable role
in the viscosity and thermal conductivity of colloidal dispersion solution. Thus, nano-
sized engineering of fluids can ensure the thermal and physical features of nanofluids.
Due to the wide range of technological applications that enable diverse industrial heat
transfer processes, researchers’ interest in studying nanofluids is growing at the moment.
Mahian et al. [1] presented a theoretical and computational examination of the heat transfer
and entropy minimization of nanofluid flows across diverse flow regimes and geometries.
Esfe et al. [2] addressed thermal system optimization because an improved energy system
has numerous benefits such as reduced operating costs, limited negative environmental
impacts, increased heat transfer coefficient, and energy source savings. Chahregh and
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Dinarvand [3] developed an effective mathematical model for the transport of nanofluid in
a porous channel using Ag and TiO2 as nanoparticles and blood as the base fluid, which may
be an appropriate drug delivery model. Chiolerio et al. [4] studied the effects of ferrofluids
on the transport processes which can be controlled by varying the strength and orientation
of an external magnetic field. Bhatti et al. [5] assessed the effects of porosity, magnetic field,
and motile microbe suspension on 3-dimensional, incompressible, axisymmetric, unstable
Williamson nanofluid flow between two parallel rotating plates with its potential wide
range of industrial applications. Pordanjani et al. [6] presented a critical assessment of
the uses of nanofluids in various thermal systems and their environmental repercussions.
With activation energy and chemical reaction assumptions, Shahid et al. [7] investigated
bio-convection impacts on MHD Carreau nanofluid flow through the paraboloid porous
surface. Ali et al. [8] investigated the effects of nanometer-sized copper (Cu) particles in
water (base fluid) with the considerations of non-linear thermal radiations, variable fluid
viscosity, Joule heating, viscous dissipation, and non-uniform heat flux.

Non-Newtonian nanofluids may be observed in a wide range of commercial and
technical applications, including dissolved polymers, biological solutions, asphalts, glues,
and paints. Therefore, the dynamics of non-Newtonian nanofluids have attracted the
interest of many academics. Since a single constitutive equation cannot fully capture the
physical characteristics of non-Newtonian fluids, several models have been developed to
do so. Casson fluid is one of these non-Newtonian fluids. With a yield shear stress included
in the constitutive equation, it exhibits behavior similar to that of elastic solids; jelly, honey,
soup, tomato sauce, and concentrated fruit liquids are all examples of Casson fluids. Blood
in certain situations can also behave as Casson fluid. Several studies on blood with different
hematocrits, anticoagulants, temperatures, etc., suggest that blood behaves as a Casson
fluid. In particular, the Casson fluid model more accurately depicts the flow characteristics
of blood at low shear rates. Several recent investigations regarding Casson nanofluid flow
can be found in Refs. [9–11]. A study on the boundary layer of Maxwell nanofluid with
induced magnetic field and analysis of entropy for unsteady viscoelastic fluids was also
conducted by Asjad et al. [12]. The effect of temperature on the temperature-dependent
thermal conductivity and viscosity of Williamson nanofluid flow over an exponentially
stretching permeable vertical plate was examined by Amjad et al. [13]. Hussain et al. [14]
presented a novel analysis regarding 2-dimensional electromagnetohydrodynamic Casson
nanofluid flow with thermal radiations, and heat source/sink impacts across a stretching
surface by considering iron oxide and gold as nanoparticles. Zari et al. [15] scrutinized the
heat and mass transfer with the effects of double stratification for the Marangoni Casson
convective nanofluid flow across an inclined surface.

The science of magnetohydrodynamics (MHD) examines how an electrically conduct-
ing fluid moves in a magnetic field, which can influence the system’s heat transfer flow.
Theoretically, magnetic fields induce a drag force known as the Lorentz force, which resists
the flow and thus increases the temperature distribution of the fluid. Nevertheless, the
applied magnetic field complicates the separation of the boundary layer. MHD has several
applications in crystal development, metal casting, optical grafting, tunable optical fiber
filters, MHD generators, and the polymer sector. Hartmann and Lazarus [16] were the
pioneers who established the hypothesis of an electrically conducting laminar fluid flow in
a homogeneous magnetic field, launching massive research efforts in MHD throughout
the previous few decades. Anusha et al. [17] investigated the influence of a magnetic field
across the stretching surface integrated with porous media on the 2-dimensional laminar
couple stress water-based nanofluid flow. With the presumptions of zero nanoparticle flux
and first-order compound response, Dey and Mukhopadhyay [18] investigated the impacts
of an external magnetic field and suction/injection on forced convection nanofluid flow
across an absorbent surface. Evaristo et al. [19] investigated the unsteady MHD model
to simulate the process of heat transfer which goes through temperature and magnetic
field cycles to generate mechanical power. Arulmozhi et al. [20] assessed the influences
of heat radiation and chemical reactions on the MHD nanofluid’s mass and heat convec-
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tion over an infinitely moving vertical surface embedded in porous media. Jan et al. [21]
examined the MHD boundary-layer nanofluid flow over a vertically placed stretching
surface under the impacts of viscous dissipation and heat generation/absorption factor.
Vishalakshi et al. [22] examined the non-Newtonian three-dimensional graphene water
nanofluid flow across a porous stretching/shrinking surface in the presence of thermal
radiation and mass transpiration.

Porous surfaces and media play a crucial part in engineering, agricultural, and indus-
trial fields such as drying procedures, oil recovery, geothermal energy, chromatography,
fuel cell equipment, etc. An active method for enhancing thermal performance is the
cumulative impact of heat and mass transfer associated with the MHD flow of nanofluids
across a porous media. In a variety of technical and industrial processes, fluid velocity
and thermal management are successfully regulated in porous media. Darcy presented
a classical concept to simulate flow through a porous media. However, this notion holds
for analyses with lower velocity and lower porosity. On the other side, when nanofluids
flow at a faster pace than the conventional Darcy theory is inappropriate, an extended
Darcy–Forchheimer model is employed to characterize various fluid flows. Wang et al. [23]
examined thermal transportation associated with the flow of non-Newtonian nanofluid trig-
gered by a stretching surface across the Darcy–Forchheimer medium with the consideration
of electromagnetic field. Bilal et al. [24] analyzed the nanofluid flow comprising magnesium
oxide (MgO), titanium dioxide (TiO2) and cobalt ferrite (CoFe2O4) nanoparticles through
plate, wedge, and cone with the consequences of activation energy, heat source/sink, and
the magnetic field. Rasool et al. [25] considered the Buongiorno’s model to examine the
consequences of the thermal radiations and Darcy–Forchheimer medium on the MHD
Maxwell nanofluid flow across a stretching surface. Eswaramoorthi et al. [26] scrutinized
the radiative Darcy–Forchheimer flow of Casson nanofluids across a stretching surface
with suction and heat consumption.

The growing usage of non-Newtonian nanofluids in a variety of biological and
technical applications have prompted to examine steady incompressible non-Newtonian
nanofluid flow across an inclined stretching surface through porous media. The non-
Newtonian Casson fluid model is considered for flow analysis. The nanofluid comprises
nanoparticles such as Al2O3, and TiO2, and blood as the base fluid. The consequences of
thermal radiations, heat production, and viscous dissipation are also considered by using
the (Tiwari and Das) single-phase nanofluid model. The governing system is transformed
into a non-similar arrangement by employing appropriate conversions. The transformed
equations are tackled using local non-similarity (LNS) technique [27] via the bvp4c solver
provided in the computational MATLAB software. To the best of the authors’ knowledge,
no similar studies on this topic have yet been investigated. The stimulus of dimensionless
emerging factors on velocity and thermal profiles are discussed thoroughly with graphs. In
addition, the consequences of several dimensionless parameters on surface drag coefficient
and heat transfer characteristics are also investigated.

2. Mathematical Modeling

Consider the steady incompressible magnetized flow of Casson nanofluid contains
nanoparticles of titanium oxide(TiO2) and aluminum oxide(Al2O3) dispersed in base fluid
(blood) across an inclined stretching surface with the assumption of a Darcy-Forchheimer
porous medium. The inclined stretching surface stretches with the velocity uw(x), and
has temperature Tw, whereas the ambient velocity is assumed to be zero and the ambient
temperature is T∞. Nanofluid flow is electrically conductive. The applied magnetic field Bo
is placed normal to the stretching surface (Figure 1). The impacts of heat source/sink factor
and thermal radiations are also considered. Incorporating Boussinesq, and boundary layer
assumptions the basic conservation equations of mass, momentum, and energy are given,
respectively, by [9–11]:

∂u
∂x

+
∂v
∂y

= (1)
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ρn f

(
u

∂u
∂x

+ v
∂u
∂y

)
= µn f

(
1 +

1
β

)(
∂2u
∂y2

)
+(ρβT)n f gcosϑ(T − T∞)−

µn f

K
u− σn f B2

0u− Fou2, (2)

(
ρcp
)

n f

(
u ∂T

∂x + v ∂T
∂y

)
= kn f

∂2T
∂y2 + µn f

(
1 + 1

β

)(
∂u
∂y

)2
+ σn f (uBo)

2

+ 16
3

(
σ∗T3

∞
k∗

∂2T
∂y2

)
+

µn f
K u2 + Qo(T − T∞).

(3)
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Figure 1. Flow configuration.

With boundary conditions:

u = uw(x) = bx, v = 0 , T = Tw , at y = 0 (4)

u = 0 = v, T → T∞ at y→ ∞. (5)

Here u and v are the velocity vectors in x- and y-directions, β is the Casson fluid
parameter, K (permeability of porous medium), Fo =

Cb

xK
1
2

(non-uniform inertial coefficient),

where Cb is the drag force coefficient, Bo (strength of magnetic field), Qo (rate of heat
generation /absorption), k∗ (Boltzmann constant), fluid density is ρ, Cp, T∞ and Tw specifies
the specific heat, ambient, and wall temperatures.

To develop a non-similar flow, introducing the ξ(x) as non-similarity, and η(y) as a
pseudo-similarity variable.

ξ = x
l , η = y

√
b

νn f
, u = bx ∂ f

∂η (ξ, η), v = −
√

bνn f

(
f (ξ, η) + ξ

∂ f
∂ξ (ξ, η)

)
,

θ( ξ, η) = (T−T∞)
(Tw−T∞)

.
(6)

In the light of the above transformations, Equations (6) and (1) are identically satisfied,
whereas Equations (2)–(5) become:(

1 + 1
β

)
∂3 f
∂η3 +

[
f ∂2 f

∂η2 − (1− Fr)
(

∂ f
∂η

)2
]

− ρn f
ρ f

[
µ f
µn f

λ
∂ f
∂η +

σn f
σf

M ∂ f
∂η −

(ρβT)n f
(ρβT) f

ξ−1Grθcosϑ

]
= ξ

(
∂ f
∂η

∂2 f
∂ξ∂η −

∂ f
∂ξ

∂2 f
∂η2

) (7)
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( kn f
k f

+ Rd

)
∂2θ
∂η2

+EcPr
µn f
µ f

[(
1 + 1

β

)(
∂2 f
∂η2

)2
+ ξ2 σn f

σf
M
(

∂ f
∂η

)2

+ξ2λ
µn f
µ f

(
∂ f
∂η

)2
]
+

µn f
µ f

(ρcp)n f

(ρcp) f
Pr f ∂θ

∂η

+
µn f
µ f

PrQθ =
µn f
µ f

(ρcp) f

(ρcp)n f
Prξ
(

∂ f
∂η

∂θ
∂ξ −

∂ f
∂ξ

∂θ
∂η

)
(8)

Non-similar boundary conditions are:

∂ f
∂η

(ξ, 0) = 1, f (ξ, 0) + ξ
∂ f (ξ, 0)

∂ξ
= 0, θ(ξ, 0) = 1, (9)

∂ f (ξ, ∞)

∂η
= 0, θ(ξ, ∞) = 0 (10)

where the inertia coefficient is Fr =
Cb

K
1
2

. magnetic number M =
σf B2

o
bρ f

, porosity parameter

λ =
ν f
bk , mixed convection parameter Gr =

gβ f (Tw−T∞)

b2l , radiation factor Rd = 16
3

σ∗T3
∞

k∗k f
,

Eckert number Ec = c2l2

(cp) f (Tw−T∞)
and Prandtl number Pr =

ν f
α f

, heat source/sink factor

Q = Qo
b(ρcp) f

.

Surface friction coefficient C f and local Nusselt number Nux are:

C f =

(
τw

ρn f (uw)
2

)
y=0

, N =

(
xqw

k f (Tw − T∞)

)
y=0

(11)

where τw surface shear stress, qw is the surface flux:

τw = µn f

(
∂u
∂y

)
y=0

, qw = −
[

kn f
∂T
∂y

+ qr

]
y=0

(12)

Using Equation (5) and Equation (10), we have:

Re
1
2 C f = ξ−1 ∂2 f (ξ,0)

∂η2

Re
−1
2 Nu = −ξ

( kn f
k f

+ Rd
)

∂θ(ξ,0)
∂η

 (13)

The Reynold’s number is defined as Re = bl2

ν f
.

2.1. Solution Methodology

The dimensionless governing model mentioned in Equations (7)–(10) for boundary-
layer flow of nanofluid across an inclined stretching surface is solved by employing the
methodology of LNS. The stepwise details of the LNS method for the stated problem are in
the next subsections.

2.2. Local Non-Similarity Method:

Assuming that the terms ξ
∂(.)
∂ξ are very small at the first level of truncation, and this

behavior is true for (ξ << 1). Therefore, Equations (7)–(10) become:(
1 + 1

β

)
f ′′′ = (1− Fr)( f ′)2 − f f ′′

− ρ f
ρn f

[
− µ f

µn f
λ f ′ − σn f

σf
M f ′ − (ρβT)n f

(ρβT) f
ξ−1Grθcosϑ

]
,

(14)



Nanomaterials 2022, 12, 4291 6 of 16

( kn f
k f

+ Rd

)
θ′′

+EcPr
µn f
µ f

[(
1 + 1

β

)
f ′′ 2 +

σn f
σf

ξ2M f ′2

+ξ2λ
µn f
µ f

f ′2
]
+

µn f
µ f

PrQθ +
µn f
µ f

(ρcp)n f

(ρcp) f
Pr f θ′

= 0.

(15)

The accompanying boundary conditions are:

f ′(ξ, 0) = 1, f (ξ, 0) = 0, θ(ξ, 0) = 1, (16)

f ′(ξ, ∞) = 0, θ(ξ, ∞) = 0. (17)

To obtain second-order truncation, Equations (7)–(10) must be differentiated with
respect to ξ and the introduction of new functions g(ξ, η) =

∂ f (ξ,η)
∂ξ , h(ξ, η) =

∂θ(ξ,η)
∂ξ , and

equating the ξ-derivatives to reach zero, such that ∂g(ξ,η)
∂ξ = ∂h(ξ,η)

∂ξ = 0. The transformed
equations are: (

1 + 1
β

)
g′′′ =

[
f ′g′ − g f ′′ + ξ

(
g′2 − gg′′

)]
−[g f ′′ + f g′′ − 2(1− Fr) f ′g′]
+

ρn f
ρ f

[
µ f
µn f

λg′ +
σn f
σf

Mg′

+
(ρβT)n f
(ρβT) f

(
ξ−2Grθcosϑ− ξ−1Grhcosϑ

)] (18)

( kn f
k f

+ Rd

)
θ′′

=
µn f
µ f

EcPr
[
2
(

1 + 1
β

)
f ′′ g′′ + 2

σn f
σf

Mξ( f ′)2

+2
σn f
σf

Mξ2 f ′g′

+λ
µn f
µ f

(ρcp) f

(ρcp)n f

(
ξ( f ′)2 + ξ2 f ′g′

)]
− µn f

µ f
PrQh

− µn f
µ f

(ρcp)n f

(ρcp) f
Pr[gθ′ + f h′]

+
µn f
µ f

(ρcp) f

(ρcp)n f
Pr
[

f ′h− gθ′ +
µn f
µ f

ξ(g′h− gh′)
]

(19)

subjected to the conditions:

g′(ξ, 0) = 0, g(ξ, 0) = 0, h(ξ, 0) = 0, (20)

g′(ξ, ∞) = 0, h(ξ, ∞) = 0 (21)

Table 1 represents thermophysical properties of important variables of nanofluids.

Table 1. Thermophysical properties of the nano fluid [28].

Property Symbol Defined

Viscosity µn f µn f =
µ f

(1−φ)2.5

Density ρn f ρn f = (1− φ)ρ f + φρs

Heat capacitance
(
ρCp

)
n f

(
ρCp

)
n f = (1− φ)

(
ρCp

)
f + φ

(
ρCp

)
s

Electric conductivity σn f σnf =

1 +
3
(

σs
σf
−1
)

φ(
σs
σf
+2
)
−
(

σs
σf
−1
)

φ

σf

Thermal conductivity kn f kn f =
(ks+2k f )−2φ(k f−ks)
(ks+2k f )+φ(k f−ks)

k f

Thermal expansion (ρβT)n f (ρβT)n f = (1− φ)(ρβT) f + φ(ρβT)s

Where φ is the concentration of the nanoparticles.
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Table 2 represents thermophysical properties of nanoparticles and base fluids.

Table 2. Thermophysical values of nanoparticles and base fluid [29].

Materials cp (J/kgK) ρ (kg/m3) k(W/mK) β( 1
K ) σ(Ωm) −1

Titanium Oxide
(TiO2) 686.2 4250 8.9538 1.0× 10−12

Aluminum Oxide
(Al2O3) 765 3970 40.0 8.5 ×10−6 1.0× 10−10

Blood 3594 1053 0.492 0.18 ×10−5 0.8

Furthermore, the comparative study with the existing literature has been displayed in
Table 3 (see [30–32]). This shows that the present findings are quite similar as compared
to the results in existing literature. It proves that the presented solutions are valid in
limiting case.

Table 3. Comparison of the θ′(0) when ξ = 0.1 and Fr = M = Gr = Ec = Q = Rd = 0 with
published literature Refs. [30–32].

Pr
θ’(0)

Hassanien et al. [30] Salleh et al. [31] Alkasasbeh et al. [32] Present Study

0.72 0.46325 0.46317 0.46316 0.4986316451

1 0.58198 0.58198 0.58198 0.5975809450

3 1.16525 1.16522 1.16524 1.1643563783

5 1.56806 1.56807 1.5674514653

7 1.89548 1.89550 1.8949925136

10 2.30801 2.30821 2.30820 2.3153556715

100 7.74925 7.76249 7.76250 7.7714379105

Tables 4 and 5 deliberate the response of the drag force coefficient and Nusselt number
for different values of emerging parameters. It is noticed in Table 4 that, the values of
Re

1
2 C f elevate with M, Gr, and λ, whereas they reduces with increasing levels of β.

Table 4. Computed values of Re
1
2 C f against several estimations of M, β, λ, and Gr when ξ = 0.1.

M Gr λ β (Al2O3) + Blood (TiO2) + Blood

0.2 0.1 0.2 1.5 0.4901010947 0.4274598638

0.3 0.5475697381 0.4345869467

0.2 0.1 −0.3248568971 −0.2776837564

0.2 −0.2785986793 −0.2185968970

0.2 0.5353017252 0.4509675312

0.3 0.6140624653 0.4766629609

1.5 0.5673852317 0.2543942356

2.0 0.5379535782 0.2348687475

Findings in Table 5 show that Re−
1
2 Nu varies directly with (M) and (Q), but has an

inverse relation with λ, Ec, β, and Rd, taking ξ = 0.1.
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Table 5. Computed values of Re−
1
2 Nu against several values of β, M, Q , Rd , Ec, and Pr when

ξ = 0.1.

M λ Ec β Rd Q (Al2O3) + Blood (TiO2) + Blood

0.1 0.1 0.01 1.5 0.1 0.2 1.6224248090 1.6875579845

0.3 1.5786434551 1.6468293505

0.1 0.1 1.6224248090 1.6875579845

0.2 1.4359703456 1.4687930578

0.01 1.6224248090 1.6875579845

0.03 1.5783456731 1.6134984516

1.5 1.6224248090 1.6875579845

2.0 1.6203188133 1.6234887611

0.1 1.6224248090 1.6875579845

0.3 1.5643867971 1.6436739765

0.1 1.6224248090 1.6875579845

0.3 1.7659238752 1.7535962614

3. Result and Discussion

In this section, the physical discussion is described on the graphs that are developed
to examine the behavior of various dimensionless physical parameters against the velocity
and temperature profiles. A comparison has been shown in each graph for two different
nanofluids, namely, TiO2 + blood and Al2O3 + blood.

The predicted consequence of the magnetic number M on fluid velocity is shown in
Figure 2. The interaction of magnetic force reflects a diminishing change in velocity due to
the Lorentz’s force existence.
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Figure 3 depicts the velocity profile against the Casson fluid parameter (β). The
graph shows that as (β) increases, there is a decline in the velocity profile. Physically, it is
anticipated since an upsurge in β causes an increase in the fluid’s dynamic viscosity. This
triggers a decline in velocity profile owing to the development of fluid viscosity.
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Figure 3. Velocity profile for deviating estimations of β. When Q = 0.1, ϑ = π
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The impact of porosity parameter (λ) against velocity profile is clear from Figure 4.
An increment in (λ) shows the decline in the velocity profile. Physically, this conclusion can
be examined that with the enhancement in λ, the viscosity of the fluid increases therefore,
velocity decrease.

Figure 5 depicts the fluctuation of the velocity profile against the Forchheimer number
(Fr). The graph shows that the increasing (Fr) slows decline in the fluid velocity. When
the coefficient of inertia is overestimated, fluid velocity decreases. The inertia coefficient
is associated with drag force in this case. Although fluid velocity drops as the inertia
coefficient grows, so does the drag force.

Figure 6 depicts how the magnetic parameter (M) affects the thermal profile. (M)
causes the temperature of the nanoparticles to rise. It is physically justified that, with
the increasing (M), the Lorentz force linked with the magnetic field strengthens and it
generates more resistance to the flow which leads to the enhancement in thermal boundary-
layer thickness.

Figure 7 indicates the consequence of the inertial coefficient (Fr) against the thermal
profile. The graph illustrates that increasing the inertia coefficient results in a signifi-
cant improvement in the temperature profile. Because the inertia coefficient correlates
directly with porosity media and drag coefficient, a high value of Cb increases both media
porosity and drag coefficient; thus, the velocity decreases against (Fr), whereas the fluid
temperature increases.

The impact of porosity parameter (λ) against the temperature profile is shown in
Figure 8. With an increment in (λ), an escalation in viscosity occurs which enhance the
thermal profile.
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Figure 9 exhibits the behavior of the temperature profile against the various estimations
of the radiation parameter (Rd). For increasing values of (Rd), temperature profile increases
for both cases.
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Figure 9. Temperature profile for deviating estimations of Rd. When Q = 0.1, ϑ = π
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The behavior of the temperature profile in response to the variations in the Casson
parameter (β) is shown in Figure 10, as the Casson parameter (β) enhances the thermal
boundary layer enhances.
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Figure 11 describes the behavior of thermal profile for various estimations of heat
source/sink parameter (Q). Enhancement in (Q), (Q > 0) significantly accelerates the
thermal profile.
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4. Conclusions

In the considered problem, non-similar analysis for Casson nanofluid flow over an
inclined permeable stretching surface is proposed with the impacts of heat generation,
thermal radiations, magnetic field, viscous dissipation, and porous medium using the
Darcy–Forchheimer model. The governing system is highly non-linear and is successfully
tackled by using the LNS approach in association with the bvp4c MATLAB package. The
following are the key conclusions of the present research:

ã The flow is decelerated with increasing estimations of the magnetic number and the
Casson parameter.

ã By enhancing the magnetic number M, the flow field decreases while the thermal
profile increases.

ã Additionally, the thermal profile rises as the porosity parameter is estimated to be
higher, and the flow field also decreases.

ã Thermal profiles are significantly increased with radiation parameters.
ã An increment in the porosity parameter and the Eckert number reduces the local

Nusselt number, whereas they increase the thermal boundary layer thickness for both
considered cases.

ã A greater magnetic parameter (stronger Lorentz force) enhances the magnitude of the
drag coefficient.

ã To validate the existing analysis, a comparative study is conducted, which proves the
consistency of the current results.
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Nomenclature

u, v Velocity components (ms−1)
x, y Coordinate System (m)
T Temperature (K)
Tw Surface temperature (K)
T∞ Ambient temperature (K)
ρ Fluid density (kg/m−3)
α Thermal diffusivity (m2/s)
Fo Non-uniform inertial coefficient
Fr Inertial coefficient
βT Thermal expansion

(
K−1)

β Casson fluid parameter
Cb Drag force
k∗ Boltzmann constant
ϑ Angle of inclination
K Permeability of porous medium
Q0 Heat generation/absorption coefficient
f Dimensionless stream function
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θ Dimensionless temperature
η Pseudo-similarity variable
ξ Non-similarity variable
M Magnetic parameter
Gr Grashof number
Rd Radiation parameter
Re Reynolds number
Pr Prandtl number
λ Porosity parameter
Ec Eckert number
f , n f Base fluid, nano fluid
B0 Magnetic parameter(kgs−2A−1)
k Thermal conductivity (W/mK)
cp Specific heat(m2s−−2k−1)
σ Electrical conductivity (kg−1m−3s3A2)
C f Skin friction coefficient
Nu Local Nusselt number
τw Surface shear stress (kgm−1s−−2)
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