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Abstract: Organic disordered semiconductors have a growing importance because of their low
cost, mechanical flexibility, and multiple applications in thermoelectric devices, biosensors, and
optoelectronic devices. Carrier transport consists of variable-range hopping between localized
quantum states, which are disordered in both space and energy within the Gaussian disorder model.
In this paper, we model an organic disordered semiconductor system as a network embedded in both
space and energy so that a node represents a localized state while a link encodes the probability (or,
equivalently, the Miller–Abrahams hopping rate) for carriers to hop between nodes. The associated
network Laplacian matrix allows for the study of carrier dynamics using edge-centric random walks,
in which links are activated by the corresponding carrier hopping rates. Our simulation work
suggests that at room temperature the network exhibits a strong propensity for small-network nature,
a beneficial property that in network science is related to the ease of exchanging information, particles,
or energy in many different systems. However, this is not the case at low temperature. Our analysis
suggests that there could be a parallelism between the well-known dependence of carrier mobility on
temperature and the potential emergence of the small-world property with increasing temperature.

Keywords: disordered organic semiconductors; hopping transport; variable-range hopping;
space–energy embedded networks

1. Introduction

Organic semiconductors (OSCs) are currently attracting a huge amount of attention
worldwide because of their intrinsic beneficial properties such as flexibility (crucial in
wearable electronics and flexible organic solar cells [1]), their feasibility for controlling
their molecular design [2], and, what is of essential importance, their low cost. In-depth
knowledge and the ability to perform accurate simulations [3] of carrier transport in OSCs
are key for increasing the performance of organic thermoelectric devices [4,5], organic
photovoltaic cells [6,7], organic light-emitting diodes (OLEDs) [8,9], organic thin-film
transistors (OTFTs) [10,11], and organic field-effect transistors (OFETs) [12]. Specifically, as
the OSC channel is very sensitive to exogenous stimulus, OFETs can be used as sensors
for a wide variety of physical variables [13,14]. Additionally, two-dimensional (2D) OSC
nanostructures are highly sensitive to bio-analytes and have a bio-functionality which
assists in designing more efficient bio-sensors [15] and other nanodevices [16].

In particular, an important subset of OSCs is the one made up of organic disordered
semiconductors (ODSs), including conjugated polymers, low-molecular-weight materials,
and doped polymers [17]. Regarding this, most scientists and engineers agree that the
transport of electric charge is mainly based on carrier hopping between localized quantum
states, which are disordered in both space and energy [17–24]. This has been experimen-
tally tested in [18], and proven by both analytical models [17,20,22–27] and numerical
simulations [3,19,21,28–30].
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In turn, hopping transport in ODSs belongs to a complex class of hopping called
variable-range hopping (VRH) [31–33]. This means that, as shown in Figure 1a, a carrier in
an initial state i (with energy εi and located at site ri ∈ R3) may either jump to a near state
j at rj with different energy, ε j (thanks to phonon absorption), or may tunnel to a further
state m with the same energy εi [16]. The Miller–Abrahams (MA) [34] and the Marcus [35]
models are used profusely to compute carrier hopping rates between full and empty
states. The latter is the most widely used in electron transfer involving electrochemical
processes in molecular chemistry and biology [36–40]. The MA model is the most used
in the field of ODSs because it is easier to apply and leads to very accurate results in
most cases [17,20,22–27,31]. In the present work, we use hopping rates inspired by the MA
model. As will be shown later on, the carrier hopping probability involving states i and j
is proportional to (∝), a negative exponential that depends on both the spatial Euclidean
distance dE,ij in R3 and an energy distance function εij

pij ∝ exp(−2dE,ij

ξloc
) ⋅ exp(− εij

kBT
), (1)

where ξloc is the carrier localization length and kBT is the thermal energy

Site DOS

Energy
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On the other hand, regarding the distribution in energy, the localized states in ODSs have an
energy spectrum given by a Gaussian DOS [17,26],

g(e) = N
s
”

2p
exp⇧� e

2

2s2 ↵ , (5)

where s is the energy scale of the DOS and N is the concentration of localized states. Typical values for164

these parameters are s ⌅ 0, 1 eV, while N may range from N ⌅ 1020 and N ⌅ 1021 cm�3 [17]. The model165

of hopping transport via randomly distributed localized states with a Gaussian energy spectrum given166

by Equation (5) is called the Gaussian Disorder Model (GDM) [17,26].167

While stating what a node is has been clear (state ⇣ node), what requires a bit more physical168

intuition is determining how the links are formed in such a way that they have physical meaning in169

the framework of ODSs. A link can be formed between an occupied state i (node i) and an empty state170

j (node j) with a probability for carrier hopping171

et172

pij = f (ei, EF) � (1 � f (ej, EF) � Gij, (6)

where

f (e, EF) ✏ ⌅exp ⌅e � EF
kBT

⌦+ 1⌦�1
(7)

is the Fermi-Dirac distribution, EF is the Fermi level, kB is the Boltzmann constant, T is the temperature,173

and Gij is a normalized MA-based hopping rate [34]174

Gij ✏
gij
g0

= exp⇧�2dij

x
�

∂ei � ej∂+ ∂ei � EF∂+ ∂ej � EF∂
2kBT

↵ . (8)

In Equation (8), dE,ij is the Euclidean distance between sites i and j, x is the localization length of175

charge carriers in the sites (in the order of magnitude x ' 10�8 cm [109]), and g0 is the attempt-to-escape176

frequency. It depends on the interaction with phonons, its value being usually assumed g0 ⌅ 1012 s�1
177

[20,110]. According to the detailed balance principle, Gij = Gji.178

Note that in the case in which the thermal energy kBT is smaller than the energy scale of disorder179

s in Equation (5), which is just the case for ODSs (in which, at room temperature, kT ⌅ 0.3s [111]),180

then charge transport takes place in the VRH regime, that is, the interplay between the spatial and181

energy elements sets the transport path. Additionally, because of the Gaussian DOS stated by (5), most182

carriers at low carrier concentration n are not distributed about the Fermi level EF, but instead are183

distributed around the so-called equilibration energy [111],184

eô ⌅ �
s

2

kT
, (9)

which has the meaning of the average carrier energy. This case, with most of carriers in thermal185

equilibrium filling energy levels above the Fermi level, appears because the number of states in186

the Gaussian DOS increases above the Fermi level at a much shaper rate than the reduction of the187

occupation probability stated by the Fermi-Dirac function [111]. The carrier distribution at low n is188

illustrated schematically in figure 4(b). Note that transport is caused by carrier transitions through189

energy states within the range between eô and et. This latter energy level, called the transport energy190

(TE), et, is a threshold energy below which the average distance to the next site is so large that carriers191

are more likely to be activated to higher energies via phonon absorption. As shown in [111], none of192

these energies depend on the carrier concentration n. Moreover, the occupation probability of states193

with energy e " (eô, et) is f (e, EF) 8 1, and thus carriers can be assumed to be independent from194

each other. As a consequence, carrier diffusion and mobility does not depend on n at low carrier195

Transport 
Energy 
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In turn, hopping transport in ODSs belongs to a complex class of hopping called variable-range34

hopping (VRH) [31–33]. This means that, as shown in Figure ??, a carrier in state i (with energy ei and35

located at site ri) may either jump to a near state j at rj with different energy, ej, thanks to phonon36

absorption, or may tunnel to a state m somewhat further away with the same energy, ei, without37

requiring the concurrence of a phonon [16]. The two most commonly used models for computing38

hopping rates between an occupied state and an unoccupied one are the Miller-Abrahams (MA) theory39

[34] and the Marcus model [35]. The latter is the most widely used in electron transfer involving40

electrochemical processes in molecular chemistry and biology [36–40]. The MA model is the most41

used in the field of ODSs because it is easier to apply and leads to very accurate results in most of42

cases [17,20,22–27,31]. Additionally, VRH in ODSs is commonly used in combination with percolation43

concepts (see [41] and the references therein for details). The basic idea of the percolation approach,44

which is applicable in many fields of science [42], consists in looking for the critical value of the system45

magnitude of interest at which the opposite sides of a system become connected [43–45], or undergo a46

phase transition [42]. Indeed, the percolation approach for modeling VRH has been known for about47

50 years [46–50]. It was used for studying hopping transport between states with exponential density48

of states (DOS) in [48] and [49], although with different percolation criteria. More recently it has been49

shown [41] that the criterion used in [48] leads to more accurate results than those in [49]. Although50

there is some controversy about the distribution of the DOS in ODSs (either exponential or Gaussian),51

it has been recently shown that the DOS in ODSs is Gaussian [17]. The reason why an exponential52

DOS is sometimes used is because it helps simplify the complex problem of hopping transport via53

disordered states in space and energy to a geometrical problem with an exact solution [17,41].54

It is just the aforementioned complex dependency of VRH on space and energy what compels55

us to model ODSs as space-energy embedded network. Network Science (NS) [51] has become a56

successful, multidisciplinary approach that allows studying many different systems, both natural57

and artificial. All of them have in common the fact that they consist of a large number of interacting58

elements that can be represented using a network or graph [52]: a set “nodes” (or “vertices”) connected59

by “links” (or “edges”). Put it simple, a node represents an interacting element of a system (for instance,60

a user of a social network), which is linked with others via a relationship (e.g. who follows who in61

the social network) or by the exchange of energy (e.g. in a power grid [53]) or information (e.g. in a62

communication network [54]). Thanks to this versatility, NS allows for understanding the structure63

and behavior of systems showing a very different nature [43,51,55,56], ranging from human-made64

systems (blockchain [57], power grids [53,58,59], the Internet [60], or transportation networks [61]) to65

natural systems (the emergence of interstellar molecular complexity [62], complex Earth system [63],66

the human brain [64], ecosystems [65], vascular networks [66], metabolic networks [67], and others67

[51]). More examples can be found in [51,55,68] and the references therein. Furthermore, NS math tools68

[69,70] also assists in understanding epidemic processes [71] such as COVID-19 [72], cascading failures69

in technological networks [73,74] or the spreading [75,76] and persistence of information, memes or70

ideas [77]. Although the NS methodology could be argued as a reductionist approach [53,78], it assists71

in capturing the systems essential properties and eases the mathematical tasks, making it possible to72

explain and/or predict complex, emergent phenomena, which go beyond the individual behavior of73

their constituent individual entities.74

The purpose of this paper consists in studying charge carrier hopping transport in ODSs within the75

theoretical framework of Network Science [51] through the adequate inclusion of the aforementioned76

concepts related to VHR, percolation and Gaussian DOS.77

As mentioned, although NS has been applied to a broad variety of macroscopic systems, it has78

been used to a much lesser extent to study systems of quantum dots (QDs) [79,80], structures so79

tiny (shorter than the de Broglie wavelength) that confines carriers in all three directions in space80

[79,81,82]. Regarding this, the recent work [83] has focused on modeling a disorder ensemble of QDs as81

a Random Geometric Graph (RGG) with links given by the electron overlap integral between the QDs82

(= nodes). RGGs are networks in which the nodes are spatially embedded [84] or constrained to sites in83
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Abstract: This paper focuses on modeling a disordered system of quantum dots (QDs) by using1

complex networks with spatial and physical-based constrains. The first one is that, although QDs (=2

nodes) are randomly distributed in a metric space, they have to fulfill the condition that there is a3

minimum inter-dot distance that could not be violated (to minimize electron localization). The second4

one arises from our process of weighted link formation, which is consistent with the laws of quantum5

physics and statistics: it not only takes into account the overlap integrals but also Boltzmann factors6

to include the fact that an electron can hop from one QD to another with a different energy level.7

Boltzmann factors and coherence naturally arise from the Lindblad master equation. The weighted8

adjacency matrix leads to a Laplacian matrix and a time evolution operator that allows to compute the9

electron probability distribution and quantum transport efficiency. The results suggest that there is10

an optimal inter-dot distance that helps reduce electron location in QD clusters, and makes the wave11

function better extended. As a potential application, we provide recommendations for improving12

QD intermediate band solar cells.13

Keywords: disordered organic semiconductors; organic optoelectronic nanomaterials; hopping14

transport; complex networks; spatial network.15

1. Introduction16

Organic semiconductors (OSCs) are currently attracting a huge attention worldwide because17
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very sensitive to exogenous stimulus, OFETs can be used as sensors for a wide variety of physical24
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hopping of charge carriers between localized quantum states, which are disordered in both space and31

energy, is the main transport mechanism in ODSs [17–24]. This has been experimentally tested in [18],32

and proven by both analytical models [17,20,22–27] and numerical simulations [3,19,21,28–30].33
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the one hand, if the carrier occupies a state with energy e > et then the transport consists of hops57

downwards in energy. On the other hand, if the carrier occupies a state with energy e < et then58

transport occurs by an activated hop (phonon absoprtion) upwards in energy. Note that the energy59

contribution in Equation (1), vanishes when ei > ej, i.e, when the carrier relaxes towards lower energies.60

This makes energy downward hops much faster than phonon-assisted upward hops, if a suitable61

target site j is near the the initial site i. However, at some point during the carrier path, the distance dij62

from its current site i to the next site j with lower energy may be so large that it is more likely that to63

be activated to another spatially close target site k with higher energy. There exists some energy level64

below which the average distance to the next site is so large that carriers will instead be activated to65

higher energies. This is the physical meaning of the TE level.66
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Finally, a very useful approach, complementary to the concept of TE, consists in combining72

VRH with percolation concepts (see [41] and the references therein for details). The basic idea of the73

percolation approach, which is applicable in many fields of science [43], consists in looking for the74

critical value of the system magnitude of interest at which the opposite sides of a system become75

connected [44–46], or undergo a phase transition [43]. Indeed, the percolation approach for modeling76

VRH has been profusely [47–51]. It was used for studying hopping transport between states with77

exponential DOS in [49] and [50], although with different percolation criteria [41]. More recently the78

percolation theory for the VRH within the framework of the Gaussian Disorder Model (GDM) has79

been explored in [42].80

It is just the aforementioned complex dependency of VRH on both space and energy within the81

framework of GDM what compels us to model ODSs as a space-energy embedded network.82

Network Science (NS) [52] has become a successful, multidisciplinary approach that allows83

studying many different systems, both natural and artificial. All of them have in common the fact84

that they consist of a large number of interacting elements that can be represented using a network85

or graph [53]: a set “nodes” (or “vertices”) connected by “links” (or “edges”). Put it simple, a node86

represents an interacting element of a system (for instance, a user of a social network), which is linked87

with others via a relationship (e.g. who follows who in the social network) or by the exchange of88

energy (e.g. in a power grid [54]) or information (e.g. in a communication network [55]). Thanks89

to this versatility, NS allows for understanding the structure and behavior of systems showing a90

very different nature [44,52,56,57], ranging from human-made systems (blockchain [58], power grids91

[54,59,60], the Internet [61], or transportation networks [62]) to natural systems (the emergence of92

interstellar molecular complexity [63], complex Earth system [64], the human brain [65], ecosystems93

[66], vascular networks [67], metabolic networks [68], and others [52]). More examples can be found in94

[52,56,69] and the references therein. Furthermore, NS math tools [70,71] also assists in understanding95

epidemic processes [72] such as COVID-19 [73], cascading failures in technological networks [74,75]96

or the spreading [76,77] and persistence of information, memes or ideas [78]. Although NS has been97

applied to a broad variety of “macroscopic systems”, it has been used to a much lesser extent to98

study nano-systems of quantum dots (QDs) [79,80], so tiny structures (shorter than the de Broglie99

wavelength) that confines carriers in all three directions in space [79,81,82]. Regarding this, the recent100

work [83] has focused on modeling a disorder ensemble of QDs as a Random Geometric Graph (RGG)101

with links given by the electron overlap integral between the QDs (= nodes). RGGs are networks in102

which the nodes are spatially embedded [84] or constrained to sites in a metric space, usually, with the103

Euclidean distance dE. This subset of networks belongs to the so-called Spatial Networks (SN) [62,85]104

or spatially embedded CN [86]. Another example of the application of NS on QD systems is [87], in105

which the QDs (= nodes) are allowed to have different attributes, in particular, different sizes and106
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[17,26,42], which separates two different types of hops between states with different energy. On the one56

hand, if the carrier occupies a state with energy e > et then the transport consists of hops downwards57

in energy. On the other hand, if the carrier occupies a state with energy e < et then transport occurs58

by an activated hop (phonon absoprtion) upwards in energy. Note that the energy contribution in59

Equation (1), vanishes when ei > ej, i.e, when the carrier relaxes towards lower energies. This makes60

energy downward hops much faster than phonon-assisted upward hops, if a suitable target site j is61

near the the initial site i. However, at some point during the carrier path shown in Figure 1(b), the62

distance from its current site k to the next site l with lower energy may be so large that it is more likely63

that to be activated to another near site k with higher energy. That is, pk�l < pk�m. Thus, there exists64

some energy level et below which the average distance to the next site is so large that it is more likely65

for the carrier to absorb a phonon and be activated to a higher energy em > et. This is the physical66

meaning of the TE level.67
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Figure 1. (a) Illustration of VRH concept. (b) Qualitative representation of how carriers hop between
states whose DOS is Gaussian. εt stands for the transport energy. See the main text for details.
(c) Network representing a three-dimensional ODS sample. Each node encodes a localized state (site),
while each link represents a possible carrier hopping between sites.

Thus, not only does the site spatial distribution in R3 play a key role but so does the
energy spectrum in the density of states (DOS). Although there has been some controversy
about the DOS in ODSs (either exponential or Gaussian), it has been recently shown that the
DOS in ODSs is Gaussian [17]. The reason why an exponential DOS is sometimes used is
because it helps simplify the study of hopping transport, leading to an exact solution [17,41].
In the present work, we also use a Gaussian DOS within the framework stated by the
Gaussian disorder model (GDM) [17,21] to achieve a sufficiently realistic modeling.

As shown in Figure 1b, we have also represented a threshold energy level, εt, called
transport energy (TE) [17,26,42], which separates two different types of hops between states
with different energy. On the one hand, if the carrier occupies a state with energy ε > εt,



Nanomaterials 2022, 12, 4279 3 of 18

then the transport consists of hops downwards in energy. On the other hand, if the carrier
occupies a state with energy ε < εt, then transport occurs by an activated hop (phonon
absorption) upwards in energy. Note that the energy contribution in Equation (1) vanishes
when εi > ε j. These is because in cases in which an empty state j is near i energy, downward
transitions are much more likely than the corresponding upwards transitions because the
latter require the concurrence of phonons. Nevertheless, at some point k during the carrier
path shown in Figure 1b, the distance between state k and another l with ε l < εk, dkl may
be so large that it is more likely for the carrier to be pumped by a phonon up to a more
energetic state m with εm > εt. That is, pk→l < pk→m. This is only the physical meaning of
the TE; it has a characteristic energy level εt that separates low energy states ε l < εt that are
so far apart in space that it is more likely to be a carrier–phonon interaction that promotes
the carrier up to a state with εm > εt.

Complementary to the concept of TE, hopping is also studied by combining VRH with
the percolation concept (see [41] and the references therein for details). The basic idea of
the percolation approach, which is applicable in many fields of science [43], consists of
searching for the critical value of a magnitude that allows the emergence of connectivity
between the constituents of a network [44–46], or undergo a phase transition [43]. Indeed,
the percolation approach for modeling VRH has been profusely exploited [47–51]. It was
used for studying hopping transport between states with exponential DOS in [49] and [50],
although with different percolation criteria [41]. More recently, the percolation theory has
been explored combining VRH and the GDM in [42].

The complex dependency of VRH on both space and energy within the framework of
GDM is precisely what compels us to model ODSs as a space–energy embedded network.

Network science (NS) [52] has become a successful, multidisciplinary approach that
allows the study of many different systems, both natural and artificial. All of them have
in common the fact that they consist of a large number of interacting elements that can
be represented using a network (or, mathematically, a graph) [53], that is, a collection of
“nodes” (or “vertices”) attached by “links” (or “edges”). Simply put, a node represents
an interacting element of a system that is connected to others by means of a relationship
(human networks) or by the exchange of particles ([54,55] in nanostructures), energy
(in electric grids [56]) or information (communication networks [57]). Thanks to this
versatility, NS allows for understanding the structure and behavior of systems showing very
different natures [44,52,58,59], involving both artificial systems (blockchain [60], electric
grids [56,61,62], the Internet [63], transport networks [64]), natural systems (the emergence
of interstellar molecular complexity [65], complex Earth systems [66], the human brain [67],
ecosystems [68], vascular networks [69], and metabolic networks [70]. More examples can
be found in [52,58,71] and the references therein. Furthermore, NS math tools [72,73] also
assist in understanding epidemic processes [74] such as the proliferation of COVID-19 [75],
the chain of successive collapses in artificial networks [76,77], or the dissemination [78,79]
and persistence of information, memes, or ideas [80].

The purpose of this paper consists of modeling an ODS system as a network embedded
in both space and energy so that a node represents a confined state (see Figure 1c) while a
link encodes the probability (or, equivalently, the rate) for a carrier to hop from one state
(=node) to another, taking into account the VHR within the GDM.

We have organized the paper as follows. Section 2 shows the ODS system to be
studied and the method by which we generate the corresponding network embedded in
both space and energy. Section 3 contains our simulation work. This suggests that, at
room temperature, the network exhibits a strong propensity for a small-network nature, a
beneficial property which, as will be demonstrated later on, has been found to enhance the
exchange of information [81] (social networks [82], human brain [83,84]); matter (electrons
in quantum dot systems [54,55] sap in vascular networks in plants [85]); and energy (in
power grids [61,62]) in the field of network science. The results suggest that there could be
a parallelism between the well-known dependence of carrier mobility on temperature and
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the potential emergence of the small-world property with increasing temperature. Finally,
Section 4 summarizes the model and the most important concussions.

2. Proposed Model: The ODS System and its Associated Network
2.1. The ODS System

Consider a three-dimensional sample of ODS that has a density of localized states NS,
which are disordered in both space and energy. In space, each localized state is centered
on a site characterized by a position vector ri ∈ R3. Each site is randomly distributed in
three-dimensional space. Furthermore, each of these localized states is characterized by a
random energy according to an energy spectrum given by a Gaussian DOS [17,26],

g(ε) = NS

σ
√

2π
exp(− ε

2

2σ2 ), (2)

where σ is the energy scale of the DOS and NS is the concentration of confined states. Typical
values for these parameters are σ ≈ 0, 1 eV, while NS may range from NS ≈ 1020 cm−3 to
NS ≈ 1021 cm−3 [17]. The carrier hopping model through confined states that are placed
at random in space and have the Gaussian energy spectrum stated by Equation (2) is the
GDM [17,26] we mentioned in Section 1.

In thermal equilibriums, the average rate transition for carriers between a localized
state i (located at ri and characterized by an energy εi) and another state j(rj, ε j) is, according
to the MA hopping model [17,26,34,47]

Γij = γ0 exp(− dE,ij

ξloc/2
−

∣εi − ε j∣+ ∣εi − EF∣+ ∣ε j − EF∣
2kBT

), (3)

where EF is the Fermi level of the carrier concentration n and γ0 is the attempt-to-escape
frequency. It depends on the interaction with phonons, and its value is usually assumed
to be γ0 ≈ 1012 s−1 [20,86]. In Equation (3), ξloc is in the order of magnitude ξloc ≥ 10−8

cm [87]. According to the detailed balance principle, Γij = Γji, as clearly explained in [47].
Note that the energy-dependent function εij in Equation (1) is

εij =
∣εi − ε j∣+ ∣εi − EF∣+ ∣ε j − EF∣

2 , (4)

the energy-dependent part of the MA-based rate Equation (3).
The relative concentration (carriers/sites) in the experiments that follow is n/NS = 10−4.

At this low carrier concentration n, carriers behave independently from each other [17].

2.2. Defining the Network Associated with the ODS System

When aiming to map the ODS system to a network embedded in space–energy, it is
necessary to properly identify nodes and links.

Each quantum-localized state ∣i⟩ is represented as a node i in the network. Any node
i is characterized by two parameters: its position vector ri ∈ R3 and its energy εi. As site
concentration in the ODS system is Ns, then the number of nodes is N = NsV, where V is
the volume of the ODS sample at hand.

While identifying nodes has seemed pretty intuitive (∣i⟩↔ site i(ri, εi)↔ node i), the
method by which links are defined requires specific knowledge of ODSs within the GDM.
We consider that a link between two nodes i and j is formed with probability

pij = exp(−2dE,ij

ξloc
−

∣εi − ε j∣+ ∣εi − EF∣+ ∣ε j − EF∣
2kBT

) ≡ exp(−d̃S−E), (5)
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which satisfies pij = Γij/γ0, as stated by Equation (3). d̃S−E represents a normalized space–
energy distance in the networks at hand.

At this point, we need to use some network science concepts. The first of these is the
concept of the adjacency matrix, A, which represents the direct connection (by exchanging
a charge carrier = link) between any two pairs of nodes i and j: aij = 1 or aij = 0. A gives an
idea of the structural connectivity of a network. Sometimes, this binary information is not
enough if, for example, we want to study the carrier dynamics. In this effort, we associate a
weight to each link, obtaining a weighted adjacency matrix W [71] Our adjacency matrix is
an N × N matrix with elements

(W)ij = { 0 , if i = i
Γij , if i ≠ j, (6)

where Γij is given by Equation (3).
Thanks to these matrices, the system is represented by a network whose graph is

G ≡ G(N ,L, W), where N is the set of nodes (card(N ) = N) and L is the set of links. Note
that as a consequence of the method by which this network has been generated, it contains
information on not only both the location and energy level of the sites but also on the
corresponding carrier hopping rates.

3. Simulations: Experimental Work
3.1. Methodology

Let us consider a three-dimensional sample of ODS that has a density of localized
states NS, which are disordered in both space and energy as described in Section 2.1. The
sites are randomly distributed in the three-dimensional space, according to a uniform
distribution U(a, b), with a = 2ξloc and b = Lsample = 100× ξloc, being Lsample the size of
the ODS sample. Each of these localized states i has an energy level εi belonging to the
Gaussian DOS stated by Equation (2) within the GDM framework [17,26]. As the site
concentration in the ODS system is NS, then the number of nodes is N = NSV, where
V = (Lsample)3, the volume of the ODS sample at hand. As we proposed in Section 2.2,
we represent any localized quantum state ∣i⟩ (at ri and with energy εi) as a node labeled i
↔ site i(ri, εi)↔ ∣i⟩ in the network. Each link between nodes i and j represents a carrier
hopping between them with probability pij given by Equation (5).

Aiming to obtain statistical values, we generated 50 different realizations for any
network with a number of nodes N.

3.2. Exploring Carrier Dynamics

The weighted adjacency matrix W stated by Equation (6) can be used to help us com-
pute the so-called Laplacian matrix L [73,88], which in turn allows for studying carrier
dynamics using stochastic random walks (RWs). The reason for using RWs is because the
transport is incoherent as a consequence of carrier–phonon interactions (emission or absorp-
tion of phonons in each hop), causing the charge carrier to lose its phase information [32].
The Laplacian matrix is defined as L = D −W [89], D being the diagonal matrix whose
elements Di = ∑i≠j(W)ij are the hopping rate strength of node i.

The questions arising here are: How does L help compute the carrier dynamics? What
is the probability for a carrier initially localized at node j (state or ∣j⟩) to hop to another
node k (= ∣k⟩) after a time t: pkj(t)? The answer is well known in the field of networks. As
shown in [89–91], a “walker” (the charge carrier in our system) performs a RW according
to the equation

d
dt

pkj(t) = −∑
m
(L)km pmj(t). (7)

whose formal solution is [90]

pkj(t) = ⟨k∣ e−Lt ∣j⟩ =∑
n

e−λnt ⟨k∣qn⟩ ⟨qn∣j⟩ , (8)
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where λn are the eigenvalues of L, which are real numbers and fulfill λn ≥ 0. In the class
of RWs associated with the Laplacian L called “edge-centric RW” [89], any link in a node
i is generating ruled by the carrier hopping rate Γij. Once a link i ↭ j is activated, the
carrier behaves as a random walker. Such a random walk model is also called the “fluid
model” [89] and means in NS that a carrier (walker) goes out of a node i characterized with
a high strength Di = ∑i≠j(W)ij (that is, with higher rates) faster than from other node with
lower rate sum.

A useful related parameter that can give us an idea of the global carrier hopping
efficiency is the so-called average return probability (ARP) [90]

p(t) = 1
N ∑

j
pjj(t). (9)

Its physical meaning is as follows. A high value of p(t) means that the hopping is
not efficient because the particle has a high probability of staying at the starting node [92].
However, a low value of p(t), approaching unity from below, suggests that the carrier can
quickly hop from node to node during the time interval t. We thus define the hopping
transport efficiency (HTE) as [54]

ηHT(t) = 1− p(t). (10)

In precisely this respect, Figure 2 shows the hopping transport efficiency as a function
of the mean degree ⟨k⟩, k being the degree or number of links of a given node.

The hopping transport efficiency, that is, the extent that a carrier can hop through the
network, depends on the distance in space and energy among the different nodes. When
the site density is too small, the nodes (= sites) are so far apart that exp(−2dE,ij/ξloc)→ 0)
in Equation (5). As a consequence, pij → 0 and no link can be formed: ⟨k⟩ = 0. As all nodes
are completely isolated, then a carrier remains localized, is not allowed to hop, and thus
HTE = 0.

As the node N increases, the localized states become closer and closer, leading to the
formation of links among groups of nodes called clusters. Thus, the mean degree becomes
(⟨k⟩ > 0). The clusters that are initially formed are small and disconnected to each other.
These disconnected sub-networks, known as components, initially show a similar size.

As ⟨k⟩ increases, one of the clusters begins to connect with others, becoming larger
and larger. This largest sub-network is known as a giant component in NS. Note that,
at ⟨k⟩C ≈ 7, the emergence of this largest sub-network (when compared to the others)
also makes the HTE have an abrupt change: while HTE(⟨k⟩) = 0 for ⟨k⟩ < ⟨k⟩C ≈ 7,
however, HTE changes abruptly and reaches the value HTE(⟨k⟩C) ≈ 0.78. This is because
this dominant component is also the minimum sub-network (“infinite cluster” in material
science) or critical sub-network (see Figure 2b) for which a carrier in the red node labeled
“in” on the left side of the sample is able to reach the opposite side at node “out”. This is a
percolation transition. The HTE parameter becomes its order parameter. Following [45]
we have denoted it as m(⟨k⟩). According to [45], the explored network shows a hybrid
percolation transition because it combines, at the same point ⟨k⟩C, features of both first-
order phase transition (a very fast change of the order parameter) and second-order phase
transition (critical phenomena). The order parameter, m(⟨k⟩) ≡ HTE (⟨k⟩) fulfills

HTE(⟨k⟩) = { 0 , if ⟨k⟩ < ⟨k⟩C

HTE0 + z ⋅ (⟨k⟩− ⟨k⟩C)βHTE , if ⟨k⟩ ≥ ⟨k⟩C,
(11)

where HTE0 and z are constants and βHTE is the critical exponent of the order parameter.
For ⟨k⟩ > ⟨k⟩C = 7, HTE(⟨k⟩) ≈ 0.4+ 0.9(⟨k⟩− 7)0.08.

Finally, note in Figure 2c that the complete network with ⟨k⟩ ≈ 13 shows HTE = 1
because the carrier can potentially hop across all nodes of the network. The HTE corre-
sponding to the critical sub-network is less than unity because a carrier may become trapped
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in some of the remaining smaller isolated sub-networks that, for illustrative purposes, we
have not drawn in Figure 2b.
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However, there is a value of Ökã for which one of the clusters becomes dominant and begins to221

grow to the detriment of the others. This cluster is sometimes called giant component in NS. Note222

that, at Ökãc = 7, the emergence of this the largest subnetwork (when compared to the others) also223

makes the HTE have an abrupt change: while HTE(Ökã) = 0 for Ökã < ÖkãC = 7, however, HTE changes224

abruptly and reaches the value HTE(ÖkãC) = 0.78. This is because this dominant component is also225

the minimum subnetwork (“infinite cluster” in material science) or critical subnetwork (see Figure226

5(b)) for which a carrier in the red node labeled “in” on the left side of the sample is able to reach227

the opposite side in node “out”. This is a percolation transition. The HTE parameter becomes its228

order parameter. Following [45] we have denoted it as m(Ökã). Reference [45] explores the most229

recent advances of percolation theory in networks, and studies the order parameter m in several230

cases: continuous, explosive, discontinuous and hybrid percolation transitions. According to [45] our231

network exhibits a Hybrid Percolation Transition (HPT) since it has properties of both second-order232

(critical phenomena) and first-order (abrupt jump of the order parameter) phase transitions at the same233

transition point, ÖkãC, in our case. The order parameter, m(Ökã) � HTE (Ökã) fulfills234

m(Ökã) = w 0 , if Ökã < ÖkãC

m0 + r � (Ökã� ÖkãC)bm , if Ökã ' ÖkãC
(13)

where m0 and r are constants, and bm is the critical exponent of the order parameter. For Ökã > ÖkãC = 7,235

HTE(Ökã) ⌅ 0.4 + 0.9(Ökã� 7)0.08.236

3.2. The topological information of the network237

A concept emerged from NS that has long fascinated the general public is the “six degrees of238

separation” theory [111,112], which provides an idea of how surprisingly easy the communication can239

be on a network. The concept grew out of some social experiments whose objective was to know the240

average number of times a letter had to be sent in order for it to reach a person in another city. Such a241

number was found to be six, that is an average distance of six. Today’s huge social networks, made up242

of hundreds of millions of users and billions of interactions, can have average distance as small as 4.74243

between the users [113]. Mathematically, the “average shortest path length” ` quantifies the extent to244

which a node is accessible from any other [52]. ` is the average value of shortest path between any245

pair of nodes in the network. The shortest path between two nodes i and j is the minimum number246

of links for going from node i to j. When ` is small when compared to the “network size” (number247

of nodes, N), the “small-world” property arises. Intuitively this means that any pair of nodes are248

relatively “close”. Mathematically, this means that the average shortest path scales logarithmically249

with the network size [52]: ` ⇥ ln N.250

Usually, many small networks has short average shortest path and high clustering. The clustering
or transitivity quantifies the probability that two neighboring nodes of a given node i are connected.
This concept is easy to understand within the context of social networks: the fact that usually “the
friend of a friend is a friend” leads to high clustering coefficient. The clustering coefficient is a local
property capturing the density of triangles in the graph: two nodes that both are connected to a third
node are also directly connected to each other. A node i in the network has ki links that connects
it to ki other nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that exist between these ki nodes and the maximum possible number of links, that is,
Ci = 2Mi/ki(ki � 1) [52]. The mean clustering coefficient of the whole network is:

ÖCã = 1
N =

i
Ci. (14)
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Figure 2. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.(b) (c)

Figure 2. (a) Hopping transport efficiency, averaged over time, as a function of the average node
degree ⟨k⟩. (b) Minimal sub-network (or infinite clustering) for which a carrier in node “in” on
the left side of the sample is able to reach the opposite side in node “out”. The rest of the smaller
sub-networks disconnected from each other have not been drawn for the sake of clarity. (c) Complete
network with N = 1000 nodes that contains the critical sub-network illustrated in (b). See the main
text for the corresponding discussion.

3.3. Studying the Network Structure: Navigating the Network

A concept that emerged from NS which has long fascinated the general public is the
“six degrees of separation” theory [93,94], which provides an idea of how surprisingly easy
communication can be on a network. The concept grew out of some social experiments
whose objective was to determine the average number of times a letter had to be sent in
order for it to reach a person in another city. Such a number was found to be six, that is,
an average distance of six. Today’s huge social networks, with billions of connections, can
have average distance between users as small as 4.74 [82]. The shortest path between two
nodes i and k is the minimum number of hops for walking from node i to k. Its mean value
over the whole network, the “average shortest path length” ` [52], suggests the ease of
navigating the network, hopping from node to node as if the network were “small”. The
fact that ` scales logarithmically with the network size (number of nodes, N) [52], ` ∼ ln N,
is one of the features of “small-world” networks. Another feature is a high “mean clustering
coefficient”. A high clustering means a high density of triangles in the sense that when two
nodes are linked to a third one, they usually tend to have a high probability of being linked
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to each other. The clustering coefficient of node i with ki links is the ratio between the
number of links that exist between the ki involved, Mi, and the maximum number of links:
Ci = 2Mi/(ki(ki − 1)) [52]. The mean clustering coefficient over the complete network is
thus ⟨C⟩ = 1

N ∑i Ci.
As suggested, the most striking idea of small-world networks characterized by high

local clustering and short average shortest path between any two nodes is that even though
they can be made up of a huge number of interacting nodes, they nonetheless greatly
enhance the exchange of information [81] (social networks [82], human brain [83,84]);
matter (electrons in quantum dot systems [54,55], sap in vascular networks in plants [85]);
or energy (in power grids [61,62]) between the involved nodes. However, as discussed
in [95], it is necessary to quantify the shortness of ` is and the height of ⟨C⟩. This could be
the case for the proposed network under certain circumstances.

To quantify whether or not our network is a small-world network, we have made use
of a new metric, the small-world propensity (SWP), recently proposed in [95]. It aims to
measure the extent that the mean clustering coefficient and the short average shortest path
( ⟨C⟩, ` ) deviate from those of equivalent random networks (CR, LR) and lattice networks
(CL, LL) [95]. The SWP is defined as [95]

SWP ≐ 1− (∆2
C + ∆2

L
2 ), (12)

where ∆C = CL−⟨C⟩
CL−CR

and ∆L = `−LR
LL−LR

. As discussed in [95], networks with high small-world
features (low ∆C and ∆L) will have a value of the SWP close to 1. The authors have chosen
a threshold value of 0.6 to differentiate a network with strong small-world propensity from
a network with weak small-world propensity.

Figure 3a shows the average shortest path lengths ` (over 50 realizations) of different
space–energy embedded networks (generated by the method proposed in Section 2.2) as a
function of the network size, which range from N = 103 to N = 104 nodes.

For illustrative purposes, we have represented the average shortest path length ` for
two different temperatures that, as will be explained later on, are representative of two
classes of networks (small-world networks and non-small networks).

The red line corresponds to the results computed at room temperature T = 300 K,
while the blue line corresponds to those computed at a lower, representative temperature,
T = 180 K. Additionally, we have also plotted the dotted black line ln N for comparative
purposes. Figure 3a shows that both curves scale with N with a tendency slightly lower
than ln N, which gets closer and closer to ln N as N approaches 104 nodes. One might
think that this is indicative of a small-world network. However, this is not enough, and
even could be misleading. Note that the clustering coefficients are very different in both
cases. At low temperature, the clustering coefficient is small ⟨C⟩ ≈ 0.12. However, at room
temperature, the clustering coefficient is high ⟨C⟩ ≈ 0.48. The network at room temperature
appears to include the two typical ingredients of the small world: short ` (scaling ` ∼ ln N)
and high ⟨C⟩. However, what do “short” and “high” mean here?

To discern whether or not the small-world feature exists we have used the SWP
metric [95], represented in Figure 3b, as a function of the number of nodes.

For low temperatures (T = 100, 140, 180, 200, and 220 K, in our simulations, to save
computational time), the networks have an SWP that remains constant: SWP ≈ 0.4. This
means that in this low temperature range there is a clear “non-small-world regime”. At the
other extreme of temperatures explored, T = 285, 290, 300, 340, 380 K, the networks have
SWP > SWPTh = 0.6, and thus are in the “small-world regime”. At the “representative”
room temperature (T = 300 K), the network exhibits a high SWP value of ≈ 0.82, much
higher than the threshold SWPTh = 0.6 established in [95]. That is, at room temperature,
the space–energy embedded network associated with the ODS system shows a strong
small-world propensity: low ∆C and ∆L.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
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Usually, many small networks has short average shortest path and high clustering. The clustering
or transitivity quantifies the probability that two neighboring nodes of a given node i are connected.
This concept is easy to understand within the context of social networks: the fact that usually “the
friend of a friend is a friend” leads to high clustering coefficient. The clustering coefficient is a local
property capturing the density of triangles in the graph: two nodes that both are connected to a third
node are also directly connected to each other. A node i in the network has ki links that connects
it to ki other nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that exist between these ki nodes and the maximum possible number of links, that is,
Ci = 2Mi/ki(ki � 1) [52]. The mean clustering coefficient of the whole network is:

ÖCã = 1
N =

i
Ci. (15)

As mentioned, the most striking idea of small-world networks –characterized by high local260

clustering and short average shortest path between any two nodes– is that, even though they can be261

made up of a huge number of interacting nodes, they nonetheless greatly enhance the exchange of262

information [114] (social networks [113], human brain [115,116]), matter (electrons in quantum dot263

systems [83,87], sap in the vascular tissue in plants [117]), or energy (in power grids [59,60]) between264

the involved nodes. However, as discussed in [118], it is necessary to quantify how small ` is and how265

big ÖCã is. This could be the case for the proposed network under certain circumstances.266

To quantify whether or not our network is small world, we will made use of a new metric, the267

Small-World Propensity (SWP), recently proposed in [118]. It aims at measuring the extent to which268

the network under evaluation shows small-world structure by capturing the deviation of the network’s269

clustering coefficient at hand, ÖCã, and characteristic path length, `, from those of both lattice (CL, LL)270

and random (CR, LR) networks with the same number of nodes and the same degree distribution. The271

SWP is defined as [118]272

SWP ✏ 1 � ⇧D2
C + D2

L
2 ↵ , (16)

with
DC = CL � C

CL � CR
, (17)

and
DL = L � LR

LL � LR
. (18)

As discussed in [118], networks with high small-world features (low DC and DL) will have a value273

of the SWP close to 1. The authors have chosen a threshold value of 0.6 to differentiate a network with274

a strong small-world propensity from a network with a weak small-world propensity.275

Figure 3(a) shows the average shortest path length ` for different networks generated by the276

proposed method. They only differ in the number of nodes, which ranges from N = 103 to N = 104
277

nodes. We have also considered the average shortest path length ` for two different temperatures.278

The red line corresponds to the results computed at room temperature T = 300K, while the blue one279

corresponds to the results computed at a lower temperature T = 180K. Aiming to obtain statistical280

values, we have generated 50 realizations of each associated network. Additionally, we have also281

plotted the dotted, black line ln N for comparative purposes.282

Please note in Figure 3(a) that both curves scales with N with a tendency slightly lower than283

ln N, which gets closer and closer to ln N as N approaches 10000 nodes. This could be indicative of a284

small-world network.285 ÖCã ⌅ 0.12286
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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over 50 realizations of each network to obtain accurate statistical values. The dotted line is ln N for
comparative purposes. (b) Small World Propensity, stated by Equation (16) as a function the number of
nodes. It has been computed for different values of increasing temperature T.

180 200 220 240 260 280 300
0.0
0.2
0.4
0.6
0.8
1.0

Temperature (K)
(a)

0.0

0.4

0.2

0.6

0.8

1.0

No
rm

al
iz

ed
 M

ob
ilit

y

180 200 220 240 260 280 300 180 200 220 240 260 280

0.4

0.5

0.6

0.7

0.8

0.9

Temperature (K)
(b)

0.3

Sm
al

l W
or

ld
 P

ro
pe

ns
ity

300

Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3(a) shows the average shortest path length ` (over 50 realizations) of different space-energy246

embedded networks (generated by the method proposed in Section 2.2) as a function of the network247

size, which range from from N = 103 to N = 104 nodes.248

For illustrative purposes, we have represented the average shortest path length ` for two249

different temperatures that, as will be explained later on, are representative of two classes of networks250

(small-world networks, and no-small-networks). The red line corresponds to the results computed at251

room temperature T = 300K, while the blue one corresponds to those at a lower temperature, T = 180K.252

Additionally, we have also plotted the dotted, black line ln N for comparative purposes. Please note in253

Figure 3(a) that both curves scales with N with a tendency slightly lower than ln N, which gets closer254

and closer to ln N as N approaches 104 nodes. One might think that this is indicative of a small-world255

network. But this is not enough, and even could be misleading. Note that the clustering coefficients are256

very different in both cases. At low temperature, the clustering coefficient is small ÖCã ⌅ 0.12. However,257

at room temperature, the clustering coefficient is high ÖCã ⌅ 0.48. The network at room temperature258

appears to include the two typical ingredients of the small world: short ` (scaling ` ⇥ ln N) and high259 ÖCã. But, what do “short” and “high” mean here?260
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Usually, many small networks has short average shortest path and high clustering. The clustering
or transitivity quantifies the probability that two neighboring nodes of a given node i are connected.
This concept is easy to understand within the context of social networks: the fact that usually “the
friend of a friend is a friend” leads to high clustering coefficient. The clustering coefficient is a local
property capturing the density of triangles in the graph: two nodes that both are connected to a third
node are also directly connected to each other. A node i in the network has ki links that connects
it to ki other nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that exist between these ki nodes and the maximum possible number of links, that is,
Ci = 2Mi/ki(ki � 1) [52]. The mean clustering coefficient of the whole network is:

ÖCã = 1
N =

i
Ci. (15)

As mentioned, the most striking idea of small-world networks –characterized by high local260

clustering and short average shortest path between any two nodes– is that, even though they can be261

made up of a huge number of interacting nodes, they nonetheless greatly enhance the exchange of262

information [114] (social networks [113], human brain [115,116]), matter (electrons in quantum dot263

systems [83,87], sap in the vascular tissue in plants [117]), or energy (in power grids [59,60]) between264

the involved nodes. However, as discussed in [118], it is necessary to quantify how small ` is and how265

big ÖCã is. This could be the case for the proposed network under certain circumstances.266

To quantify whether or not our network is small world, we will made use of a new metric, the267

Small-World Propensity (SWP), recently proposed in [118]. It aims at measuring the extent to which268

the network under evaluation shows small-world structure by capturing the deviation of the network’s269

clustering coefficient at hand, ÖCã, and characteristic path length, `, from those of both lattice (CL, LL)270

and random (CR, LR) networks with the same number of nodes and the same degree distribution. The271

SWP is defined as [118]272

SWP ✏ 1 � ⇧D2
C + D2

L
2 ↵ , (16)

with
DC = CL � C

CL � CR
, (17)

and
DL = L � LR

LL � LR
. (18)

As discussed in [118], networks with high small-world features (low DC and DL) will have a value273

of the SWP close to 1. The authors have chosen a threshold value of 0.6 to differentiate a network with274

a strong small-world propensity from a network with a weak small-world propensity.275

Figure 3(a) shows the average shortest path length ` for different networks generated by the276

proposed method. They only differ in the number of nodes, which ranges from N = 103 to N = 104
277

nodes. We have also considered the average shortest path length ` for two different temperatures.278

The red line corresponds to the results computed at room temperature T = 300K, while the blue one279

corresponds to the results computed at a lower temperature T = 180K. Aiming to obtain statistical280

values, we have generated 50 realizations of each associated network. Additionally, we have also281

plotted the dotted, black line ln N for comparative purposes.282

Please note in Figure 3(a) that both curves scales with N with a tendency slightly lower than283

ln N, which gets closer and closer to ln N as N approaches 10000 nodes. This could be indicative of a284

small-world network.285 ÖCã ⌅ 0.12286
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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nodes. It has been computed for different values of increasing temperature T.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180K and 300 K. Any point on the lines is the mean value computed over
50 realizations of each network to obtain accurate statistical values. The dotted black line represents
ln N for comparative purposes. (b) Small World Propensity, stated by Equation (12) as a function the
number of nodes. It has been computed for different values of increasing temperature T.
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Figure 3(a) shows the average shortest path length ` (over 50 realizations) of different space-energy246

embedded networks (generated by the method proposed in Section 2.2) as a function of the network247
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Additionally, we have also plotted the dotted, black line ln N for comparative purposes. Please note in253
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different temperatures, 180 and 273 K. Any point on the lines is the mean value computed over 50
realizations of each network to obtain accurate statistical values. The dotted line is ln N for comparative
purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Usually, many small networks has short average shortest path and high clustering. The clustering
or transitivity quantifies the probability that two neighboring nodes of a given node i are connected.
This concept is easy to understand within the context of social networks: the fact that usually “the
friend of a friend is a friend” leads to high clustering coefficient. The clustering coefficient is a local
property capturing the density of triangles in the graph: two nodes that both are connected to a third
node are also directly connected to each other. A node i in the network has ki links that connects
it to ki other nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that exist between these ki nodes and the maximum possible number of links, that is,
Ci = 2Mi/ki(ki � 1) [52]. The mean clustering coefficient of the whole network is:

ÖCã = 1
N =

i
Ci. (15)

As mentioned, the most striking idea of small-world networks –characterized by high local260

clustering and short average shortest path between any two nodes– is that, even though they can be261

made up of a huge number of interacting nodes, they nonetheless greatly enhance the exchange of262

information [114] (social networks [113], human brain [115,116]), matter (electrons in quantum dot263

systems [83,87], sap in the vascular tissue in plants [117]), or energy (in power grids [59,60]) between264

the involved nodes. However, as discussed in [118], it is necessary to quantify how small ` is and how265

big ÖCã is. This could be the case for the proposed network under certain circumstances.266

To quantify whether or not our network is small world, we will made use of a new metric, the267

Small-World Propensity (SWP), recently proposed in [118]. It aims at measuring the extent to which268

the network under evaluation shows small-world structure by capturing the deviation of the network’s269

clustering coefficient at hand, ÖCã, and characteristic path length, `, from those of both lattice (CL, LL)270

and random (CR, LR) networks with the same number of nodes and the same degree distribution. The271

SWP is defined as [118]272

SWP ✏ 1 � ⇧D2
C + D2

L
2 ↵ , (16)

with
DC = CL � C

CL � CR
, (17)

and
DL = L � LR

LL � LR
. (18)

As discussed in [118], networks with high small-world features (low DC and DL) will have a value273

of the SWP close to 1. The authors have chosen a threshold value of 0.6 to differentiate a network with274

a strong small-world propensity from a network with a weak small-world propensity.275

Figure 3(a) shows the average shortest path length ` for different networks generated by the276

proposed method. They only differ in the number of nodes, which ranges from N = 103 to N = 104
277

nodes. We have also considered the average shortest path length ` for two different temperatures.278

The red line corresponds to the results computed at room temperature T = 300K, while the blue one279

corresponds to the results computed at a lower temperature T = 180K. Aiming to obtain statistical280

values, we have generated 50 realizations of each associated network. Additionally, we have also281

plotted the dotted, black line ln N for comparative purposes.282

Please note in Figure 3(a) that both curves scales with N with a tendency slightly lower than283

ln N, which gets closer and closer to ln N as N approaches 10000 nodes. This could be indicative of a284

small-world network.285 ÖCã ⌅ 0.12286
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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nodes. It has been computed for different values of increasing temperature T.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180K and 300 K. Any point on the lines is the mean value computed over
50 realizations of each network to obtain accurate statistical values. The dotted black line represents
ln N for comparative purposes. (b) Small World Propensity, stated by Equation (12) as a function the
number of nodes. It has been computed for different values of increasing temperature T.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3(a) shows the average shortest path length ` (over 50 realizations) of different space-energy246

embedded networks (generated by the method proposed in Section 2.2) as a function of the network247

size, which range from from N = 103 to N = 104 nodes.248

For illustrative purposes, we have represented the average shortest path length ` for two249

different temperatures that, as will be explained later on, are representative of two classes of networks250

(small-world networks, and no-small-networks). The red line corresponds to the results computed at251

room temperature T = 300K, while the blue one corresponds to those at a lower temperature, T = 180K.252

Additionally, we have also plotted the dotted, black line ln N for comparative purposes. Please note in253

Figure 3(a) that both curves scales with N with a tendency slightly lower than ln N, which gets closer254

and closer to ln N as N approaches 104 nodes. One might think that this is indicative of a small-world255

network. But this is not enough, and even could be misleading. Note that the clustering coefficients are256

very different in both cases. At low temperature, the clustering coefficient is small ÖCã ⌅ 0.12. However,257

at room temperature, the clustering coefficient is high ÖCã ⌅ 0.48. The network at room temperature258

appears to include the two typical ingredients of the small world: short ` (scaling ` ⇥ ln N) and high259 ÖCã. But, what do “short” and “high” mean here?260
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Usually, many small networks has short average shortest path and high clustering. The clustering
or transitivity quantifies the probability that two neighboring nodes of a given node i are connected.
This concept is easy to understand within the context of social networks: the fact that usually “the
friend of a friend is a friend” leads to high clustering coefficient. The clustering coefficient is a local
property capturing the density of triangles in the graph: two nodes that both are connected to a third
node are also directly connected to each other. A node i in the network has ki links that connects
it to ki other nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that exist between these ki nodes and the maximum possible number of links, that is,
Ci = 2Mi/ki(ki � 1) [52]. The mean clustering coefficient of the whole network is:

ÖCã = 1
N =

i
Ci. (15)

As mentioned, the most striking idea of small-world networks –characterized by high local260

clustering and short average shortest path between any two nodes– is that, even though they can be261

made up of a huge number of interacting nodes, they nonetheless greatly enhance the exchange of262

information [114] (social networks [113], human brain [115,116]), matter (electrons in quantum dot263

systems [83,87], sap in the vascular tissue in plants [117]), or energy (in power grids [59,60]) between264

the involved nodes. However, as discussed in [118], it is necessary to quantify how small ` is and how265

big ÖCã is. This could be the case for the proposed network under certain circumstances.266

To quantify whether or not our network is small world, we will made use of a new metric, the267

Small-World Propensity (SWP), recently proposed in [118]. It aims at measuring the extent to which268

the network under evaluation shows small-world structure by capturing the deviation of the network’s269

clustering coefficient at hand, ÖCã, and characteristic path length, `, from those of both lattice (CL, LL)270

and random (CR, LR) networks with the same number of nodes and the same degree distribution. The271

SWP is defined as [118]272

SWP ✏ 1 � ⇧D2
C + D2

L
2 ↵ , (16)

with
DC = CL � C

CL � CR
, (17)

and
DL = L � LR

LL � LR
. (18)

As discussed in [118], networks with high small-world features (low DC and DL) will have a value273

of the SWP close to 1. The authors have chosen a threshold value of 0.6 to differentiate a network with274

a strong small-world propensity from a network with a weak small-world propensity.275

Figure 3(a) shows the average shortest path length ` for different networks generated by the276

proposed method. They only differ in the number of nodes, which ranges from N = 103 to N = 104
277

nodes. We have also considered the average shortest path length ` for two different temperatures.278

The red line corresponds to the results computed at room temperature T = 300K, while the blue one279

corresponds to the results computed at a lower temperature T = 180K. Aiming to obtain statistical280

values, we have generated 50 realizations of each associated network. Additionally, we have also281

plotted the dotted, black line ln N for comparative purposes.282

Please note in Figure 3(a) that both curves scales with N with a tendency slightly lower than283

ln N, which gets closer and closer to ln N as N approaches 10000 nodes. This could be indicative of a284

small-world network.285 ÖCã ⌅ 0.12286
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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realizations of each network to obtain accurate statistical values. The dotted line is ln N for comparative
purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different temperatures, 180 and 273 K. Any point on the lines is the mean value computed over 50
realizations of each network to obtain accurate statistical values. The dotted line is ln N for comparative
purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180 and 300 K. Any point on the lines is the mean value computed
over 50 realizations of each network to obtain accurate statistical values. The dotted line is ln N for
comparative purposes. (b) Small World Propensity, stated by Equation (16) as a function the number of
nodes. It has been computed for different values of increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.

Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180K and 300 K. Any point on the lines is the mean value computed over
50 realizations of each network to obtain accurate statistical values. The dotted black line represents
ln N for comparative purposes. (b) Small World Propensity, stated by Equation (12) as a function the
number of nodes. It has been computed for different values of increasing temperature T.

To discern whether or not the small world feature exists we have used the SWP metric [95],261

represented in Figure 3(b) as a function of the number of nodes.262

It shows that, at room temperature and above (T = 300, 340, 380), the network exhibits a constant,263
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that in this low temperature range there is no small-world.269

T = 100, 140, 180, 200, 220 K270

However, Figure 3(b) shows that, in between these two representative cases, there is an271

“intermediate regime” in which, as temperature rises (T = 240, 260, 280, 290 K), the SWP increases,272
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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them is determined by the fact that the QDs are located in a random way by means of the algorithm289

described in Section ?? to fulfill the minimum inter-dot distance condition. The second type of disorder290

has its origin in that, in real QD layers, there are thermodynamic fluctuation in the dot size, which leads291

to nodes with different energy levels. We have assumed the energy level distribution as a Gaussian292

distribution with (dimensionless) mean µ = EQD = 0.4, and standard deviation s = 10�3. Thus each293

QD (node) i is described by its corresponding ei energy level, a sample from the N (µ, s). This energy294

level ei acts as an attribute called hidden variable or fitness (see [85] for details in the context of SN).295

Aiming to obtain statistical values, we generate ensembles of networks with a sufficiently large296

number of networks. In the experiments carried out we have led to the conclusion that it is sufficient297

to generate 50 realizations of each complex network.298

299

3.2. Testing the weak overlap hypothesis300

We start this experimental part by aiming to check whether the small overlapping hypothesis301

(stated by (??)) is true or false. In this respect, Figure 4 shows the mean value of the overlaps as a302

function of the normalized distance between dot centers (dE,ij/RQD) in two cases. The first one, on303

Figure 4a, corresponds to networks in which rmin = 20 RQD. All possible overlaps are Oij < 10�1,304

at least 1 order of magnitude lower than Öi∂iã = 1. Figure 4b represents the study case in which305

rmin = 40 RQD, and shows how all the overlaps are Oij < 10�2, at least 2 orders of magnitude below306
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Usually, many small networks has short average shortest path and high clustering. The clustering
or transitivity quantifies the probability that two neighboring nodes of a given node i are connected.
This concept is easy to understand within the context of social networks: the fact that usually “the
friend of a friend is a friend” leads to high clustering coefficient. The clustering coefficient is a local
property capturing the density of triangles in the graph: two nodes that both are connected to a third
node are also directly connected to each other. A node i in the network has ki links that connects
it to ki other nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that exist between these ki nodes and the maximum possible number of links, that is,
Ci = 2Mi/ki(ki � 1) [52]. The mean clustering coefficient of the whole network is:

ÖCã = 1
N =

i
Ci. (15)

As mentioned, the most striking idea of small-world networks –characterized by high local260

clustering and short average shortest path between any two nodes– is that, even though they can be261

made up of a huge number of interacting nodes, they nonetheless greatly enhance the exchange of262

information [114] (social networks [113], human brain [115,116]), matter (electrons in quantum dot263

systems [83,87], sap in the vascular tissue in plants [117]), or energy (in power grids [59,60]) between264

the involved nodes. However, as discussed in [118], it is necessary to quantify how small ` is and how265

big ÖCã is. This could be the case for the proposed network under certain circumstances.266

To quantify whether or not our network is small world, we will made use of a new metric, the267

Small-World Propensity (SWP), recently proposed in [118]. It aims at measuring the extent to which268

the network under evaluation shows small-world structure by capturing the deviation of the network’s269

clustering coefficient at hand, ÖCã, and characteristic path length, `, from those of both lattice (CL, LL)270

and random (CR, LR) networks with the same number of nodes and the same degree distribution. The271

SWP is defined as [118]272

SWP ✏ 1 � ⇧D2
C + D2

L
2 ↵ , (16)

with
DC = CL � C

CL � CR
, (17)

and
DL = L � LR

LL � LR
. (18)

As discussed in [118], networks with high small-world features (low DC and DL) will have a value273

of the SWP close to 1. The authors have chosen a threshold value of 0.6 to differentiate a network with274

a strong small-world propensity from a network with a weak small-world propensity.275

Figure 3(a) shows the average shortest path length ` for different networks generated by the276

proposed method. They only differ in the number of nodes, which ranges from N = 103 to N = 104
277

nodes. We have also considered the average shortest path length ` for two different temperatures.278

The red line corresponds to the results computed at room temperature T = 300K, while the blue one279

corresponds to the results computed at a lower temperature T = 180K. Aiming to obtain statistical280

values, we have generated 50 realizations of each associated network. Additionally, we have also281

plotted the dotted, black line ln N for comparative purposes.282

Please note in Figure 3(a) that both curves scales with N with a tendency slightly lower than283

ln N, which gets closer and closer to ln N as N approaches 10000 nodes. This could be indicative of a284

small-world network.285 ÖCã ⌅ 0.12286
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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of each complex network. Additionally, we have also plotted the dotted line ln N for comparative275
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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comparative purposes. (b) Small World Propensity, stated by Equation (16) as a function the number of
nodes. It has been computed for different values of increasing temperature T.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180K and 300 K. Any point on the lines is the mean value computed over
50 realizations of each network to obtain accurate statistical values. The dotted black line represents
ln N for comparative purposes. (b) Small World Propensity, stated by Equation (12) as a function the
number of nodes. It has been computed for different values of increasing temperature T.

To discern whether or not the small world feature exists we have used the SWP metric [95],261

represented in Figure 3(b) as a function of the number of nodes.262

It shows that, at room temperature and above (T = 300, 340, 380), the network exhibits a constant,263

high value of SWP ⌅ 0.82, higher than the threshold value SWPTh = 0.6 established in [95]. That is,264

at the representative room temperature, the space-energy embedded network associated to the ODS265

system shows a strong small-world propensity: low DC and DL.266

This is not the case for networks at T < 200K. At low temperatures (T = 100, 140, 180, 200, and267

220 K, in our simulations, to save computational time), SWP remains constant, SWP ⌅ 0.4. This means268

that in this low temperature range there is no small-world.269

T = 240 K270

However, Figure 3(b) shows that, in between these two representative cases, there is an271

“intermediate regime” in which, as temperature rises (T = 240, 260, 280, 290 K), the SWP increases,272
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Figure 3(a) shows the average shortest path length ` (over 50 realizations) of different space-energy246

embedded networks (generated by the method proposed in Section 2.2) as a function of the network247

size, which range from from N = 103 to N = 104 nodes.248

For illustrative purposes, we have represented the average shortest path length ` for two249

different temperatures that, as will be explained later on, are representative of two classes of networks250

(small-world networks, and no-small-networks). The red line corresponds to the results computed at251

room temperature T = 300K, while the blue one corresponds to those at a lower temperature, T = 180K.252

Additionally, we have also plotted the dotted, black line ln N for comparative purposes. Please note in253
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at room temperature, the clustering coefficient is high ÖCã ⌅ 0.48. The network at room temperature258

appears to include the two typical ingredients of the small world: short ` (scaling ` ⇥ ln N) and high259 ÖCã. But, what do “short” and “high” mean here?260
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different temperatures, 180 and 273 K. Any point on the lines is the mean value computed over 50
realizations of each network to obtain accurate statistical values. The dotted line is ln N for comparative
purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Usually, many small networks has short average shortest path and high clustering. The clustering
or transitivity quantifies the probability that two neighboring nodes of a given node i are connected.
This concept is easy to understand within the context of social networks: the fact that usually “the
friend of a friend is a friend” leads to high clustering coefficient. The clustering coefficient is a local
property capturing the density of triangles in the graph: two nodes that both are connected to a third
node are also directly connected to each other. A node i in the network has ki links that connects
it to ki other nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that exist between these ki nodes and the maximum possible number of links, that is,
Ci = 2Mi/ki(ki � 1) [52]. The mean clustering coefficient of the whole network is:

ÖCã = 1
N =

i
Ci. (15)

As mentioned, the most striking idea of small-world networks –characterized by high local260

clustering and short average shortest path between any two nodes– is that, even though they can be261

made up of a huge number of interacting nodes, they nonetheless greatly enhance the exchange of262

information [114] (social networks [113], human brain [115,116]), matter (electrons in quantum dot263

systems [83,87], sap in the vascular tissue in plants [117]), or energy (in power grids [59,60]) between264

the involved nodes. However, as discussed in [118], it is necessary to quantify how small ` is and how265

big ÖCã is. This could be the case for the proposed network under certain circumstances.266

To quantify whether or not our network is small world, we will made use of a new metric, the267

Small-World Propensity (SWP), recently proposed in [118]. It aims at measuring the extent to which268

the network under evaluation shows small-world structure by capturing the deviation of the network’s269

clustering coefficient at hand, ÖCã, and characteristic path length, `, from those of both lattice (CL, LL)270

and random (CR, LR) networks with the same number of nodes and the same degree distribution. The271

SWP is defined as [118]272

SWP ✏ 1 � ⇧D2
C + D2

L
2 ↵ , (16)

with
DC = CL � C

CL � CR
, (17)

and
DL = L � LR

LL � LR
. (18)

As discussed in [118], networks with high small-world features (low DC and DL) will have a value273

of the SWP close to 1. The authors have chosen a threshold value of 0.6 to differentiate a network with274

a strong small-world propensity from a network with a weak small-world propensity.275

Figure 3(a) shows the average shortest path length ` for different networks generated by the276

proposed method. They only differ in the number of nodes, which ranges from N = 103 to N = 104
277

nodes. We have also considered the average shortest path length ` for two different temperatures.278

The red line corresponds to the results computed at room temperature T = 300K, while the blue one279

corresponds to the results computed at a lower temperature T = 180K. Aiming to obtain statistical280
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180 and 300 K. Any point on the lines is the mean value computed
over 50 realizations of each network to obtain accurate statistical values. The dotted line is ln N for
comparative purposes. (b) Small World Propensity, stated by Equation (16) as a function the number of
nodes. It has been computed for different values of increasing temperature T.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180K and 300 K. Any point on the lines is the mean value computed over
50 realizations of each network to obtain accurate statistical values. The dotted black line represents
ln N for comparative purposes. (b) Small World Propensity, stated by Equation (12) as a function the
number of nodes. It has been computed for different values of increasing temperature T.

To discern whether or not the small world feature exists we have used the SWP metric [95],261

represented in Figure 3(b) as a function of the number of nodes.262

It shows that, at room temperature and above (T = 300, 340, 380), the network exhibits a constant,263

high value of SWP ⌅ 0.82, higher than the threshold value SWPTh = 0.6 established in [95]. That is,264

at the representative room temperature, the space-energy embedded network associated to the ODS265

system shows a strong small-world propensity: low DC and DL.266

This is not the case for networks at T < 200K. At low temperatures (T = 100, 140, 180, 200, and267

220 K, in our simulations, to save computational time), SWP remains constant, SWP ⌅ 0.4. This means268

that in this low temperature range there is no small-world.269
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Figure 3(a) shows the average shortest path length ` (over 50 realizations) of different space-energy246

embedded networks (generated by the method proposed in Section 2.2) as a function of the network247

size, which range from from N = 103 to N = 104 nodes.248

For illustrative purposes, we have represented the average shortest path length ` for two249

different temperatures that, as will be explained later on, are representative of two classes of networks250

(small-world networks, and no-small-networks). The red line corresponds to the results computed at251

room temperature T = 300K, while the blue one corresponds to those at a lower temperature, T = 180K.252

Additionally, we have also plotted the dotted, black line ln N for comparative purposes. Please note in253

Figure 3(a) that both curves scales with N with a tendency slightly lower than ln N, which gets closer254

and closer to ln N as N approaches 104 nodes. One might think that this is indicative of a small-world255

network. But this is not enough, and even could be misleading. Note that the clustering coefficients are256

very different in both cases. At low temperature, the clustering coefficient is small ÖCã ⌅ 0.12. However,257

at room temperature, the clustering coefficient is high ÖCã ⌅ 0.48. The network at room temperature258

appears to include the two typical ingredients of the small world: short ` (scaling ` ⇥ ln N) and high259 ÖCã. But, what do “short” and “high” mean here?260
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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of each complex network. Additionally, we have also plotted the dotted line ln N for comparative275
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Usually, many small networks has short average shortest path and high clustering. The clustering
or transitivity quantifies the probability that two neighboring nodes of a given node i are connected.
This concept is easy to understand within the context of social networks: the fact that usually “the
friend of a friend is a friend” leads to high clustering coefficient. The clustering coefficient is a local
property capturing the density of triangles in the graph: two nodes that both are connected to a third
node are also directly connected to each other. A node i in the network has ki links that connects
it to ki other nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that exist between these ki nodes and the maximum possible number of links, that is,
Ci = 2Mi/ki(ki � 1) [52]. The mean clustering coefficient of the whole network is:

ÖCã = 1
N =

i
Ci. (15)

As mentioned, the most striking idea of small-world networks –characterized by high local260

clustering and short average shortest path between any two nodes– is that, even though they can be261

made up of a huge number of interacting nodes, they nonetheless greatly enhance the exchange of262

information [114] (social networks [113], human brain [115,116]), matter (electrons in quantum dot263

systems [83,87], sap in the vascular tissue in plants [117]), or energy (in power grids [59,60]) between264

the involved nodes. However, as discussed in [118], it is necessary to quantify how small ` is and how265

big ÖCã is. This could be the case for the proposed network under certain circumstances.266

To quantify whether or not our network is small world, we will made use of a new metric, the267

Small-World Propensity (SWP), recently proposed in [118]. It aims at measuring the extent to which268

the network under evaluation shows small-world structure by capturing the deviation of the network’s269

clustering coefficient at hand, ÖCã, and characteristic path length, `, from those of both lattice (CL, LL)270

and random (CR, LR) networks with the same number of nodes and the same degree distribution. The271

SWP is defined as [118]272

SWP ✏ 1 � ⇧D2
C + D2

L
2 ↵ , (16)

with
DC = CL � C

CL � CR
, (17)

and
DL = L � LR

LL � LR
. (18)

As discussed in [118], networks with high small-world features (low DC and DL) will have a value273

of the SWP close to 1. The authors have chosen a threshold value of 0.6 to differentiate a network with274

a strong small-world propensity from a network with a weak small-world propensity.275

Figure 3(a) shows the average shortest path length ` for different networks generated by the276

proposed method. They only differ in the number of nodes, which ranges from N = 103 to N = 104
277

nodes. We have also considered the average shortest path length ` for two different temperatures.278

The red line corresponds to the results computed at room temperature T = 300K, while the blue one279

corresponds to the results computed at a lower temperature T = 180K. Aiming to obtain statistical280

values, we have generated 50 realizations of each associated network. Additionally, we have also281

plotted the dotted, black line ln N for comparative purposes.282

Please note in Figure 3(a) that both curves scales with N with a tendency slightly lower than283

ln N, which gets closer and closer to ln N as N approaches 10000 nodes. This could be indicative of a284

small-world network.285 ÖCã ⌅ 0.12286
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different temperatures, 180 and 273 K. Any point on the lines is the mean value computed over 50
realizations of each network to obtain accurate statistical values. The dotted line is ln N for comparative
purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180 and 300 K. Any point on the lines is the mean value computed
over 50 realizations of each network to obtain accurate statistical values. The dotted line is ln N for
comparative purposes. (b) Small World Propensity, stated by Equation (16) as a function the number of
nodes. It has been computed for different values of increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.

Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180K and 300 K. Any point on the lines is the mean value computed over
50 realizations of each network to obtain accurate statistical values. The dotted black line represents
ln N for comparative purposes. (b) Small World Propensity, stated by Equation (12) as a function the
number of nodes. It has been computed for different values of increasing temperature T.

To discern whether or not the small world feature exists we have used the SWP metric [95],261

represented in Figure 3(b) as a function of the number of nodes.262

It shows that, at room temperature and above (T = 300, 340, 380), the network exhibits a constant,263

high value of SWP ⌅ 0.82, higher than the threshold value SWPTh = 0.6 established in [95]. That is,264

at the representative room temperature, the space-energy embedded network associated to the ODS265

system shows a strong small-world propensity: low DC and DL.266

This is not the case for networks at T < 200K. At low temperatures (T = 100, 140, 180, 200, and267

220 K, in our simulations, to save computational time), SWP remains constant, SWP ⌅ 0.4. This means268

that in this low temperature range there is no small-world.269

T = 240 K270

T = 260 K271

T = 280 K272

T = 290 K273
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Figure 3(a) shows the average shortest path length ` (over 50 realizations) of different space-energy246

embedded networks (generated by the method proposed in Section 2.2) as a function of the network247

size, which range from from N = 103 to N = 104 nodes.248

For illustrative purposes, we have represented the average shortest path length ` for two249

different temperatures that, as will be explained later on, are representative of two classes of networks250

(small-world networks, and no-small-networks). The red line corresponds to the results computed at251

room temperature T = 300K, while the blue one corresponds to those at a lower temperature, T = 180K.252

Additionally, we have also plotted the dotted, black line ln N for comparative purposes. Please note in253

Figure 3(a) that both curves scales with N with a tendency slightly lower than ln N, which gets closer254

and closer to ln N as N approaches 104 nodes. One might think that this is indicative of a small-world255

network. But this is not enough, and even could be misleading. Note that the clustering coefficients are256

very different in both cases. At low temperature, the clustering coefficient is small ÖCã ⌅ 0.12. However,257

at room temperature, the clustering coefficient is high ÖCã ⌅ 0.48. The network at room temperature258

appears to include the two typical ingredients of the small world: short ` (scaling ` ⇥ ln N) and high259 ÖCã. But, what do “short” and “high” mean here?260
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Usually, many small networks has short average shortest path and high clustering. The clustering
or transitivity quantifies the probability that two neighboring nodes of a given node i are connected.
This concept is easy to understand within the context of social networks: the fact that usually “the
friend of a friend is a friend” leads to high clustering coefficient. The clustering coefficient is a local
property capturing the density of triangles in the graph: two nodes that both are connected to a third
node are also directly connected to each other. A node i in the network has ki links that connects
it to ki other nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that exist between these ki nodes and the maximum possible number of links, that is,
Ci = 2Mi/ki(ki � 1) [52]. The mean clustering coefficient of the whole network is:

ÖCã = 1
N =

i
Ci. (15)

As mentioned, the most striking idea of small-world networks –characterized by high local260

clustering and short average shortest path between any two nodes– is that, even though they can be261

made up of a huge number of interacting nodes, they nonetheless greatly enhance the exchange of262

information [114] (social networks [113], human brain [115,116]), matter (electrons in quantum dot263

systems [83,87], sap in the vascular tissue in plants [117]), or energy (in power grids [59,60]) between264

the involved nodes. However, as discussed in [118], it is necessary to quantify how small ` is and how265

big ÖCã is. This could be the case for the proposed network under certain circumstances.266

To quantify whether or not our network is small world, we will made use of a new metric, the267

Small-World Propensity (SWP), recently proposed in [118]. It aims at measuring the extent to which268

the network under evaluation shows small-world structure by capturing the deviation of the network’s269

clustering coefficient at hand, ÖCã, and characteristic path length, `, from those of both lattice (CL, LL)270

and random (CR, LR) networks with the same number of nodes and the same degree distribution. The271

SWP is defined as [118]272

SWP ✏ 1 � ⇧D2
C + D2

L
2 ↵ , (16)

with
DC = CL � C

CL � CR
, (17)

and
DL = L � LR

LL � LR
. (18)

As discussed in [118], networks with high small-world features (low DC and DL) will have a value273

of the SWP close to 1. The authors have chosen a threshold value of 0.6 to differentiate a network with274

a strong small-world propensity from a network with a weak small-world propensity.275

Figure 3(a) shows the average shortest path length ` for different networks generated by the276

proposed method. They only differ in the number of nodes, which ranges from N = 103 to N = 104
277

nodes. We have also considered the average shortest path length ` for two different temperatures.278

The red line corresponds to the results computed at room temperature T = 300K, while the blue one279

corresponds to the results computed at a lower temperature T = 180K. Aiming to obtain statistical280

values, we have generated 50 realizations of each associated network. Additionally, we have also281

plotted the dotted, black line ln N for comparative purposes.282

Please note in Figure 3(a) that both curves scales with N with a tendency slightly lower than283

ln N, which gets closer and closer to ln N as N approaches 10000 nodes. This could be indicative of a284

small-world network.285 ÖCã ⌅ 0.12286

Version November 8, 2022 submitted to Nanomaterials 10 of 29

ÖCã ⌅ 0.48287

(a)

Av
er

ag
e 

sh
or

te
st

 p
at

h

5
4

6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

T = 180 K

T = 300 K

Number of nodes

Version November 8, 2022 submitted to Nanomaterials 10 of 29

of each complex network. Additionally, we have also plotted the dotted line ln N for comparative275

purposes.276

(a) (b)

Av
er

ag
e 

sh
or

te
st

 p
at

h

5
4

6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

Version November 7, 2022 submitted to Nanomaterials 10 of 26

180 200 220 240 260 273

0.4

0.5

0.6

0.7

0.8

0.9

Temperature (K)

SW
P

180 200 220 240 260
0.0
0.2
0.4
0.6
0.8
1.0

180 200 220 240 260 273
0.0

0.4

0.2

0.6

0.8

1.0

Temperature (K)

no
rm

al
iz

ed
 m

ob
ilit

y

(a) (b)

0.3

Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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distribution with (dimensionless) mean µ = EQD = 0.4, and standard deviation s = 10�3. Thus each293

QD (node) i is described by its corresponding ei energy level, a sample from the N (µ, s). This energy294

level ei acts as an attribute called hidden variable or fitness (see [85] for details in the context of SN).295

Aiming to obtain statistical values, we generate ensembles of networks with a sufficiently large296

number of networks. In the experiments carried out we have led to the conclusion that it is sufficient297

to generate 50 realizations of each complex network.298
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3.2. Testing the weak overlap hypothesis300

We start this experimental part by aiming to check whether the small overlapping hypothesis301

(stated by (??)) is true or false. In this respect, Figure 4 shows the mean value of the overlaps as a302

function of the normalized distance between dot centers (dE,ij/RQD) in two cases. The first one, on303

Figure 4a, corresponds to networks in which rmin = 20 RQD. All possible overlaps are Oij < 10�1,304

at least 1 order of magnitude lower than Öi∂iã = 1. Figure 4b represents the study case in which305

rmin = 40 RQD, and shows how all the overlaps are Oij < 10�2, at least 2 orders of magnitude below306
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different temperatures, 180 and 273 K. Any point on the lines is the mean value computed over 50
realizations of each network to obtain accurate statistical values. The dotted line is ln N for comparative
purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180 and 300 K. Any point on the lines is the mean value computed
over 50 realizations of each network to obtain accurate statistical values. The dotted line is ln N for
comparative purposes. (b) Small World Propensity, stated by Equation (16) as a function the number of
nodes. It has been computed for different values of increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.

Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180K and 300 K. Any point on the lines is the mean value computed over
50 realizations of each network to obtain accurate statistical values. The dotted black line represents
ln N for comparative purposes. (b) Small World Propensity, stated by Equation (12) as a function the
number of nodes. It has been computed for different values of increasing temperature T.

To discern whether or not the small world feature exists we have used the SWP metric [95],261

represented in Figure 3(b) as a function of the number of nodes.262

It shows that, at room temperature and above (T = 300, 340, 380), the network exhibits a constant,263

high value of SWP ⌅ 0.82, higher than the threshold value SWPTh = 0.6 established in [95]. That is,264

at the representative room temperature, the space-energy embedded network associated to the ODS265

system shows a strong small-world propensity: low DC and DL.266

This is not the case for networks at T < 200K. At low temperatures (T = 100, 140, 180, 200, and267

220 K, in our simulations, to save computational time), SWP remains constant, SWP ⌅ 0.4. This means268

that in this low temperature range there is no small-world.269
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Figure 3(a) shows the average shortest path length ` (over 50 realizations) of different space-energy246

embedded networks (generated by the method proposed in Section 2.2) as a function of the network247

size, which range from from N = 103 to N = 104 nodes.248

For illustrative purposes, we have represented the average shortest path length ` for two249

different temperatures that, as will be explained later on, are representative of two classes of networks250

(small-world networks, and no-small-networks). The red line corresponds to the results computed251

at room temperature T = 300K, while the blue one corresponds to those at a lower, representative252

temperature, T = 180K. Additionally, we have also plotted the dotted, black line ln N for comparative253

purposes. Figure 3(a) shows that both curves scale with N with a tendency slightly lower than ln N,254

which gets closer and closer to ln N as N approaches 104 nodes. One might think that this is indicative255

of a small-world network. But this is not enough, and even could be misleading. Note that the256

clustering coefficients are very different in both cases. At low temperature, the clustering coefficient257

is small ÖCã ⌅ 0.12. However, at room temperature, the clustering coefficient is high ÖCã ⌅ 0.48. The258

network at room temperature appears to include the two typical ingredients of the small world: short259

` (scaling ` ⇥ ln N) and high ÖCã. But, what do “short” and “high” mean here?260
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of each complex network. Additionally, we have also plotted the dotted line ln N for comparative275

purposes.276
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different temperatures, 180 and 273 K. Any point on the lines is the mean value computed over 50
realizations of each network to obtain accurate statistical values. The dotted line is ln N for comparative
purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3(a) shows the average shortest path length ` (over 50 realizations) of different space-energy246

embedded networks (generated by the method proposed in Section 2.2) as a function of the network247

size, which range from from N = 103 to N = 104 nodes.248

For illustrative purposes, we have represented the average shortest path length ` for two249

different temperatures that, as will be explained later on, are representative of two classes of networks250

(small-world networks, and no-small-networks). The red line corresponds to the results computed at251

room temperature T = 300K, while the blue one corresponds to those at a lower temperature, T = 180K.252
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and closer to ln N as N approaches 104 nodes. One might think that this is indicative of a small-world255
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at room temperature, the clustering coefficient is high ÖCã ⌅ 0.48. The network at room temperature258

appears to include the two typical ingredients of the small world: short ` (scaling ` ⇥ ln N) and high259 ÖCã. But, what do “short” and “high” mean here?260
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of each complex network. Additionally, we have also plotted the dotted line ln N for comparative275
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different temperatures, 180 and 273 K. Any point on the lines is the mean value computed over 50
realizations of each network to obtain accurate statistical values. The dotted line is ln N for comparative
purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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of each complex network. Additionally, we have also plotted the dotted line ln N for comparative275

purposes.276
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Usually, many small networks has short average shortest path and high clustering. The clustering
or transitivity quantifies the probability that two neighboring nodes of a given node i are connected.
This concept is easy to understand within the context of social networks: the fact that usually “the
friend of a friend is a friend” leads to high clustering coefficient. The clustering coefficient is a local
property capturing the density of triangles in the graph: two nodes that both are connected to a third
node are also directly connected to each other. A node i in the network has ki links that connects
it to ki other nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that exist between these ki nodes and the maximum possible number of links, that is,
Ci = 2Mi/ki(ki � 1) [52]. The mean clustering coefficient of the whole network is:

ÖCã = 1
N =

i
Ci. (15)

As mentioned, the most striking idea of small-world networks –characterized by high local260

clustering and short average shortest path between any two nodes– is that, even though they can be261

made up of a huge number of interacting nodes, they nonetheless greatly enhance the exchange of262

information [114] (social networks [113], human brain [115,116]), matter (electrons in quantum dot263

systems [83,87], sap in the vascular tissue in plants [117]), or energy (in power grids [59,60]) between264

the involved nodes. However, as discussed in [118], it is necessary to quantify how small ` is and how265

big ÖCã is. This could be the case for the proposed network under certain circumstances.266

To quantify whether or not our network is small world, we will made use of a new metric, the267

Small-World Propensity (SWP), recently proposed in [118]. It aims at measuring the extent to which268

the network under evaluation shows small-world structure by capturing the deviation of the network’s269

clustering coefficient at hand, ÖCã, and characteristic path length, `, from those of both lattice (CL, LL)270

and random (CR, LR) networks with the same number of nodes and the same degree distribution. The271

SWP is defined as [118]272

SWP ✏ 1 � ⇧D2
C + D2

L
2 ↵ , (16)

with
DC = CL � C

CL � CR
, (17)

and
DL = L � LR

LL � LR
. (18)

As discussed in [118], networks with high small-world features (low DC and DL) will have a value273

of the SWP close to 1. The authors have chosen a threshold value of 0.6 to differentiate a network with274

a strong small-world propensity from a network with a weak small-world propensity.275

Figure 3(a) shows the average shortest path length ` for different networks generated by the276

proposed method. They only differ in the number of nodes, which ranges from N = 103 to N = 104
277

nodes. We have also considered the average shortest path length ` for two different temperatures.278

The red line corresponds to the results computed at room temperature T = 300K, while the blue one279

corresponds to the results computed at a lower temperature T = 180K. Aiming to obtain statistical280

values, we have generated 50 realizations of each associated network. Additionally, we have also281

plotted the dotted, black line ln N for comparative purposes.282

Please note in Figure 3(a) that both curves scales with N with a tendency slightly lower than283

ln N, which gets closer and closer to ln N as N approaches 10000 nodes. This could be indicative of a284

small-world network.285 ÖCã ⌅ 0.12286
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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them is determined by the fact that the QDs are located in a random way by means of the algorithm289

described in Section ?? to fulfill the minimum inter-dot distance condition. The second type of disorder290

has its origin in that, in real QD layers, there are thermodynamic fluctuation in the dot size, which leads291

to nodes with different energy levels. We have assumed the energy level distribution as a Gaussian292

distribution with (dimensionless) mean µ = EQD = 0.4, and standard deviation s = 10�3. Thus each293

QD (node) i is described by its corresponding ei energy level, a sample from the N (µ, s). This energy294

level ei acts as an attribute called hidden variable or fitness (see [85] for details in the context of SN).295

Aiming to obtain statistical values, we generate ensembles of networks with a sufficiently large296

number of networks. In the experiments carried out we have led to the conclusion that it is sufficient297

to generate 50 realizations of each complex network.298
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3.2. Testing the weak overlap hypothesis300

We start this experimental part by aiming to check whether the small overlapping hypothesis301

(stated by (??)) is true or false. In this respect, Figure 4 shows the mean value of the overlaps as a302

function of the normalized distance between dot centers (dE,ij/RQD) in two cases. The first one, on303

Figure 4a, corresponds to networks in which rmin = 20 RQD. All possible overlaps are Oij < 10�1,304

at least 1 order of magnitude lower than Öi∂iã = 1. Figure 4b represents the study case in which305

rmin = 40 RQD, and shows how all the overlaps are Oij < 10�2, at least 2 orders of magnitude below306
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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realizations of each network to obtain accurate statistical values. The dotted line is ln N for comparative
purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180 and 300 K. Any point on the lines is the mean value computed
over 50 realizations of each network to obtain accurate statistical values. The dotted line is ln N for
comparative purposes. (b) Small World Propensity, stated by Equation (16) as a function the number of
nodes. It has been computed for different values of increasing temperature T.

180 200 220 240 260 280 300
0.0
0.2
0.4
0.6
0.8
1.0

Temperature (K)
(a)

0.0

0.4

0.2

0.6

0.8

1.0

No
rm

al
iz

ed
 M

ob
ilit

y

180 200 220 240 260 280 300 180 200 220 240 260 280

0.4

0.5

0.6

0.7

0.8

0.9

Temperature (K)
(b)

0.3

Sm
al

l W
or

ld
 P

ro
pe

ns
ity

300

Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.

Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180K and 300 K. Any point on the lines is the mean value computed over
50 realizations of each network to obtain accurate statistical values. The dotted black line represents
ln N for comparative purposes. (b) Small World Propensity, stated by Equation (12) as a function the
number of nodes. It has been computed for different values of increasing temperature T.

To discern whether or not the small world feature exists we have used the SWP metric [95],261

represented in Figure 3(b) as a function of the number of nodes.262

It shows that, at room temperature and above (T = 300, 340, 380), the network exhibits a constant,263

high value of SWP ⌅ 0.82, higher than the threshold value SWPTh = 0.6 established in [95]. That is,264

at the representative room temperature, the space-energy embedded network associated to the ODS265

system shows a strong small-world propensity: low DC and DL.266

This is not the case for networks at T < 200K. At low temperatures (T = 100, 140, 180, 200, and267

220 K, in our simulations, to save computational time), SWP remains constant, SWP ⌅ 0.4. This means268

that in this low temperature range there is no small-world.269

T = 100, 140, 180, 200, 220 K270

However, Figure 3(b) shows that, in between these two representative cases, there is an271

“intermediate regime” in which, as temperature rises (T = 240, 260, 280, 290 K), the SWP increases,272
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Figure 3(a) shows the average shortest path length ` (over 50 realizations) of different space-energy246

embedded networks (generated by the method proposed in Section 2.2) as a function of the network247

size, which range from from N = 103 to N = 104 nodes.248

For illustrative purposes, we have represented the average shortest path length ` for two249

different temperatures that, as will be explained later on, are representative of two classes of networks250

(small-world networks, and no-small-networks). The red line corresponds to the results computed at251

room temperature T = 300K, while the blue one corresponds to those at a lower temperature, T = 180K.252

Additionally, we have also plotted the dotted, black line ln N for comparative purposes. Please note in253

Figure 3(a) that both curves scales with N with a tendency slightly lower than ln N, which gets closer254

and closer to ln N as N approaches 104 nodes. One might think that this is indicative of a small-world255

network. But this is not enough, and even could be misleading. Note that the clustering coefficients are256

very different in both cases. At low temperature, the clustering coefficient is small ÖCã ⌅ 0.12. However,257

at room temperature, the clustering coefficient is high ÖCã ⌅ 0.48. The network at room temperature258

appears to include the two typical ingredients of the small world: short ` (scaling ` ⇥ ln N) and high259 ÖCã. But, what do “short” and “high” mean here?260
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Usually, many small networks has short average shortest path and high clustering. The clustering
or transitivity quantifies the probability that two neighboring nodes of a given node i are connected.
This concept is easy to understand within the context of social networks: the fact that usually “the
friend of a friend is a friend” leads to high clustering coefficient. The clustering coefficient is a local
property capturing the density of triangles in the graph: two nodes that both are connected to a third
node are also directly connected to each other. A node i in the network has ki links that connects
it to ki other nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that exist between these ki nodes and the maximum possible number of links, that is,
Ci = 2Mi/ki(ki � 1) [52]. The mean clustering coefficient of the whole network is:

ÖCã = 1
N =

i
Ci. (15)

As mentioned, the most striking idea of small-world networks –characterized by high local260

clustering and short average shortest path between any two nodes– is that, even though they can be261

made up of a huge number of interacting nodes, they nonetheless greatly enhance the exchange of262

information [114] (social networks [113], human brain [115,116]), matter (electrons in quantum dot263

systems [83,87], sap in the vascular tissue in plants [117]), or energy (in power grids [59,60]) between264

the involved nodes. However, as discussed in [118], it is necessary to quantify how small ` is and how265

big ÖCã is. This could be the case for the proposed network under certain circumstances.266

To quantify whether or not our network is small world, we will made use of a new metric, the267

Small-World Propensity (SWP), recently proposed in [118]. It aims at measuring the extent to which268

the network under evaluation shows small-world structure by capturing the deviation of the network’s269

clustering coefficient at hand, ÖCã, and characteristic path length, `, from those of both lattice (CL, LL)270

and random (CR, LR) networks with the same number of nodes and the same degree distribution. The271

SWP is defined as [118]272

SWP ✏ 1 � ⇧D2
C + D2

L
2 ↵ , (16)

with
DC = CL � C

CL � CR
, (17)

and
DL = L � LR

LL � LR
. (18)

As discussed in [118], networks with high small-world features (low DC and DL) will have a value273

of the SWP close to 1. The authors have chosen a threshold value of 0.6 to differentiate a network with274

a strong small-world propensity from a network with a weak small-world propensity.275

Figure 3(a) shows the average shortest path length ` for different networks generated by the276

proposed method. They only differ in the number of nodes, which ranges from N = 103 to N = 104
277

nodes. We have also considered the average shortest path length ` for two different temperatures.278

The red line corresponds to the results computed at room temperature T = 300K, while the blue one279

corresponds to the results computed at a lower temperature T = 180K. Aiming to obtain statistical280

values, we have generated 50 realizations of each associated network. Additionally, we have also281

plotted the dotted, black line ln N for comparative purposes.282

Please note in Figure 3(a) that both curves scales with N with a tendency slightly lower than283

ln N, which gets closer and closer to ln N as N approaches 10000 nodes. This could be indicative of a284

small-world network.285 ÖCã ⌅ 0.12286
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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realizations of each network to obtain accurate statistical values. The dotted line is ln N for comparative
purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different temperatures, 180 and 273 K. Any point on the lines is the mean value computed over 50
realizations of each network to obtain accurate statistical values. The dotted line is ln N for comparative
purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180 and 300 K. Any point on the lines is the mean value computed
over 50 realizations of each network to obtain accurate statistical values. The dotted line is ln N for
comparative purposes. (b) Small World Propensity, stated by Equation (16) as a function the number of
nodes. It has been computed for different values of increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.

Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180K and 300 K. Any point on the lines is the mean value computed over
50 realizations of each network to obtain accurate statistical values. The dotted black line represents
ln N for comparative purposes. (b) Small World Propensity, stated by Equation (12) as a function the
number of nodes. It has been computed for different values of increasing temperature T.

To discern whether or not the small world feature exists we have used the SWP metric [95],261

represented in Figure 3(b) as a function of the number of nodes.262
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T = 240 K270

However, Figure 3(b) shows that, in between these two representative cases, there is an271

“intermediate regime” in which, as temperature rises (T = 240, 260, 280, 290 K), the SWP increases,272
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Figure 3(a) shows the average shortest path length ` (over 50 realizations) of different space-energy246
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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them is determined by the fact that the QDs are located in a random way by means of the algorithm289

described in Section ?? to fulfill the minimum inter-dot distance condition. The second type of disorder290

has its origin in that, in real QD layers, there are thermodynamic fluctuation in the dot size, which leads291

to nodes with different energy levels. We have assumed the energy level distribution as a Gaussian292

distribution with (dimensionless) mean µ = EQD = 0.4, and standard deviation s = 10�3. Thus each293

QD (node) i is described by its corresponding ei energy level, a sample from the N (µ, s). This energy294

level ei acts as an attribute called hidden variable or fitness (see [85] for details in the context of SN).295

Aiming to obtain statistical values, we generate ensembles of networks with a sufficiently large296

number of networks. In the experiments carried out we have led to the conclusion that it is sufficient297

to generate 50 realizations of each complex network.298

299

3.2. Testing the weak overlap hypothesis300

We start this experimental part by aiming to check whether the small overlapping hypothesis301

(stated by (??)) is true or false. In this respect, Figure 4 shows the mean value of the overlaps as a302

function of the normalized distance between dot centers (dE,ij/RQD) in two cases. The first one, on303

Figure 4a, corresponds to networks in which rmin = 20 RQD. All possible overlaps are Oij < 10�1,304

at least 1 order of magnitude lower than Öi∂iã = 1. Figure 4b represents the study case in which305

rmin = 40 RQD, and shows how all the overlaps are Oij < 10�2, at least 2 orders of magnitude below306
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Usually, many small networks has short average shortest path and high clustering. The clustering
or transitivity quantifies the probability that two neighboring nodes of a given node i are connected.
This concept is easy to understand within the context of social networks: the fact that usually “the
friend of a friend is a friend” leads to high clustering coefficient. The clustering coefficient is a local
property capturing the density of triangles in the graph: two nodes that both are connected to a third
node are also directly connected to each other. A node i in the network has ki links that connects
it to ki other nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that exist between these ki nodes and the maximum possible number of links, that is,
Ci = 2Mi/ki(ki � 1) [52]. The mean clustering coefficient of the whole network is:

ÖCã = 1
N =

i
Ci. (15)

As mentioned, the most striking idea of small-world networks –characterized by high local260

clustering and short average shortest path between any two nodes– is that, even though they can be261

made up of a huge number of interacting nodes, they nonetheless greatly enhance the exchange of262

information [114] (social networks [113], human brain [115,116]), matter (electrons in quantum dot263

systems [83,87], sap in the vascular tissue in plants [117]), or energy (in power grids [59,60]) between264

the involved nodes. However, as discussed in [118], it is necessary to quantify how small ` is and how265

big ÖCã is. This could be the case for the proposed network under certain circumstances.266

To quantify whether or not our network is small world, we will made use of a new metric, the267

Small-World Propensity (SWP), recently proposed in [118]. It aims at measuring the extent to which268

the network under evaluation shows small-world structure by capturing the deviation of the network’s269

clustering coefficient at hand, ÖCã, and characteristic path length, `, from those of both lattice (CL, LL)270

and random (CR, LR) networks with the same number of nodes and the same degree distribution. The271

SWP is defined as [118]272

SWP ✏ 1 � ⇧D2
C + D2

L
2 ↵ , (16)

with
DC = CL � C

CL � CR
, (17)

and
DL = L � LR

LL � LR
. (18)

As discussed in [118], networks with high small-world features (low DC and DL) will have a value273

of the SWP close to 1. The authors have chosen a threshold value of 0.6 to differentiate a network with274

a strong small-world propensity from a network with a weak small-world propensity.275

Figure 3(a) shows the average shortest path length ` for different networks generated by the276

proposed method. They only differ in the number of nodes, which ranges from N = 103 to N = 104
277

nodes. We have also considered the average shortest path length ` for two different temperatures.278

The red line corresponds to the results computed at room temperature T = 300K, while the blue one279

corresponds to the results computed at a lower temperature T = 180K. Aiming to obtain statistical280

values, we have generated 50 realizations of each associated network. Additionally, we have also281

plotted the dotted, black line ln N for comparative purposes.282

Please note in Figure 3(a) that both curves scales with N with a tendency slightly lower than283

ln N, which gets closer and closer to ln N as N approaches 10000 nodes. This could be indicative of a284

small-world network.285 ÖCã ⌅ 0.12286
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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over 50 realizations of each network to obtain accurate statistical values. The dotted line is ln N for
comparative purposes. (b) Small World Propensity, stated by Equation (16) as a function the number of
nodes. It has been computed for different values of increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.

Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180K and 300 K. Any point on the lines is the mean value computed over
50 realizations of each network to obtain accurate statistical values. The dotted black line represents
ln N for comparative purposes. (b) Small World Propensity, stated by Equation (12) as a function the
number of nodes. It has been computed for different values of increasing temperature T.

To discern whether or not the small world feature exists we have used the SWP metric [95],261

represented in Figure 3(b) as a function of the number of nodes.262

It shows that, at room temperature and above (T = 300, 340, 380), the network exhibits a constant,263

high value of SWP ⌅ 0.82, higher than the threshold value SWPTh = 0.6 established in [95]. That is,264

at the representative room temperature, the space-energy embedded network associated to the ODS265

system shows a strong small-world propensity: low DC and DL.266

This is not the case for networks at T < 200K. At low temperatures (T = 100, 140, 180, 200, and267

220 K, in our simulations, to save computational time), SWP remains constant, SWP ⌅ 0.4. This means268

that in this low temperature range there is no small-world.269
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Version November 26, 2022 submitted to Nanomaterials 9 of 20

Figure 3(a) shows the average shortest path length ` (over 50 realizations) of different space-energy246

embedded networks (generated by the method proposed in Section 2.2) as a function of the network247

size, which range from from N = 103 to N = 104 nodes.248

For illustrative purposes, we have represented the average shortest path length ` for two249

different temperatures that, as will be explained later on, are representative of two classes of networks250

(small-world networks, and no-small-networks). The red line corresponds to the results computed at251

room temperature T = 300K, while the blue one corresponds to those at a lower temperature, T = 180K.252

Additionally, we have also plotted the dotted, black line ln N for comparative purposes. Please note in253

Figure 3(a) that both curves scales with N with a tendency slightly lower than ln N, which gets closer254

and closer to ln N as N approaches 104 nodes. One might think that this is indicative of a small-world255

network. But this is not enough, and even could be misleading. Note that the clustering coefficients are256

very different in both cases. At low temperature, the clustering coefficient is small ÖCã ⌅ 0.12. However,257

at room temperature, the clustering coefficient is high ÖCã ⌅ 0.48. The network at room temperature258

appears to include the two typical ingredients of the small world: short ` (scaling ` ⇥ ln N) and high259 ÖCã. But, what do “short” and “high” mean here?260
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different temperatures, 180 and 273 K. Any point on the lines is the mean value computed over 50
realizations of each network to obtain accurate statistical values. The dotted line is ln N for comparative
purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Usually, many small networks has short average shortest path and high clustering. The clustering
or transitivity quantifies the probability that two neighboring nodes of a given node i are connected.
This concept is easy to understand within the context of social networks: the fact that usually “the
friend of a friend is a friend” leads to high clustering coefficient. The clustering coefficient is a local
property capturing the density of triangles in the graph: two nodes that both are connected to a third
node are also directly connected to each other. A node i in the network has ki links that connects
it to ki other nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that exist between these ki nodes and the maximum possible number of links, that is,
Ci = 2Mi/ki(ki � 1) [52]. The mean clustering coefficient of the whole network is:

ÖCã = 1
N =

i
Ci. (15)

As mentioned, the most striking idea of small-world networks –characterized by high local260

clustering and short average shortest path between any two nodes– is that, even though they can be261

made up of a huge number of interacting nodes, they nonetheless greatly enhance the exchange of262

information [114] (social networks [113], human brain [115,116]), matter (electrons in quantum dot263

systems [83,87], sap in the vascular tissue in plants [117]), or energy (in power grids [59,60]) between264

the involved nodes. However, as discussed in [118], it is necessary to quantify how small ` is and how265

big ÖCã is. This could be the case for the proposed network under certain circumstances.266

To quantify whether or not our network is small world, we will made use of a new metric, the267

Small-World Propensity (SWP), recently proposed in [118]. It aims at measuring the extent to which268

the network under evaluation shows small-world structure by capturing the deviation of the network’s269

clustering coefficient at hand, ÖCã, and characteristic path length, `, from those of both lattice (CL, LL)270

and random (CR, LR) networks with the same number of nodes and the same degree distribution. The271

SWP is defined as [118]272

SWP ✏ 1 � ⇧D2
C + D2

L
2 ↵ , (16)

with
DC = CL � C

CL � CR
, (17)

and
DL = L � LR

LL � LR
. (18)

As discussed in [118], networks with high small-world features (low DC and DL) will have a value273

of the SWP close to 1. The authors have chosen a threshold value of 0.6 to differentiate a network with274

a strong small-world propensity from a network with a weak small-world propensity.275

Figure 3(a) shows the average shortest path length ` for different networks generated by the276

proposed method. They only differ in the number of nodes, which ranges from N = 103 to N = 104
277

nodes. We have also considered the average shortest path length ` for two different temperatures.278
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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number of networks. In the experiments carried out we have led to the conclusion that it is sufficient297
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180 and 300 K. Any point on the lines is the mean value computed
over 50 realizations of each network to obtain accurate statistical values. The dotted line is ln N for
comparative purposes. (b) Small World Propensity, stated by Equation (16) as a function the number of
nodes. It has been computed for different values of increasing temperature T.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180K and 300 K. Any point on the lines is the mean value computed over
50 realizations of each network to obtain accurate statistical values. The dotted black line represents
ln N for comparative purposes. (b) Small World Propensity, stated by Equation (12) as a function the
number of nodes. It has been computed for different values of increasing temperature T.

To discern whether or not the small world feature exists we have used the SWP metric [95],261

represented in Figure 3(b) as a function of the number of nodes.262

It shows that, at room temperature and above (T = 300, 340, 380), the network exhibits a constant,263

high value of SWP ⌅ 0.82, higher than the threshold value SWPTh = 0.6 established in [95]. That is,264

at the representative room temperature, the space-energy embedded network associated to the ODS265

system shows a strong small-world propensity: low DC and DL.266

This is not the case for networks at T < 200K. At low temperatures (T = 100, 140, 180, 200, and267

220 K, in our simulations, to save computational time), SWP remains constant, SWP ⌅ 0.4. This means268

that in this low temperature range there is no small-world.269
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Figure 3(a) shows the average shortest path length ` (over 50 realizations) of different space-energy246

embedded networks (generated by the method proposed in Section 2.2) as a function of the network247

size, which range from from N = 103 to N = 104 nodes.248

For illustrative purposes, we have represented the average shortest path length ` for two249

different temperatures that, as will be explained later on, are representative of two classes of networks250

(small-world networks, and no-small-networks). The red line corresponds to the results computed at251

room temperature T = 300K, while the blue one corresponds to those at a lower temperature, T = 180K.252

Additionally, we have also plotted the dotted, black line ln N for comparative purposes. Please note in253

Figure 3(a) that both curves scales with N with a tendency slightly lower than ln N, which gets closer254

and closer to ln N as N approaches 104 nodes. One might think that this is indicative of a small-world255

network. But this is not enough, and even could be misleading. Note that the clustering coefficients are256

very different in both cases. At low temperature, the clustering coefficient is small ÖCã ⌅ 0.12. However,257

at room temperature, the clustering coefficient is high ÖCã ⌅ 0.48. The network at room temperature258

appears to include the two typical ingredients of the small world: short ` (scaling ` ⇥ ln N) and high259 ÖCã. But, what do “short” and “high” mean here?260
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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of each complex network. Additionally, we have also plotted the dotted line ln N for comparative275

purposes.276

(a) (b)

Av
er

ag
e 

sh
or

te
st

 p
at

h

5
4

6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

Version November 7, 2022 submitted to Nanomaterials 10 of 26

180 200 220 240 260 273

0.4

0.5

0.6

0.7

0.8

0.9

Temperature (K)

SW
P

180 200 220 240 260
0.0
0.2
0.4
0.6
0.8
1.0

180 200 220 240 260 273
0.0

0.4

0.2

0.6

0.8

1.0

Temperature (K)

no
rm

al
iz

ed
 m

ob
ilit

y

(a) (b)

0.3

Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.

(✓104)284

3. Simulation work285

286

3.1. Methodology287

As we mentioned in the introduction, the S system contains two types of disorder. The first of288

them is determined by the fact that the QDs are located in a random way by means of the algorithm289

described in Section ?? to fulfill the minimum inter-dot distance condition. The second type of disorder290

has its origin in that, in real QD layers, there are thermodynamic fluctuation in the dot size, which leads291

to nodes with different energy levels. We have assumed the energy level distribution as a Gaussian292

distribution with (dimensionless) mean µ = EQD = 0.4, and standard deviation s = 10�3. Thus each293

QD (node) i is described by its corresponding ei energy level, a sample from the N (µ, s). This energy294

level ei acts as an attribute called hidden variable or fitness (see [85] for details in the context of SN).295

Aiming to obtain statistical values, we generate ensembles of networks with a sufficiently large296

number of networks. In the experiments carried out we have led to the conclusion that it is sufficient297

to generate 50 realizations of each complex network.298

299

3.2. Testing the weak overlap hypothesis300

We start this experimental part by aiming to check whether the small overlapping hypothesis301

(stated by (??)) is true or false. In this respect, Figure 4 shows the mean value of the overlaps as a302

function of the normalized distance between dot centers (dE,ij/RQD) in two cases. The first one, on303

Figure 4a, corresponds to networks in which rmin = 20 RQD. All possible overlaps are Oij < 10�1,304

at least 1 order of magnitude lower than Öi∂iã = 1. Figure 4b represents the study case in which305

rmin = 40 RQD, and shows how all the overlaps are Oij < 10�2, at least 2 orders of magnitude below306

Number of nodes

0.4
0.5
0.6
0.7
0.8
0.9

0.3
1 2 3 4 5 6 7 8 9 10

Version November 7, 2022 submitted to Nanomaterials 10 of 26

180 200 220 240 260 273

0.4

0.5

0.6

0.7

0.8

0.9

Temperature (K)

SW
P

180 200 220 240 260
0.0
0.2
0.4
0.6
0.8
1.0

180 200 220 240 260 273
0.0

0.4

0.2

0.6

0.8

1.0

Temperature (K)

no
rm

al
iz

ed
 m

ob
ilit

y

(a) (b)

0.3

Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Usually, many small networks has short average shortest path and high clustering. The clustering
or transitivity quantifies the probability that two neighboring nodes of a given node i are connected.
This concept is easy to understand within the context of social networks: the fact that usually “the
friend of a friend is a friend” leads to high clustering coefficient. The clustering coefficient is a local
property capturing the density of triangles in the graph: two nodes that both are connected to a third
node are also directly connected to each other. A node i in the network has ki links that connects
it to ki other nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that exist between these ki nodes and the maximum possible number of links, that is,
Ci = 2Mi/ki(ki � 1) [52]. The mean clustering coefficient of the whole network is:

ÖCã = 1
N =

i
Ci. (15)

As mentioned, the most striking idea of small-world networks –characterized by high local260

clustering and short average shortest path between any two nodes– is that, even though they can be261

made up of a huge number of interacting nodes, they nonetheless greatly enhance the exchange of262

information [114] (social networks [113], human brain [115,116]), matter (electrons in quantum dot263

systems [83,87], sap in the vascular tissue in plants [117]), or energy (in power grids [59,60]) between264

the involved nodes. However, as discussed in [118], it is necessary to quantify how small ` is and how265

big ÖCã is. This could be the case for the proposed network under certain circumstances.266

To quantify whether or not our network is small world, we will made use of a new metric, the267

Small-World Propensity (SWP), recently proposed in [118]. It aims at measuring the extent to which268

the network under evaluation shows small-world structure by capturing the deviation of the network’s269

clustering coefficient at hand, ÖCã, and characteristic path length, `, from those of both lattice (CL, LL)270

and random (CR, LR) networks with the same number of nodes and the same degree distribution. The271

SWP is defined as [118]272

SWP ✏ 1 � ⇧D2
C + D2

L
2 ↵ , (16)

with
DC = CL � C

CL � CR
, (17)

and
DL = L � LR

LL � LR
. (18)

As discussed in [118], networks with high small-world features (low DC and DL) will have a value273

of the SWP close to 1. The authors have chosen a threshold value of 0.6 to differentiate a network with274

a strong small-world propensity from a network with a weak small-world propensity.275

Figure 3(a) shows the average shortest path length ` for different networks generated by the276

proposed method. They only differ in the number of nodes, which ranges from N = 103 to N = 104
277

nodes. We have also considered the average shortest path length ` for two different temperatures.278

The red line corresponds to the results computed at room temperature T = 300K, while the blue one279

corresponds to the results computed at a lower temperature T = 180K. Aiming to obtain statistical280

values, we have generated 50 realizations of each associated network. Additionally, we have also281

plotted the dotted, black line ln N for comparative purposes.282

Please note in Figure 3(a) that both curves scales with N with a tendency slightly lower than283

ln N, which gets closer and closer to ln N as N approaches 10000 nodes. This could be indicative of a284

small-world network.285 ÖCã ⌅ 0.12286
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.

(✓104)284

3. Simulation work285

286

3.1. Methodology287

As we mentioned in the introduction, the S system contains two types of disorder. The first of288

them is determined by the fact that the QDs are located in a random way by means of the algorithm289

described in Section ?? to fulfill the minimum inter-dot distance condition. The second type of disorder290

has its origin in that, in real QD layers, there are thermodynamic fluctuation in the dot size, which leads291

to nodes with different energy levels. We have assumed the energy level distribution as a Gaussian292

distribution with (dimensionless) mean µ = EQD = 0.4, and standard deviation s = 10�3. Thus each293

QD (node) i is described by its corresponding ei energy level, a sample from the N (µ, s). This energy294

level ei acts as an attribute called hidden variable or fitness (see [85] for details in the context of SN).295

Aiming to obtain statistical values, we generate ensembles of networks with a sufficiently large296

number of networks. In the experiments carried out we have led to the conclusion that it is sufficient297

to generate 50 realizations of each complex network.298

299

3.2. Testing the weak overlap hypothesis300

We start this experimental part by aiming to check whether the small overlapping hypothesis301

(stated by (??)) is true or false. In this respect, Figure 4 shows the mean value of the overlaps as a302

function of the normalized distance between dot centers (dE,ij/RQD) in two cases. The first one, on303

Figure 4a, corresponds to networks in which rmin = 20 RQD. All possible overlaps are Oij < 10�1,304

at least 1 order of magnitude lower than Öi∂iã = 1. Figure 4b represents the study case in which305

rmin = 40 RQD, and shows how all the overlaps are Oij < 10�2, at least 2 orders of magnitude below306

Number of nodes

0.4
0.5
0.6
0.7
0.8
0.9

0.3
1 2 3 4 5 6 7 8 9 10

Version November 7, 2022 submitted to Nanomaterials 10 of 26

180 200 220 240 260 273

0.4

0.5

0.6

0.7

0.8

0.9

Temperature (K)

SW
P

180 200 220 240 260
0.0
0.2
0.4
0.6
0.8
1.0

180 200 220 240 260 273
0.0

0.4

0.2

0.6

0.8

1.0

Temperature (K)

no
rm

al
iz

ed
 m

ob
ilit

y

(a) (b)

0.3

Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different temperatures, 180 and 273 K. Any point on the lines is the mean value computed over 50
realizations of each network to obtain accurate statistical values. The dotted line is ln N for comparative
purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180 and 300 K. Any point on the lines is the mean value computed
over 50 realizations of each network to obtain accurate statistical values. The dotted line is ln N for
comparative purposes. (b) Small World Propensity, stated by Equation (16) as a function the number of
nodes. It has been computed for different values of increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.

Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180K and 300 K. Any point on the lines is the mean value computed over
50 realizations of each network to obtain accurate statistical values. The dotted black line represents
ln N for comparative purposes. (b) Small World Propensity, stated by Equation (12) as a function the
number of nodes. It has been computed for different values of increasing temperature T.

To discern whether or not the small world feature exists we have used the SWP metric [95],261

represented in Figure 3(b) as a function of the number of nodes.262

It shows that, at room temperature and above (T = 300, 340, 380), the network exhibits a constant,263

high value of SWP ⌅ 0.82, higher than the threshold value SWPTh = 0.6 established in [95]. That is,264

at the representative room temperature, the space-energy embedded network associated to the ODS265

system shows a strong small-world propensity: low DC and DL.266

This is not the case for networks at T < 200K. At low temperatures (T = 100, 140, 180, 200, and267

220 K, in our simulations, to save computational time), SWP remains constant, SWP ⌅ 0.4. This means268

that in this low temperature range there is no small-world.269

T = 240 K270

T = 260 K271

T = 280 K272

T = 290 K273
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Figure 3(a) shows the average shortest path length ` (over 50 realizations) of different space-energy246

embedded networks (generated by the method proposed in Section 2.2) as a function of the network247

size, which range from from N = 103 to N = 104 nodes.248

For illustrative purposes, we have represented the average shortest path length ` for two249

different temperatures that, as will be explained later on, are representative of two classes of networks250

(small-world networks, and no-small-networks). The red line corresponds to the results computed at251

room temperature T = 300K, while the blue one corresponds to those at a lower temperature, T = 180K.252

Additionally, we have also plotted the dotted, black line ln N for comparative purposes. Please note in253

Figure 3(a) that both curves scales with N with a tendency slightly lower than ln N, which gets closer254

and closer to ln N as N approaches 104 nodes. One might think that this is indicative of a small-world255

network. But this is not enough, and even could be misleading. Note that the clustering coefficients are256

very different in both cases. At low temperature, the clustering coefficient is small ÖCã ⌅ 0.12. However,257

at room temperature, the clustering coefficient is high ÖCã ⌅ 0.48. The network at room temperature258

appears to include the two typical ingredients of the small world: short ` (scaling ` ⇥ ln N) and high259 ÖCã. But, what do “short” and “high” mean here?260
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Usually, many small networks has short average shortest path and high clustering. The clustering
or transitivity quantifies the probability that two neighboring nodes of a given node i are connected.
This concept is easy to understand within the context of social networks: the fact that usually “the
friend of a friend is a friend” leads to high clustering coefficient. The clustering coefficient is a local
property capturing the density of triangles in the graph: two nodes that both are connected to a third
node are also directly connected to each other. A node i in the network has ki links that connects
it to ki other nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that exist between these ki nodes and the maximum possible number of links, that is,
Ci = 2Mi/ki(ki � 1) [52]. The mean clustering coefficient of the whole network is:

ÖCã = 1
N =

i
Ci. (15)

As mentioned, the most striking idea of small-world networks –characterized by high local260

clustering and short average shortest path between any two nodes– is that, even though they can be261

made up of a huge number of interacting nodes, they nonetheless greatly enhance the exchange of262

information [114] (social networks [113], human brain [115,116]), matter (electrons in quantum dot263

systems [83,87], sap in the vascular tissue in plants [117]), or energy (in power grids [59,60]) between264

the involved nodes. However, as discussed in [118], it is necessary to quantify how small ` is and how265

big ÖCã is. This could be the case for the proposed network under certain circumstances.266

To quantify whether or not our network is small world, we will made use of a new metric, the267

Small-World Propensity (SWP), recently proposed in [118]. It aims at measuring the extent to which268

the network under evaluation shows small-world structure by capturing the deviation of the network’s269

clustering coefficient at hand, ÖCã, and characteristic path length, `, from those of both lattice (CL, LL)270

and random (CR, LR) networks with the same number of nodes and the same degree distribution. The271

SWP is defined as [118]272

SWP ✏ 1 � ⇧D2
C + D2

L
2 ↵ , (16)

with
DC = CL � C

CL � CR
, (17)

and
DL = L � LR

LL � LR
. (18)

As discussed in [118], networks with high small-world features (low DC and DL) will have a value273

of the SWP close to 1. The authors have chosen a threshold value of 0.6 to differentiate a network with274

a strong small-world propensity from a network with a weak small-world propensity.275

Figure 3(a) shows the average shortest path length ` for different networks generated by the276

proposed method. They only differ in the number of nodes, which ranges from N = 103 to N = 104
277

nodes. We have also considered the average shortest path length ` for two different temperatures.278

The red line corresponds to the results computed at room temperature T = 300K, while the blue one279

corresponds to the results computed at a lower temperature T = 180K. Aiming to obtain statistical280

values, we have generated 50 realizations of each associated network. Additionally, we have also281

plotted the dotted, black line ln N for comparative purposes.282

Please note in Figure 3(a) that both curves scales with N with a tendency slightly lower than283

ln N, which gets closer and closer to ln N as N approaches 10000 nodes. This could be indicative of a284

small-world network.285 ÖCã ⌅ 0.12286
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.

(✓104)284

3. Simulation work285

286

3.1. Methodology287

As we mentioned in the introduction, the S system contains two types of disorder. The first of288

them is determined by the fact that the QDs are located in a random way by means of the algorithm289

described in Section ?? to fulfill the minimum inter-dot distance condition. The second type of disorder290

has its origin in that, in real QD layers, there are thermodynamic fluctuation in the dot size, which leads291

to nodes with different energy levels. We have assumed the energy level distribution as a Gaussian292

distribution with (dimensionless) mean µ = EQD = 0.4, and standard deviation s = 10�3. Thus each293

QD (node) i is described by its corresponding ei energy level, a sample from the N (µ, s). This energy294

level ei acts as an attribute called hidden variable or fitness (see [85] for details in the context of SN).295

Aiming to obtain statistical values, we generate ensembles of networks with a sufficiently large296

number of networks. In the experiments carried out we have led to the conclusion that it is sufficient297

to generate 50 realizations of each complex network.298

299

3.2. Testing the weak overlap hypothesis300

We start this experimental part by aiming to check whether the small overlapping hypothesis301

(stated by (??)) is true or false. In this respect, Figure 4 shows the mean value of the overlaps as a302

function of the normalized distance between dot centers (dE,ij/RQD) in two cases. The first one, on303

Figure 4a, corresponds to networks in which rmin = 20 RQD. All possible overlaps are Oij < 10�1,304

at least 1 order of magnitude lower than Öi∂iã = 1. Figure 4b represents the study case in which305

rmin = 40 RQD, and shows how all the overlaps are Oij < 10�2, at least 2 orders of magnitude below306

Number of nodes

0.4
0.5
0.6
0.7
0.8
0.9

0.3
1 2 3 4 5 6 7 8 9 10

Version November 7, 2022 submitted to Nanomaterials 10 of 26

180 200 220 240 260 273

0.4

0.5

0.6

0.7

0.8

0.9

Temperature (K)

SW
P

180 200 220 240 260
0.0
0.2
0.4
0.6
0.8
1.0

180 200 220 240 260 273
0.0

0.4

0.2

0.6

0.8

1.0

Temperature (K)

no
rm

al
iz

ed
 m

ob
ilit

y

(a) (b)

0.3

Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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over 50 realizations of each network to obtain accurate statistical values. The dotted line is ln N for
comparative purposes. (b) Small World Propensity, stated by Equation (16) as a function the number of
nodes. It has been computed for different values of increasing temperature T.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180K and 300 K. Any point on the lines is the mean value computed over
50 realizations of each network to obtain accurate statistical values. The dotted black line represents
ln N for comparative purposes. (b) Small World Propensity, stated by Equation (12) as a function the
number of nodes. It has been computed for different values of increasing temperature T.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.

(✓104)284

3. Simulation work285

286

3.1. Methodology287

As we mentioned in the introduction, the S system contains two types of disorder. The first of288

them is determined by the fact that the QDs are located in a random way by means of the algorithm289

described in Section ?? to fulfill the minimum inter-dot distance condition. The second type of disorder290

has its origin in that, in real QD layers, there are thermodynamic fluctuation in the dot size, which leads291

to nodes with different energy levels. We have assumed the energy level distribution as a Gaussian292

distribution with (dimensionless) mean µ = EQD = 0.4, and standard deviation s = 10�3. Thus each293

QD (node) i is described by its corresponding ei energy level, a sample from the N (µ, s). This energy294

level ei acts as an attribute called hidden variable or fitness (see [85] for details in the context of SN).295

Aiming to obtain statistical values, we generate ensembles of networks with a sufficiently large296

number of networks. In the experiments carried out we have led to the conclusion that it is sufficient297

to generate 50 realizations of each complex network.298

299

3.2. Testing the weak overlap hypothesis300

We start this experimental part by aiming to check whether the small overlapping hypothesis301

(stated by (??)) is true or false. In this respect, Figure 4 shows the mean value of the overlaps as a302

function of the normalized distance between dot centers (dE,ij/RQD) in two cases. The first one, on303

Figure 4a, corresponds to networks in which rmin = 20 RQD. All possible overlaps are Oij < 10�1,304

at least 1 order of magnitude lower than Öi∂iã = 1. Figure 4b represents the study case in which305

rmin = 40 RQD, and shows how all the overlaps are Oij < 10�2, at least 2 orders of magnitude below306

Number of nodes

0.4
0.5
0.6
0.7
0.8
0.9

0.3
1 2 3 4 5 6 7 8 9 10

Version November 7, 2022 submitted to Nanomaterials 10 of 26

180 200 220 240 260 273

0.4

0.5

0.6

0.7

0.8

0.9

Temperature (K)

SW
P

180 200 220 240 260
0.0
0.2
0.4
0.6
0.8
1.0

180 200 220 240 260 273
0.0

0.4

0.2

0.6

0.8

1.0

Temperature (K)

no
rm

al
iz

ed
 m

ob
ilit

y

(a) (b)

0.3

Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Usually, many small networks has short average shortest path and high clustering. The clustering
or transitivity quantifies the probability that two neighboring nodes of a given node i are connected.
This concept is easy to understand within the context of social networks: the fact that usually “the
friend of a friend is a friend” leads to high clustering coefficient. The clustering coefficient is a local
property capturing the density of triangles in the graph: two nodes that both are connected to a third
node are also directly connected to each other. A node i in the network has ki links that connects
it to ki other nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that exist between these ki nodes and the maximum possible number of links, that is,
Ci = 2Mi/ki(ki � 1) [52]. The mean clustering coefficient of the whole network is:

ÖCã = 1
N =

i
Ci. (15)

As mentioned, the most striking idea of small-world networks –characterized by high local260

clustering and short average shortest path between any two nodes– is that, even though they can be261

made up of a huge number of interacting nodes, they nonetheless greatly enhance the exchange of262

information [114] (social networks [113], human brain [115,116]), matter (electrons in quantum dot263

systems [83,87], sap in the vascular tissue in plants [117]), or energy (in power grids [59,60]) between264

the involved nodes. However, as discussed in [118], it is necessary to quantify how small ` is and how265

big ÖCã is. This could be the case for the proposed network under certain circumstances.266

To quantify whether or not our network is small world, we will made use of a new metric, the267

Small-World Propensity (SWP), recently proposed in [118]. It aims at measuring the extent to which268

the network under evaluation shows small-world structure by capturing the deviation of the network’s269

clustering coefficient at hand, ÖCã, and characteristic path length, `, from those of both lattice (CL, LL)270

and random (CR, LR) networks with the same number of nodes and the same degree distribution. The271

SWP is defined as [118]272

SWP ✏ 1 � ⇧D2
C + D2

L
2 ↵ , (16)

with
DC = CL � C

CL � CR
, (17)

and
DL = L � LR

LL � LR
. (18)

As discussed in [118], networks with high small-world features (low DC and DL) will have a value273

of the SWP close to 1. The authors have chosen a threshold value of 0.6 to differentiate a network with274

a strong small-world propensity from a network with a weak small-world propensity.275

Figure 3(a) shows the average shortest path length ` for different networks generated by the276

proposed method. They only differ in the number of nodes, which ranges from N = 103 to N = 104
277

nodes. We have also considered the average shortest path length ` for two different temperatures.278

The red line corresponds to the results computed at room temperature T = 300K, while the blue one279

corresponds to the results computed at a lower temperature T = 180K. Aiming to obtain statistical280

values, we have generated 50 realizations of each associated network. Additionally, we have also281

plotted the dotted, black line ln N for comparative purposes.282

Please note in Figure 3(a) that both curves scales with N with a tendency slightly lower than283

ln N, which gets closer and closer to ln N as N approaches 10000 nodes. This could be indicative of a284

small-world network.285 ÖCã ⌅ 0.12286
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.

(✓104)284

3. Simulation work285

286

3.1. Methodology287

As we mentioned in the introduction, the S system contains two types of disorder. The first of288

them is determined by the fact that the QDs are located in a random way by means of the algorithm289

described in Section ?? to fulfill the minimum inter-dot distance condition. The second type of disorder290

has its origin in that, in real QD layers, there are thermodynamic fluctuation in the dot size, which leads291

to nodes with different energy levels. We have assumed the energy level distribution as a Gaussian292

distribution with (dimensionless) mean µ = EQD = 0.4, and standard deviation s = 10�3. Thus each293

QD (node) i is described by its corresponding ei energy level, a sample from the N (µ, s). This energy294

level ei acts as an attribute called hidden variable or fitness (see [85] for details in the context of SN).295

Aiming to obtain statistical values, we generate ensembles of networks with a sufficiently large296

number of networks. In the experiments carried out we have led to the conclusion that it is sufficient297

to generate 50 realizations of each complex network.298

299

3.2. Testing the weak overlap hypothesis300

We start this experimental part by aiming to check whether the small overlapping hypothesis301

(stated by (??)) is true or false. In this respect, Figure 4 shows the mean value of the overlaps as a302

function of the normalized distance between dot centers (dE,ij/RQD) in two cases. The first one, on303

Figure 4a, corresponds to networks in which rmin = 20 RQD. All possible overlaps are Oij < 10�1,304

at least 1 order of magnitude lower than Öi∂iã = 1. Figure 4b represents the study case in which305

rmin = 40 RQD, and shows how all the overlaps are Oij < 10�2, at least 2 orders of magnitude below306

Number of nodes

SW
P

T = 180 K

T = 220 K

T = 240 K

T = 260 K
T = 273 K

T = 180 K

T = 273 K

Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different temperatures, 180 and 273 K. Any point on the lines is the mean value computed over 50
realizations of each network to obtain accurate statistical values. The dotted line is ln N for comparative
purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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comparative purposes. (b) Small World Propensity, stated by Equation (16) as a function the number of
nodes. It has been computed for different values of increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.

(✓104)284

3. Simulation work285

286

3.1. Methodology287

As we mentioned in the introduction, the S system contains two types of disorder. The first of288

them is determined by the fact that the QDs are located in a random way by means of the algorithm289

described in Section ?? to fulfill the minimum inter-dot distance condition. The second type of disorder290

has its origin in that, in real QD layers, there are thermodynamic fluctuation in the dot size, which leads291

to nodes with different energy levels. We have assumed the energy level distribution as a Gaussian292

distribution with (dimensionless) mean µ = EQD = 0.4, and standard deviation s = 10�3. Thus each293

QD (node) i is described by its corresponding ei energy level, a sample from the N (µ, s). This energy294

level ei acts as an attribute called hidden variable or fitness (see [85] for details in the context of SN).295

Aiming to obtain statistical values, we generate ensembles of networks with a sufficiently large296

number of networks. In the experiments carried out we have led to the conclusion that it is sufficient297

to generate 50 realizations of each complex network.298

299

3.2. Testing the weak overlap hypothesis300

We start this experimental part by aiming to check whether the small overlapping hypothesis301

(stated by (??)) is true or false. In this respect, Figure 4 shows the mean value of the overlaps as a302

function of the normalized distance between dot centers (dE,ij/RQD) in two cases. The first one, on303

Figure 4a, corresponds to networks in which rmin = 20 RQD. All possible overlaps are Oij < 10�1,304

at least 1 order of magnitude lower than Öi∂iã = 1. Figure 4b represents the study case in which305

rmin = 40 RQD, and shows how all the overlaps are Oij < 10�2, at least 2 orders of magnitude below306

Number of nodes

SW
P

T = 180 K

T = 220 K

T = 240 K

T = 260 K
T = 273 K

T = 180 K

T = 273 K
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realizations of each network to obtain accurate statistical values. The dotted line is ln N for comparative
purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Usually, many small networks has short average shortest path and high clustering. The clustering
or transitivity quantifies the probability that two neighboring nodes of a given node i are connected.
This concept is easy to understand within the context of social networks: the fact that usually “the
friend of a friend is a friend” leads to high clustering coefficient. The clustering coefficient is a local
property capturing the density of triangles in the graph: two nodes that both are connected to a third
node are also directly connected to each other. A node i in the network has ki links that connects
it to ki other nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that exist between these ki nodes and the maximum possible number of links, that is,
Ci = 2Mi/ki(ki � 1) [52]. The mean clustering coefficient of the whole network is:

ÖCã = 1
N =

i
Ci. (15)

As mentioned, the most striking idea of small-world networks –characterized by high local260

clustering and short average shortest path between any two nodes– is that, even though they can be261

made up of a huge number of interacting nodes, they nonetheless greatly enhance the exchange of262

information [114] (social networks [113], human brain [115,116]), matter (electrons in quantum dot263

systems [83,87], sap in the vascular tissue in plants [117]), or energy (in power grids [59,60]) between264

the involved nodes. However, as discussed in [118], it is necessary to quantify how small ` is and how265

big ÖCã is. This could be the case for the proposed network under certain circumstances.266

To quantify whether or not our network is small world, we will made use of a new metric, the267

Small-World Propensity (SWP), recently proposed in [118]. It aims at measuring the extent to which268

the network under evaluation shows small-world structure by capturing the deviation of the network’s269

clustering coefficient at hand, ÖCã, and characteristic path length, `, from those of both lattice (CL, LL)270

and random (CR, LR) networks with the same number of nodes and the same degree distribution. The271

SWP is defined as [118]272

SWP ✏ 1 � ⇧D2
C + D2

L
2 ↵ , (16)

with
DC = CL � C

CL � CR
, (17)

and
DL = L � LR

LL � LR
. (18)

As discussed in [118], networks with high small-world features (low DC and DL) will have a value273

of the SWP close to 1. The authors have chosen a threshold value of 0.6 to differentiate a network with274

a strong small-world propensity from a network with a weak small-world propensity.275

Figure 3(a) shows the average shortest path length ` for different networks generated by the276

proposed method. They only differ in the number of nodes, which ranges from N = 103 to N = 104
277

nodes. We have also considered the average shortest path length ` for two different temperatures.278

The red line corresponds to the results computed at room temperature T = 300K, while the blue one279

corresponds to the results computed at a lower temperature T = 180K. Aiming to obtain statistical280

values, we have generated 50 realizations of each associated network. Additionally, we have also281

plotted the dotted, black line ln N for comparative purposes.282

Please note in Figure 3(a) that both curves scales with N with a tendency slightly lower than283

ln N, which gets closer and closer to ln N as N approaches 10000 nodes. This could be indicative of a284

small-world network.285 ÖCã ⌅ 0.12286
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180 and 300 K. Any point on the lines is the mean value computed
over 50 realizations of each network to obtain accurate statistical values. The dotted line is ln N for
comparative purposes. (b) Small World Propensity, stated by Equation (16) as a function the number of
nodes. It has been computed for different values of increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180K and 300 K. Any point on the lines is the mean value computed over
50 realizations of each network to obtain accurate statistical values. The dotted black line represents
ln N for comparative purposes. (b) Small World Propensity, stated by Equation (12) as a function the
number of nodes. It has been computed for different values of increasing temperature T.

To discern whether or not the small world feature exists we have used the SWP metric [95],261

represented in Figure 3(b) as a function of the number of nodes.262

It shows that, at room temperature and above (T = 300, 340, 380), the network exhibits a constant,263

high value of SWP ⌅ 0.82, higher than the threshold value SWPTh = 0.6 established in [95]. That is,264

at the representative room temperature, the space-energy embedded network associated to the ODS265

system shows a strong small-world propensity: low DC and DL.266

This is not the case for networks at T < 200K. At low temperatures (T = 100, 140, 180, 200, and267

220 K, in our simulations, to save computational time), SWP remains constant, SWP ⌅ 0.4. This means268

that in this low temperature range there is no small-world.269
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Figure 3(a) shows the average shortest path length ` (over 50 realizations) of different space-energy246

embedded networks (generated by the method proposed in Section 2.2) as a function of the network247

size, which range from from N = 103 to N = 104 nodes.248

For illustrative purposes, we have represented the average shortest path length ` for two249

different temperatures that, as will be explained later on, are representative of two classes of networks250

(small-world networks, and no-small-networks). The red line corresponds to the results computed at251

room temperature T = 300K, while the blue one corresponds to those at a lower temperature, T = 180K.252

Additionally, we have also plotted the dotted, black line ln N for comparative purposes. Please note in253

Figure 3(a) that both curves scales with N with a tendency slightly lower than ln N, which gets closer254

and closer to ln N as N approaches 104 nodes. One might think that this is indicative of a small-world255

network. But this is not enough, and even could be misleading. Note that the clustering coefficients are256

very different in both cases. At low temperature, the clustering coefficient is small ÖCã ⌅ 0.12. However,257

at room temperature, the clustering coefficient is high ÖCã ⌅ 0.48. The network at room temperature258

appears to include the two typical ingredients of the small world: short ` (scaling ` ⇥ ln N) and high259 ÖCã. But, what do “short” and “high” mean here?260
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.

(✓104)284

3. Simulation work285

286

3.1. Methodology287

As we mentioned in the introduction, the S system contains two types of disorder. The first of288

them is determined by the fact that the QDs are located in a random way by means of the algorithm289

described in Section ?? to fulfill the minimum inter-dot distance condition. The second type of disorder290

has its origin in that, in real QD layers, there are thermodynamic fluctuation in the dot size, which leads291

to nodes with different energy levels. We have assumed the energy level distribution as a Gaussian292

distribution with (dimensionless) mean µ = EQD = 0.4, and standard deviation s = 10�3. Thus each293

QD (node) i is described by its corresponding ei energy level, a sample from the N (µ, s). This energy294

level ei acts as an attribute called hidden variable or fitness (see [85] for details in the context of SN).295

Aiming to obtain statistical values, we generate ensembles of networks with a sufficiently large296

number of networks. In the experiments carried out we have led to the conclusion that it is sufficient297

to generate 50 realizations of each complex network.298

299

3.2. Testing the weak overlap hypothesis300

We start this experimental part by aiming to check whether the small overlapping hypothesis301

(stated by (??)) is true or false. In this respect, Figure 4 shows the mean value of the overlaps as a302

function of the normalized distance between dot centers (dE,ij/RQD) in two cases. The first one, on303

Figure 4a, corresponds to networks in which rmin = 20 RQD. All possible overlaps are Oij < 10�1,304

at least 1 order of magnitude lower than Öi∂iã = 1. Figure 4b represents the study case in which305

rmin = 40 RQD, and shows how all the overlaps are Oij < 10�2, at least 2 orders of magnitude below306

Number of nodes

0.4
0.5
0.6
0.7
0.8
0.9

0.3
1 2 3 4 5 6 7 8 9 10

Version November 7, 2022 submitted to Nanomaterials 10 of 26

180 200 220 240 260 273

0.4

0.5

0.6

0.7

0.8

0.9

Temperature (K)

SW
P

180 200 220 240 260
0.0
0.2
0.4
0.6
0.8
1.0

180 200 220 240 260 273
0.0

0.4

0.2

0.6

0.8

1.0

Temperature (K)

no
rm

al
iz

ed
 m

ob
ilit

y

(a) (b)

0.3

Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.

(✓104)284

3. Simulation work285

286

3.1. Methodology287

As we mentioned in the introduction, the S system contains two types of disorder. The first of288

them is determined by the fact that the QDs are located in a random way by means of the algorithm289

described in Section ?? to fulfill the minimum inter-dot distance condition. The second type of disorder290

has its origin in that, in real QD layers, there are thermodynamic fluctuation in the dot size, which leads291

to nodes with different energy levels. We have assumed the energy level distribution as a Gaussian292

distribution with (dimensionless) mean µ = EQD = 0.4, and standard deviation s = 10�3. Thus each293

QD (node) i is described by its corresponding ei energy level, a sample from the N (µ, s). This energy294

level ei acts as an attribute called hidden variable or fitness (see [85] for details in the context of SN).295

Aiming to obtain statistical values, we generate ensembles of networks with a sufficiently large296

number of networks. In the experiments carried out we have led to the conclusion that it is sufficient297

to generate 50 realizations of each complex network.298

299

3.2. Testing the weak overlap hypothesis300

We start this experimental part by aiming to check whether the small overlapping hypothesis301

(stated by (??)) is true or false. In this respect, Figure 4 shows the mean value of the overlaps as a302

function of the normalized distance between dot centers (dE,ij/RQD) in two cases. The first one, on303

Figure 4a, corresponds to networks in which rmin = 20 RQD. All possible overlaps are Oij < 10�1,304

at least 1 order of magnitude lower than Öi∂iã = 1. Figure 4b represents the study case in which305

rmin = 40 RQD, and shows how all the overlaps are Oij < 10�2, at least 2 orders of magnitude below306

Number of nodes

SW
P

T = 180 K

T = 220 K

T = 240 K

T = 260 K
T = 273 K

T = 180 K

T = 273 K

Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different temperatures, 180 and 273 K. Any point on the lines is the mean value computed over 50
realizations of each network to obtain accurate statistical values. The dotted line is ln N for comparative
purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Usually, many small networks has short average shortest path and high clustering. The clustering
or transitivity quantifies the probability that two neighboring nodes of a given node i are connected.
This concept is easy to understand within the context of social networks: the fact that usually “the
friend of a friend is a friend” leads to high clustering coefficient. The clustering coefficient is a local
property capturing the density of triangles in the graph: two nodes that both are connected to a third
node are also directly connected to each other. A node i in the network has ki links that connects
it to ki other nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that exist between these ki nodes and the maximum possible number of links, that is,
Ci = 2Mi/ki(ki � 1) [52]. The mean clustering coefficient of the whole network is:

ÖCã = 1
N =

i
Ci. (15)

As mentioned, the most striking idea of small-world networks –characterized by high local260

clustering and short average shortest path between any two nodes– is that, even though they can be261

made up of a huge number of interacting nodes, they nonetheless greatly enhance the exchange of262
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SWP is defined as [118]272

SWP ✏ 1 � ⇧D2
C + D2

L
2 ↵ , (16)

with
DC = CL � C

CL � CR
, (17)

and
DL = L � LR

LL � LR
. (18)

As discussed in [118], networks with high small-world features (low DC and DL) will have a value273
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Figure 3(a) shows the average shortest path length ` for different networks generated by the276
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277
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small-world network.285 ÖCã ⌅ 0.12286
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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distribution with (dimensionless) mean µ = EQD = 0.4, and standard deviation s = 10�3. Thus each293

QD (node) i is described by its corresponding ei energy level, a sample from the N (µ, s). This energy294

level ei acts as an attribute called hidden variable or fitness (see [85] for details in the context of SN).295

Aiming to obtain statistical values, we generate ensembles of networks with a sufficiently large296

number of networks. In the experiments carried out we have led to the conclusion that it is sufficient297

to generate 50 realizations of each complex network.298

299

3.2. Testing the weak overlap hypothesis300
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
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over 50 realizations of each network to obtain accurate statistical values. The dotted line is ln N for
comparative purposes. (b) Small World Propensity, stated by Equation (16) as a function the number of
nodes. It has been computed for different values of increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180K and 300 K. Any point on the lines is the mean value computed over
50 realizations of each network to obtain accurate statistical values. The dotted black line represents
ln N for comparative purposes. (b) Small World Propensity, stated by Equation (12) as a function the
number of nodes. It has been computed for different values of increasing temperature T.
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ln N for comparative purposes. (b) Small World Propensity, stated by Equation (12) as a function the
number of nodes. It has been computed for different values of increasing temperature T.

To discern whether or not the small world feature exists we have used the SWP metric [95],261

represented in Figure 3(b), as a function of the number of nodes.262

For low temperatures (T = 100, 140, 180, 200, and 220 K, in our simulations, to save computational263

time), the networks have a SWP that remains constant, SWP ⌅ 0.4. This means that in this low264

temperature range there is a no small-world regime.265

At T ⌅ 290 K266

It shows that, at temperatures close to267

For the high energies explored (T = 290, 300, 340, 380 K), the networks have SWP > SWPTh = 0.6,268

and thus are in the small-world regime.269
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room temperature and above (T = 300, 340, 380 K), the network exhibits a constant, high value272

of SWP ⌅ 0.82, higher than the threshold value SWPTh = 0.6 established in [95]. That is, at the273
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Figure 3(a) shows the average shortest path length ` (over 50 realizations) of different space-energy246

embedded networks (generated by the method proposed in Section 2.2) as a function of the network247

size, which range from from N = 103 to N = 104 nodes.248

For illustrative purposes, we have represented the average shortest path length ` for two249

different temperatures that, as will be explained later on, are representative of two classes of networks250

(small-world networks, and no-small-networks). The red line corresponds to the results computed251

at room temperature T = 300K, while the blue one corresponds to those at a lower, representative252

temperature, T = 180K. Additionally, we have also plotted the dotted, black line ln N for comparative253

purposes. Figure 3(a) shows that both curves scale with N with a tendency slightly lower than ln N,254

which gets closer and closer to ln N as N approaches 104 nodes. One might think that this is indicative255

of a small-world network. But this is not enough, and even could be misleading. Note that the256

clustering coefficients are very different in both cases. At low temperature, the clustering coefficient257

is small ÖCã ⌅ 0.12. However, at room temperature, the clustering coefficient is high ÖCã ⌅ 0.48. The258

network at room temperature appears to include the two typical ingredients of the small world: short259

` (scaling ` ⇥ ln N) and high ÖCã. But, what do “short” and “high” mean here?260
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of each complex network. Additionally, we have also plotted the dotted line ln N for comparative275
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3(a) shows the average shortest path length ` (over 50 realizations) of different space-energy246

embedded networks (generated by the method proposed in Section 2.2) as a function of the network247

size, which range from from N = 103 to N = 104 nodes.248

For illustrative purposes, we have represented the average shortest path length ` for two249

different temperatures that, as will be explained later on, are representative of two classes of networks250

(small-world networks, and no-small-networks). The red line corresponds to the results computed at251

room temperature T = 300K, while the blue one corresponds to those at a lower temperature, T = 180K.252

Additionally, we have also plotted the dotted, black line ln N for comparative purposes. Please note in253

Figure 3(a) that both curves scales with N with a tendency slightly lower than ln N, which gets closer254

and closer to ln N as N approaches 104 nodes. One might think that this is indicative of a small-world255

network. But this is not enough, and even could be misleading. Note that the clustering coefficients are256

very different in both cases. At low temperature, the clustering coefficient is small ÖCã ⌅ 0.12. However,257

at room temperature, the clustering coefficient is high ÖCã ⌅ 0.48. The network at room temperature258

appears to include the two typical ingredients of the small world: short ` (scaling ` ⇥ ln N) and high259 ÖCã. But, what do “short” and “high” mean here?260
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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QD (node) i is described by its corresponding ei energy level, a sample from the N (µ, s). This energy294

level ei acts as an attribute called hidden variable or fitness (see [85] for details in the context of SN).295

Aiming to obtain statistical values, we generate ensembles of networks with a sufficiently large296

number of networks. In the experiments carried out we have led to the conclusion that it is sufficient297

to generate 50 realizations of each complex network.298
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(stated by (??)) is true or false. In this respect, Figure 4 shows the mean value of the overlaps as a302
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at least 1 order of magnitude lower than Öi∂iã = 1. Figure 4b represents the study case in which305
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.

T = 180, 200, 220 K

T = 240 KT = 260 K

T = 280 K

T = 300 K

(a)

Av
er

ag
e 

sh
or

te
st

 p
at

h

5
4

6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

T = 180 K

T = 300 K

Number of nodes

Version November 8, 2022 submitted to Nanomaterials 10 of 29

of each complex network. Additionally, we have also plotted the dotted line ln N for comparative275

purposes.276

(a) (b)

Av
er

ag
e 

sh
or

te
st

 p
at

h

5
4

6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

Version November 7, 2022 submitted to Nanomaterials 10 of 26

180 200 220 240 260 273

0.4

0.5

0.6

0.7

0.8

0.9

Temperature (K)

SW
P

180 200 220 240 260
0.0
0.2
0.4
0.6
0.8
1.0

180 200 220 240 260 273
0.0

0.4

0.2

0.6

0.8

1.0

Temperature (K)

no
rm

al
iz

ed
 m

ob
ilit

y

(a) (b)

0.3

Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Usually, many small networks has short average shortest path and high clustering. The clustering
or transitivity quantifies the probability that two neighboring nodes of a given node i are connected.
This concept is easy to understand within the context of social networks: the fact that usually “the
friend of a friend is a friend” leads to high clustering coefficient. The clustering coefficient is a local
property capturing the density of triangles in the graph: two nodes that both are connected to a third
node are also directly connected to each other. A node i in the network has ki links that connects
it to ki other nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that exist between these ki nodes and the maximum possible number of links, that is,
Ci = 2Mi/ki(ki � 1) [52]. The mean clustering coefficient of the whole network is:

ÖCã = 1
N =

i
Ci. (15)

As mentioned, the most striking idea of small-world networks –characterized by high local260

clustering and short average shortest path between any two nodes– is that, even though they can be261

made up of a huge number of interacting nodes, they nonetheless greatly enhance the exchange of262

information [114] (social networks [113], human brain [115,116]), matter (electrons in quantum dot263

systems [83,87], sap in the vascular tissue in plants [117]), or energy (in power grids [59,60]) between264

the involved nodes. However, as discussed in [118], it is necessary to quantify how small ` is and how265

big ÖCã is. This could be the case for the proposed network under certain circumstances.266

To quantify whether or not our network is small world, we will made use of a new metric, the267

Small-World Propensity (SWP), recently proposed in [118]. It aims at measuring the extent to which268

the network under evaluation shows small-world structure by capturing the deviation of the network’s269

clustering coefficient at hand, ÖCã, and characteristic path length, `, from those of both lattice (CL, LL)270

and random (CR, LR) networks with the same number of nodes and the same degree distribution. The271

SWP is defined as [118]272

SWP ✏ 1 � ⇧D2
C + D2

L
2 ↵ , (16)

with
DC = CL � C

CL � CR
, (17)

and
DL = L � LR

LL � LR
. (18)

As discussed in [118], networks with high small-world features (low DC and DL) will have a value273

of the SWP close to 1. The authors have chosen a threshold value of 0.6 to differentiate a network with274

a strong small-world propensity from a network with a weak small-world propensity.275

Figure 3(a) shows the average shortest path length ` for different networks generated by the276

proposed method. They only differ in the number of nodes, which ranges from N = 103 to N = 104
277

nodes. We have also considered the average shortest path length ` for two different temperatures.278

The red line corresponds to the results computed at room temperature T = 300K, while the blue one279

corresponds to the results computed at a lower temperature T = 180K. Aiming to obtain statistical280

values, we have generated 50 realizations of each associated network. Additionally, we have also281

plotted the dotted, black line ln N for comparative purposes.282

Please note in Figure 3(a) that both curves scales with N with a tendency slightly lower than283

ln N, which gets closer and closer to ln N as N approaches 10000 nodes. This could be indicative of a284

small-world network.285 ÖCã ⌅ 0.12286
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.

(✓104)284

3. Simulation work285

286

3.1. Methodology287

As we mentioned in the introduction, the S system contains two types of disorder. The first of288

them is determined by the fact that the QDs are located in a random way by means of the algorithm289

described in Section ?? to fulfill the minimum inter-dot distance condition. The second type of disorder290

has its origin in that, in real QD layers, there are thermodynamic fluctuation in the dot size, which leads291

to nodes with different energy levels. We have assumed the energy level distribution as a Gaussian292

distribution with (dimensionless) mean µ = EQD = 0.4, and standard deviation s = 10�3. Thus each293

QD (node) i is described by its corresponding ei energy level, a sample from the N (µ, s). This energy294

level ei acts as an attribute called hidden variable or fitness (see [85] for details in the context of SN).295

Aiming to obtain statistical values, we generate ensembles of networks with a sufficiently large296

number of networks. In the experiments carried out we have led to the conclusion that it is sufficient297

to generate 50 realizations of each complex network.298

299

3.2. Testing the weak overlap hypothesis300

We start this experimental part by aiming to check whether the small overlapping hypothesis301

(stated by (??)) is true or false. In this respect, Figure 4 shows the mean value of the overlaps as a302

function of the normalized distance between dot centers (dE,ij/RQD) in two cases. The first one, on303

Figure 4a, corresponds to networks in which rmin = 20 RQD. All possible overlaps are Oij < 10�1,304

at least 1 order of magnitude lower than Öi∂iã = 1. Figure 4b represents the study case in which305

rmin = 40 RQD, and shows how all the overlaps are Oij < 10�2, at least 2 orders of magnitude below306

Number of nodes

0.4
0.5
0.6
0.7
0.8
0.9

0.3
1 2 3 4 5 6 7 8 9 10

Version November 7, 2022 submitted to Nanomaterials 10 of 26

180 200 220 240 260 273

0.4

0.5

0.6

0.7

0.8

0.9

Temperature (K)

SW
P

180 200 220 240 260
0.0
0.2
0.4
0.6
0.8
1.0

180 200 220 240 260 273
0.0

0.4

0.2

0.6

0.8

1.0

Temperature (K)

no
rm

al
iz

ed
 m

ob
ilit

y

(a) (b)

0.3

Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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of each complex network. Additionally, we have also plotted the dotted line ln N for comparative275

purposes.276
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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number of networks. In the experiments carried out we have led to the conclusion that it is sufficient297
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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comparative purposes. (b) Small World Propensity, stated by Equation (16) as a function the number of
nodes. It has been computed for different values of increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180K and 300 K. Any point on the lines is the mean value computed over
50 realizations of each network to obtain accurate statistical values. The dotted black line represents
ln N for comparative purposes. (b) Small World Propensity, stated by Equation (12) as a function the
number of nodes. It has been computed for different values of increasing temperature T.

To discern whether or not the small world feature exists we have used the SWP metric [95],261

represented in Figure 3(b) as a function of the number of nodes.262

It shows that, at room temperature and above (T = 300, 340, 380), the network exhibits a constant,263

high value of SWP ⌅ 0.82, higher than the threshold value SWPTh = 0.6 established in [95]. That is,264

at the representative room temperature, the space-energy embedded network associated to the ODS265

system shows a strong small-world propensity: low DC and DL.266

This is not the case for networks at T < 200K. At low temperatures (T = 100, 140, 180, 200, and267

220 K, in our simulations, to save computational time), SWP remains constant, SWP ⌅ 0.4. This means268

that in this low temperature range there is no small-world.269

T = 100, 140, 180, 200, 220 K270

However, Figure 3(b) shows that, in between these two representative cases, there is an271

“intermediate regime” in which, as temperature rises (T = 240, 260, 280, 290 K), the SWP increases,272
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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realizations of each network to obtain accurate statistical values. The dotted line is ln N for comparative
purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Usually, many small networks has short average shortest path and high clustering. The clustering
or transitivity quantifies the probability that two neighboring nodes of a given node i are connected.
This concept is easy to understand within the context of social networks: the fact that usually “the
friend of a friend is a friend” leads to high clustering coefficient. The clustering coefficient is a local
property capturing the density of triangles in the graph: two nodes that both are connected to a third
node are also directly connected to each other. A node i in the network has ki links that connects
it to ki other nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that exist between these ki nodes and the maximum possible number of links, that is,
Ci = 2Mi/ki(ki � 1) [52]. The mean clustering coefficient of the whole network is:

ÖCã = 1
N =

i
Ci. (15)

As mentioned, the most striking idea of small-world networks –characterized by high local260

clustering and short average shortest path between any two nodes– is that, even though they can be261

made up of a huge number of interacting nodes, they nonetheless greatly enhance the exchange of262

information [114] (social networks [113], human brain [115,116]), matter (electrons in quantum dot263

systems [83,87], sap in the vascular tissue in plants [117]), or energy (in power grids [59,60]) between264

the involved nodes. However, as discussed in [118], it is necessary to quantify how small ` is and how265

big ÖCã is. This could be the case for the proposed network under certain circumstances.266

To quantify whether or not our network is small world, we will made use of a new metric, the267

Small-World Propensity (SWP), recently proposed in [118]. It aims at measuring the extent to which268

the network under evaluation shows small-world structure by capturing the deviation of the network’s269

clustering coefficient at hand, ÖCã, and characteristic path length, `, from those of both lattice (CL, LL)270

and random (CR, LR) networks with the same number of nodes and the same degree distribution. The271

SWP is defined as [118]272

SWP ✏ 1 � ⇧D2
C + D2

L
2 ↵ , (16)

with
DC = CL � C

CL � CR
, (17)

and
DL = L � LR

LL � LR
. (18)

As discussed in [118], networks with high small-world features (low DC and DL) will have a value273

of the SWP close to 1. The authors have chosen a threshold value of 0.6 to differentiate a network with274

a strong small-world propensity from a network with a weak small-world propensity.275

Figure 3(a) shows the average shortest path length ` for different networks generated by the276

proposed method. They only differ in the number of nodes, which ranges from N = 103 to N = 104
277

nodes. We have also considered the average shortest path length ` for two different temperatures.278

The red line corresponds to the results computed at room temperature T = 300K, while the blue one279

corresponds to the results computed at a lower temperature T = 180K. Aiming to obtain statistical280

values, we have generated 50 realizations of each associated network. Additionally, we have also281

plotted the dotted, black line ln N for comparative purposes.282

Please note in Figure 3(a) that both curves scales with N with a tendency slightly lower than283

ln N, which gets closer and closer to ln N as N approaches 10000 nodes. This could be indicative of a284

small-world network.285 ÖCã ⌅ 0.12286
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
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different limiting temperatures, 180 and 300 K. Any point on the lines is the mean value computed
over 50 realizations of each network to obtain accurate statistical values. The dotted line is ln N for
comparative purposes. (b) Small World Propensity, stated by Equation (16) as a function the number of
nodes. It has been computed for different values of increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180K and 300 K. Any point on the lines is the mean value computed over
50 realizations of each network to obtain accurate statistical values. The dotted black line represents
ln N for comparative purposes. (b) Small World Propensity, stated by Equation (12) as a function the
number of nodes. It has been computed for different values of increasing temperature T.

To discern whether or not the small world feature exists we have used the SWP metric [95],261

represented in Figure 3(b) as a function of the number of nodes.262

It shows that, at room temperature and above (T = 300, 340, 380), the network exhibits a constant,263

high value of SWP ⌅ 0.82, higher than the threshold value SWPTh = 0.6 established in [95]. That is,264

at the representative room temperature, the space-energy embedded network associated to the ODS265

system shows a strong small-world propensity: low DC and DL.266

This is not the case for networks at T < 200K. At low temperatures (T = 100, 140, 180, 200, and267

220 K, in our simulations, to save computational time), SWP remains constant, SWP ⌅ 0.4. This means268

that in this low temperature range there is no small-world.269

T = 240 K270

However, Figure 3(b) shows that, in between these two representative cases, there is an271

“intermediate regime” in which, as temperature rises (T = 240, 260, 280, 290 K), the SWP increases,272
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Figure 3(a) shows the average shortest path length ` (over 50 realizations) of different space-energy246

embedded networks (generated by the method proposed in Section 2.2) as a function of the network247

size, which range from from N = 103 to N = 104 nodes.248

For illustrative purposes, we have represented the average shortest path length ` for two249

different temperatures that, as will be explained later on, are representative of two classes of networks250

(small-world networks, and no-small-networks). The red line corresponds to the results computed at251

room temperature T = 300K, while the blue one corresponds to those at a lower temperature, T = 180K.252

Additionally, we have also plotted the dotted, black line ln N for comparative purposes. Please note in253

Figure 3(a) that both curves scales with N with a tendency slightly lower than ln N, which gets closer254

and closer to ln N as N approaches 104 nodes. One might think that this is indicative of a small-world255

network. But this is not enough, and even could be misleading. Note that the clustering coefficients are256

very different in both cases. At low temperature, the clustering coefficient is small ÖCã ⌅ 0.12. However,257

at room temperature, the clustering coefficient is high ÖCã ⌅ 0.48. The network at room temperature258

appears to include the two typical ingredients of the small world: short ` (scaling ` ⇥ ln N) and high259 ÖCã. But, what do “short” and “high” mean here?260
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Usually, many small networks has short average shortest path and high clustering. The clustering
or transitivity quantifies the probability that two neighboring nodes of a given node i are connected.
This concept is easy to understand within the context of social networks: the fact that usually “the
friend of a friend is a friend” leads to high clustering coefficient. The clustering coefficient is a local
property capturing the density of triangles in the graph: two nodes that both are connected to a third
node are also directly connected to each other. A node i in the network has ki links that connects
it to ki other nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that exist between these ki nodes and the maximum possible number of links, that is,
Ci = 2Mi/ki(ki � 1) [52]. The mean clustering coefficient of the whole network is:

ÖCã = 1
N =

i
Ci. (15)

As mentioned, the most striking idea of small-world networks –characterized by high local260

clustering and short average shortest path between any two nodes– is that, even though they can be261

made up of a huge number of interacting nodes, they nonetheless greatly enhance the exchange of262

information [114] (social networks [113], human brain [115,116]), matter (electrons in quantum dot263

systems [83,87], sap in the vascular tissue in plants [117]), or energy (in power grids [59,60]) between264

the involved nodes. However, as discussed in [118], it is necessary to quantify how small ` is and how265

big ÖCã is. This could be the case for the proposed network under certain circumstances.266

To quantify whether or not our network is small world, we will made use of a new metric, the267

Small-World Propensity (SWP), recently proposed in [118]. It aims at measuring the extent to which268

the network under evaluation shows small-world structure by capturing the deviation of the network’s269

clustering coefficient at hand, ÖCã, and characteristic path length, `, from those of both lattice (CL, LL)270

and random (CR, LR) networks with the same number of nodes and the same degree distribution. The271

SWP is defined as [118]272

SWP ✏ 1 � ⇧D2
C + D2

L
2 ↵ , (16)

with
DC = CL � C

CL � CR
, (17)

and
DL = L � LR

LL � LR
. (18)

As discussed in [118], networks with high small-world features (low DC and DL) will have a value273

of the SWP close to 1. The authors have chosen a threshold value of 0.6 to differentiate a network with274

a strong small-world propensity from a network with a weak small-world propensity.275

Figure 3(a) shows the average shortest path length ` for different networks generated by the276

proposed method. They only differ in the number of nodes, which ranges from N = 103 to N = 104
277

nodes. We have also considered the average shortest path length ` for two different temperatures.278

The red line corresponds to the results computed at room temperature T = 300K, while the blue one279

corresponds to the results computed at a lower temperature T = 180K. Aiming to obtain statistical280

values, we have generated 50 realizations of each associated network. Additionally, we have also281

plotted the dotted, black line ln N for comparative purposes.282

Please note in Figure 3(a) that both curves scales with N with a tendency slightly lower than283

ln N, which gets closer and closer to ln N as N approaches 10000 nodes. This could be indicative of a284

small-world network.285 ÖCã ⌅ 0.12286
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different temperatures, 180 and 273 K. Any point on the lines is the mean value computed over 50
realizations of each network to obtain accurate statistical values. The dotted line is ln N for comparative
purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180 and 300 K. Any point on the lines is the mean value computed
over 50 realizations of each network to obtain accurate statistical values. The dotted line is ln N for
comparative purposes. (b) Small World Propensity, stated by Equation (16) as a function the number of
nodes. It has been computed for different values of increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.

Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180K and 300 K. Any point on the lines is the mean value computed over
50 realizations of each network to obtain accurate statistical values. The dotted black line represents
ln N for comparative purposes. (b) Small World Propensity, stated by Equation (12) as a function the
number of nodes. It has been computed for different values of increasing temperature T.

To discern whether or not the small world feature exists we have used the SWP metric [95],261

represented in Figure 3(b) as a function of the number of nodes.262

It shows that, at room temperature and above (T = 300, 340, 380), the network exhibits a constant,263

high value of SWP ⌅ 0.82, higher than the threshold value SWPTh = 0.6 established in [95]. That is,264

at the representative room temperature, the space-energy embedded network associated to the ODS265

system shows a strong small-world propensity: low DC and DL.266

This is not the case for networks at T < 200K. At low temperatures (T = 100, 140, 180, 200, and267

220 K, in our simulations, to save computational time), SWP remains constant, SWP ⌅ 0.4. This means268

that in this low temperature range there is no small-world.269

T = 240 K270

T = 260 K271

T = 280 K272

T = 290 K273
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Figure 3(a) shows the average shortest path length ` (over 50 realizations) of different space-energy246

embedded networks (generated by the method proposed in Section 2.2) as a function of the network247

size, which range from from N = 103 to N = 104 nodes.248

For illustrative purposes, we have represented the average shortest path length ` for two249

different temperatures that, as will be explained later on, are representative of two classes of networks250

(small-world networks, and no-small-networks). The red line corresponds to the results computed at251

room temperature T = 300K, while the blue one corresponds to those at a lower temperature, T = 180K.252

Additionally, we have also plotted the dotted, black line ln N for comparative purposes. Please note in253

Figure 3(a) that both curves scales with N with a tendency slightly lower than ln N, which gets closer254

and closer to ln N as N approaches 104 nodes. One might think that this is indicative of a small-world255

network. But this is not enough, and even could be misleading. Note that the clustering coefficients are256

very different in both cases. At low temperature, the clustering coefficient is small ÖCã ⌅ 0.12. However,257

at room temperature, the clustering coefficient is high ÖCã ⌅ 0.48. The network at room temperature258

appears to include the two typical ingredients of the small world: short ` (scaling ` ⇥ ln N) and high259 ÖCã. But, what do “short” and “high” mean here?260
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.

(✓104)284

3. Simulation work285

286

3.1. Methodology287

As we mentioned in the introduction, the S system contains two types of disorder. The first of288

them is determined by the fact that the QDs are located in a random way by means of the algorithm289

described in Section ?? to fulfill the minimum inter-dot distance condition. The second type of disorder290

has its origin in that, in real QD layers, there are thermodynamic fluctuation in the dot size, which leads291

to nodes with different energy levels. We have assumed the energy level distribution as a Gaussian292

distribution with (dimensionless) mean µ = EQD = 0.4, and standard deviation s = 10�3. Thus each293

QD (node) i is described by its corresponding ei energy level, a sample from the N (µ, s). This energy294

level ei acts as an attribute called hidden variable or fitness (see [85] for details in the context of SN).295

Aiming to obtain statistical values, we generate ensembles of networks with a sufficiently large296

number of networks. In the experiments carried out we have led to the conclusion that it is sufficient297

to generate 50 realizations of each complex network.298

299

3.2. Testing the weak overlap hypothesis300

We start this experimental part by aiming to check whether the small overlapping hypothesis301

(stated by (??)) is true or false. In this respect, Figure 4 shows the mean value of the overlaps as a302

function of the normalized distance between dot centers (dE,ij/RQD) in two cases. The first one, on303

Figure 4a, corresponds to networks in which rmin = 20 RQD. All possible overlaps are Oij < 10�1,304

at least 1 order of magnitude lower than Öi∂iã = 1. Figure 4b represents the study case in which305

rmin = 40 RQD, and shows how all the overlaps are Oij < 10�2, at least 2 orders of magnitude below306

Number of nodes

SW
P

T = 180 K

T = 220 K

T = 240 K

T = 260 K
T = 273 K

T = 180 K

T = 273 K

Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different temperatures, 180 and 273 K. Any point on the lines is the mean value computed over 50
realizations of each network to obtain accurate statistical values. The dotted line is ln N for comparative
purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Usually, many small networks has short average shortest path and high clustering. The clustering
or transitivity quantifies the probability that two neighboring nodes of a given node i are connected.
This concept is easy to understand within the context of social networks: the fact that usually “the
friend of a friend is a friend” leads to high clustering coefficient. The clustering coefficient is a local
property capturing the density of triangles in the graph: two nodes that both are connected to a third
node are also directly connected to each other. A node i in the network has ki links that connects
it to ki other nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that exist between these ki nodes and the maximum possible number of links, that is,
Ci = 2Mi/ki(ki � 1) [52]. The mean clustering coefficient of the whole network is:

ÖCã = 1
N =

i
Ci. (15)

As mentioned, the most striking idea of small-world networks –characterized by high local260

clustering and short average shortest path between any two nodes– is that, even though they can be261

made up of a huge number of interacting nodes, they nonetheless greatly enhance the exchange of262

information [114] (social networks [113], human brain [115,116]), matter (electrons in quantum dot263

systems [83,87], sap in the vascular tissue in plants [117]), or energy (in power grids [59,60]) between264

the involved nodes. However, as discussed in [118], it is necessary to quantify how small ` is and how265

big ÖCã is. This could be the case for the proposed network under certain circumstances.266

To quantify whether or not our network is small world, we will made use of a new metric, the267

Small-World Propensity (SWP), recently proposed in [118]. It aims at measuring the extent to which268

the network under evaluation shows small-world structure by capturing the deviation of the network’s269

clustering coefficient at hand, ÖCã, and characteristic path length, `, from those of both lattice (CL, LL)270

and random (CR, LR) networks with the same number of nodes and the same degree distribution. The271

SWP is defined as [118]272

SWP ✏ 1 � ⇧D2
C + D2

L
2 ↵ , (16)

with
DC = CL � C

CL � CR
, (17)

and
DL = L � LR

LL � LR
. (18)

As discussed in [118], networks with high small-world features (low DC and DL) will have a value273

of the SWP close to 1. The authors have chosen a threshold value of 0.6 to differentiate a network with274

a strong small-world propensity from a network with a weak small-world propensity.275

Figure 3(a) shows the average shortest path length ` for different networks generated by the276

proposed method. They only differ in the number of nodes, which ranges from N = 103 to N = 104
277

nodes. We have also considered the average shortest path length ` for two different temperatures.278

The red line corresponds to the results computed at room temperature T = 300K, while the blue one279

corresponds to the results computed at a lower temperature T = 180K. Aiming to obtain statistical280

values, we have generated 50 realizations of each associated network. Additionally, we have also281

plotted the dotted, black line ln N for comparative purposes.282

Please note in Figure 3(a) that both curves scales with N with a tendency slightly lower than283

ln N, which gets closer and closer to ln N as N approaches 10000 nodes. This could be indicative of a284

small-world network.285 ÖCã ⌅ 0.12286
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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realizations of each network to obtain accurate statistical values. The dotted line is ln N for comparative
purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.

T = 180, 200, 220 K

T = 240 KT = 260 K

T = 280 K

T = 300 K

Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180 and 300 K. Any point on the lines is the mean value computed
over 50 realizations of each network to obtain accurate statistical values. The dotted line is ln N for
comparative purposes. (b) Small World Propensity, stated by Equation (16) as a function the number of
nodes. It has been computed for different values of increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180K and 300 K. Any point on the lines is the mean value computed over
50 realizations of each network to obtain accurate statistical values. The dotted black line represents
ln N for comparative purposes. (b) Small World Propensity, stated by Equation (12) as a function the
number of nodes. It has been computed for different values of increasing temperature T.

To discern whether or not the small world feature exists we have used the SWP metric [95],261

represented in Figure 3(b) as a function of the number of nodes.262
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system shows a strong small-world propensity: low DC and DL.266
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Figure 3(a) shows the average shortest path length ` (over 50 realizations) of different space-energy246
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different temperatures, 180 and 273 K. Any point on the lines is the mean value computed over 50
realizations of each network to obtain accurate statistical values. The dotted line is ln N for comparative
purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Usually, many small networks has short average shortest path and high clustering. The clustering
or transitivity quantifies the probability that two neighboring nodes of a given node i are connected.
This concept is easy to understand within the context of social networks: the fact that usually “the
friend of a friend is a friend” leads to high clustering coefficient. The clustering coefficient is a local
property capturing the density of triangles in the graph: two nodes that both are connected to a third
node are also directly connected to each other. A node i in the network has ki links that connects
it to ki other nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that exist between these ki nodes and the maximum possible number of links, that is,
Ci = 2Mi/ki(ki � 1) [52]. The mean clustering coefficient of the whole network is:

ÖCã = 1
N =

i
Ci. (15)

As mentioned, the most striking idea of small-world networks –characterized by high local260

clustering and short average shortest path between any two nodes– is that, even though they can be261

made up of a huge number of interacting nodes, they nonetheless greatly enhance the exchange of262

information [114] (social networks [113], human brain [115,116]), matter (electrons in quantum dot263

systems [83,87], sap in the vascular tissue in plants [117]), or energy (in power grids [59,60]) between264

the involved nodes. However, as discussed in [118], it is necessary to quantify how small ` is and how265

big ÖCã is. This could be the case for the proposed network under certain circumstances.266

To quantify whether or not our network is small world, we will made use of a new metric, the267

Small-World Propensity (SWP), recently proposed in [118]. It aims at measuring the extent to which268

the network under evaluation shows small-world structure by capturing the deviation of the network’s269

clustering coefficient at hand, ÖCã, and characteristic path length, `, from those of both lattice (CL, LL)270

and random (CR, LR) networks with the same number of nodes and the same degree distribution. The271

SWP is defined as [118]272

SWP ✏ 1 � ⇧D2
C + D2

L
2 ↵ , (16)

with
DC = CL � C

CL � CR
, (17)

and
DL = L � LR

LL � LR
. (18)

As discussed in [118], networks with high small-world features (low DC and DL) will have a value273

of the SWP close to 1. The authors have chosen a threshold value of 0.6 to differentiate a network with274

a strong small-world propensity from a network with a weak small-world propensity.275

Figure 3(a) shows the average shortest path length ` for different networks generated by the276

proposed method. They only differ in the number of nodes, which ranges from N = 103 to N = 104
277

nodes. We have also considered the average shortest path length ` for two different temperatures.278

The red line corresponds to the results computed at room temperature T = 300K, while the blue one279

corresponds to the results computed at a lower temperature T = 180K. Aiming to obtain statistical280

values, we have generated 50 realizations of each associated network. Additionally, we have also281

plotted the dotted, black line ln N for comparative purposes.282

Please note in Figure 3(a) that both curves scales with N with a tendency slightly lower than283

ln N, which gets closer and closer to ln N as N approaches 10000 nodes. This could be indicative of a284

small-world network.285 ÖCã ⌅ 0.12286
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180 and 300 K. Any point on the lines is the mean value computed
over 50 realizations of each network to obtain accurate statistical values. The dotted line is ln N for
comparative purposes. (b) Small World Propensity, stated by Equation (16) as a function the number of
nodes. It has been computed for different values of increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180K and 300 K. Any point on the lines is the mean value computed over
50 realizations of each network to obtain accurate statistical values. The dotted black line represents
ln N for comparative purposes. (b) Small World Propensity, stated by Equation (12) as a function the
number of nodes. It has been computed for different values of increasing temperature T.
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Figure 3(a) shows the average shortest path length ` (over 50 realizations) of different space-energy246

embedded networks (generated by the method proposed in Section 2.2) as a function of the network247

size, which range from from N = 103 to N = 104 nodes.248

For illustrative purposes, we have represented the average shortest path length ` for two249

different temperatures that, as will be explained later on, are representative of two classes of networks250

(small-world networks, and no-small-networks). The red line corresponds to the results computed at251

room temperature T = 300K, while the blue one corresponds to those at a lower temperature, T = 180K.252

Additionally, we have also plotted the dotted, black line ln N for comparative purposes. Please note in253

Figure 3(a) that both curves scales with N with a tendency slightly lower than ln N, which gets closer254

and closer to ln N as N approaches 104 nodes. One might think that this is indicative of a small-world255

network. But this is not enough, and even could be misleading. Note that the clustering coefficients are256

very different in both cases. At low temperature, the clustering coefficient is small ÖCã ⌅ 0.12. However,257

at room temperature, the clustering coefficient is high ÖCã ⌅ 0.48. The network at room temperature258

appears to include the two typical ingredients of the small world: short ` (scaling ` ⇥ ln N) and high259 ÖCã. But, what do “short” and “high” mean here?260
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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been computed for different values oh increasing temperature T.

⇥✓103�277

180 200 220 240 260 280 300
0.0
0.2
0.4
0.6
0.8
1.0

Temperature (K)
(a)

0.0

0.4

0.2

0.6

0.8

1.0

No
rm

al
iz

ed
 M

ob
ilit

y

180 200 220 240 260 280 300 180 200 220 240 260 280

0.4

0.5

0.6

0.7

0.8

0.9

Temperature (K)
(b)

0.3

Sm
al

l W
or

ld
 P

ro
pe

ns
ity

300

Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.

(✓104)284

3. Simulation work285

286

3.1. Methodology287

As we mentioned in the introduction, the S system contains two types of disorder. The first of288

them is determined by the fact that the QDs are located in a random way by means of the algorithm289

described in Section ?? to fulfill the minimum inter-dot distance condition. The second type of disorder290

has its origin in that, in real QD layers, there are thermodynamic fluctuation in the dot size, which leads291

to nodes with different energy levels. We have assumed the energy level distribution as a Gaussian292

distribution with (dimensionless) mean µ = EQD = 0.4, and standard deviation s = 10�3. Thus each293

QD (node) i is described by its corresponding ei energy level, a sample from the N (µ, s). This energy294

level ei acts as an attribute called hidden variable or fitness (see [85] for details in the context of SN).295

Aiming to obtain statistical values, we generate ensembles of networks with a sufficiently large296

number of networks. In the experiments carried out we have led to the conclusion that it is sufficient297

to generate 50 realizations of each complex network.298

299

3.2. Testing the weak overlap hypothesis300

We start this experimental part by aiming to check whether the small overlapping hypothesis301

(stated by (??)) is true or false. In this respect, Figure 4 shows the mean value of the overlaps as a302

function of the normalized distance between dot centers (dE,ij/RQD) in two cases. The first one, on303

Figure 4a, corresponds to networks in which rmin = 20 RQD. All possible overlaps are Oij < 10�1,304

at least 1 order of magnitude lower than Öi∂iã = 1. Figure 4b represents the study case in which305

rmin = 40 RQD, and shows how all the overlaps are Oij < 10�2, at least 2 orders of magnitude below306

Number of nodes

SW
P

T = 180 K

T = 220 K

T = 240 K

T = 260 K
T = 273 K

T = 180 K

T = 273 K
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Usually, many small networks has short average shortest path and high clustering. The clustering
or transitivity quantifies the probability that two neighboring nodes of a given node i are connected.
This concept is easy to understand within the context of social networks: the fact that usually “the
friend of a friend is a friend” leads to high clustering coefficient. The clustering coefficient is a local
property capturing the density of triangles in the graph: two nodes that both are connected to a third
node are also directly connected to each other. A node i in the network has ki links that connects
it to ki other nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that exist between these ki nodes and the maximum possible number of links, that is,
Ci = 2Mi/ki(ki � 1) [52]. The mean clustering coefficient of the whole network is:

ÖCã = 1
N =

i
Ci. (15)

As mentioned, the most striking idea of small-world networks –characterized by high local260

clustering and short average shortest path between any two nodes– is that, even though they can be261

made up of a huge number of interacting nodes, they nonetheless greatly enhance the exchange of262

information [114] (social networks [113], human brain [115,116]), matter (electrons in quantum dot263

systems [83,87], sap in the vascular tissue in plants [117]), or energy (in power grids [59,60]) between264

the involved nodes. However, as discussed in [118], it is necessary to quantify how small ` is and how265

big ÖCã is. This could be the case for the proposed network under certain circumstances.266

To quantify whether or not our network is small world, we will made use of a new metric, the267

Small-World Propensity (SWP), recently proposed in [118]. It aims at measuring the extent to which268

the network under evaluation shows small-world structure by capturing the deviation of the network’s269

clustering coefficient at hand, ÖCã, and characteristic path length, `, from those of both lattice (CL, LL)270

and random (CR, LR) networks with the same number of nodes and the same degree distribution. The271

SWP is defined as [118]272

SWP ✏ 1 � ⇧D2
C + D2

L
2 ↵ , (16)

with
DC = CL � C

CL � CR
, (17)

and
DL = L � LR

LL � LR
. (18)

As discussed in [118], networks with high small-world features (low DC and DL) will have a value273

of the SWP close to 1. The authors have chosen a threshold value of 0.6 to differentiate a network with274

a strong small-world propensity from a network with a weak small-world propensity.275

Figure 3(a) shows the average shortest path length ` for different networks generated by the276

proposed method. They only differ in the number of nodes, which ranges from N = 103 to N = 104
277

nodes. We have also considered the average shortest path length ` for two different temperatures.278

The red line corresponds to the results computed at room temperature T = 300K, while the blue one279

corresponds to the results computed at a lower temperature T = 180K. Aiming to obtain statistical280

values, we have generated 50 realizations of each associated network. Additionally, we have also281

plotted the dotted, black line ln N for comparative purposes.282

Please note in Figure 3(a) that both curves scales with N with a tendency slightly lower than283

ln N, which gets closer and closer to ln N as N approaches 10000 nodes. This could be indicative of a284

small-world network.285 ÖCã ⌅ 0.12286
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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distribution with (dimensionless) mean µ = EQD = 0.4, and standard deviation s = 10�3. Thus each293

QD (node) i is described by its corresponding ei energy level, a sample from the N (µ, s). This energy294

level ei acts as an attribute called hidden variable or fitness (see [85] for details in the context of SN).295

Aiming to obtain statistical values, we generate ensembles of networks with a sufficiently large296

number of networks. In the experiments carried out we have led to the conclusion that it is sufficient297

to generate 50 realizations of each complex network.298
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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been computed for different values oh increasing temperature T.

⇥✓103�277

180 200 220 240 260 280 300
0.0
0.2
0.4
0.6
0.8
1.0

Temperature (K)
(a)

0.0

0.4

0.2

0.6

0.8

1.0

No
rm

al
iz

ed
 M

ob
ilit

y

180 200 220 240 260 280 300 180 200 220 240 260 280

0.4

0.5

0.6

0.7

0.8

0.9

Temperature (K)
(b)

0.3

Sm
al

l W
or

ld
 P

ro
pe

ns
ity

300

Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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comparative purposes. (b) Small World Propensity, stated by Equation (16) as a function the number of
nodes. It has been computed for different values of increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180K and 300 K. Any point on the lines is the mean value computed over
50 realizations of each network to obtain accurate statistical values. The dotted black line represents
ln N for comparative purposes. (b) Small World Propensity, stated by Equation (12) as a function the
number of nodes. It has been computed for different values of increasing temperature T.
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represented in Figure 3(b) as a function of the number of nodes.262
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high value of SWP ⌅ 0.82, higher than the threshold value SWPTh = 0.6 established in [95]. That is,264

at the representative room temperature, the space-energy embedded network associated to the ODS265

system shows a strong small-world propensity: low DC and DL.266
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Usually, many small networks has short average shortest path and high clustering. The clustering
or transitivity quantifies the probability that two neighboring nodes of a given node i are connected.
This concept is easy to understand within the context of social networks: the fact that usually “the
friend of a friend is a friend” leads to high clustering coefficient. The clustering coefficient is a local
property capturing the density of triangles in the graph: two nodes that both are connected to a third
node are also directly connected to each other. A node i in the network has ki links that connects
it to ki other nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that exist between these ki nodes and the maximum possible number of links, that is,
Ci = 2Mi/ki(ki � 1) [52]. The mean clustering coefficient of the whole network is:

ÖCã = 1
N =

i
Ci. (15)
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To quantify whether or not our network is small world, we will made use of a new metric, the267
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and random (CR, LR) networks with the same number of nodes and the same degree distribution. The271

SWP is defined as [118]272

SWP ✏ 1 � ⇧D2
C + D2

L
2 ↵ , (16)

with
DC = CL � C

CL � CR
, (17)

and
DL = L � LR

LL � LR
. (18)

As discussed in [118], networks with high small-world features (low DC and DL) will have a value273

of the SWP close to 1. The authors have chosen a threshold value of 0.6 to differentiate a network with274
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277
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plotted the dotted, black line ln N for comparative purposes.282

Please note in Figure 3(a) that both curves scales with N with a tendency slightly lower than283

ln N, which gets closer and closer to ln N as N approaches 10000 nodes. This could be indicative of a284

small-world network.285 ÖCã ⌅ 0.12286
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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distribution with (dimensionless) mean µ = EQD = 0.4, and standard deviation s = 10�3. Thus each293

QD (node) i is described by its corresponding ei energy level, a sample from the N (µ, s). This energy294

level ei acts as an attribute called hidden variable or fitness (see [85] for details in the context of SN).295

Aiming to obtain statistical values, we generate ensembles of networks with a sufficiently large296

number of networks. In the experiments carried out we have led to the conclusion that it is sufficient297

to generate 50 realizations of each complex network.298
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at least 1 order of magnitude lower than Öi∂iã = 1. Figure 4b represents the study case in which305
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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of each complex network. Additionally, we have also plotted the dotted line ln N for comparative275
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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comparative purposes. (b) Small World Propensity, stated by Equation (16) as a function the number of
nodes. It has been computed for different values of increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3(a) shows the average shortest path length ` (over 50 realizations) of different space-energy246

embedded networks (generated by the method proposed in Section 2.2) as a function of the network247

size, which range from from N = 103 to N = 104 nodes.248

For illustrative purposes, we have represented the average shortest path length ` for two249

different temperatures that, as will be explained later on, are representative of two classes of networks250

(small-world networks, and no-small-networks). The red line corresponds to the results computed at251

room temperature T = 300K, while the blue one corresponds to those at a lower temperature, T = 180K.252

Additionally, we have also plotted the dotted, black line ln N for comparative purposes. Please note in253

Figure 3(a) that both curves scales with N with a tendency slightly lower than ln N, which gets closer254

and closer to ln N as N approaches 104 nodes. One might think that this is indicative of a small-world255

network. But this is not enough, and even could be misleading. Note that the clustering coefficients are256

very different in both cases. At low temperature, the clustering coefficient is small ÖCã ⌅ 0.12. However,257

at room temperature, the clustering coefficient is high ÖCã ⌅ 0.48. The network at room temperature258

appears to include the two typical ingredients of the small world: short ` (scaling ` ⇥ ln N) and high259 ÖCã. But, what do “short” and “high” mean here?260
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.

(✓104)284

3. Simulation work285

286

3.1. Methodology287

As we mentioned in the introduction, the S system contains two types of disorder. The first of288

them is determined by the fact that the QDs are located in a random way by means of the algorithm289

described in Section ?? to fulfill the minimum inter-dot distance condition. The second type of disorder290

has its origin in that, in real QD layers, there are thermodynamic fluctuation in the dot size, which leads291

to nodes with different energy levels. We have assumed the energy level distribution as a Gaussian292

distribution with (dimensionless) mean µ = EQD = 0.4, and standard deviation s = 10�3. Thus each293

QD (node) i is described by its corresponding ei energy level, a sample from the N (µ, s). This energy294

level ei acts as an attribute called hidden variable or fitness (see [85] for details in the context of SN).295

Aiming to obtain statistical values, we generate ensembles of networks with a sufficiently large296

number of networks. In the experiments carried out we have led to the conclusion that it is sufficient297

to generate 50 realizations of each complex network.298

299

3.2. Testing the weak overlap hypothesis300

We start this experimental part by aiming to check whether the small overlapping hypothesis301

(stated by (??)) is true or false. In this respect, Figure 4 shows the mean value of the overlaps as a302

function of the normalized distance between dot centers (dE,ij/RQD) in two cases. The first one, on303

Figure 4a, corresponds to networks in which rmin = 20 RQD. All possible overlaps are Oij < 10�1,304

at least 1 order of magnitude lower than Öi∂iã = 1. Figure 4b represents the study case in which305

rmin = 40 RQD, and shows how all the overlaps are Oij < 10�2, at least 2 orders of magnitude below306

Number of nodes

SW
P

T = 180 K

T = 220 K

T = 240 K

T = 260 K
T = 273 K

T = 180 K

T = 273 K
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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of each complex network. Additionally, we have also plotted the dotted line ln N for comparative275

purposes.276
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
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Usually, many small networks has short average shortest path and high clustering. The clustering
or transitivity quantifies the probability that two neighboring nodes of a given node i are connected.
This concept is easy to understand within the context of social networks: the fact that usually “the
friend of a friend is a friend” leads to high clustering coefficient. The clustering coefficient is a local
property capturing the density of triangles in the graph: two nodes that both are connected to a third
node are also directly connected to each other. A node i in the network has ki links that connects
it to ki other nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that exist between these ki nodes and the maximum possible number of links, that is,
Ci = 2Mi/ki(ki � 1) [52]. The mean clustering coefficient of the whole network is:

ÖCã = 1
N =

i
Ci. (15)

As mentioned, the most striking idea of small-world networks –characterized by high local260

clustering and short average shortest path between any two nodes– is that, even though they can be261

made up of a huge number of interacting nodes, they nonetheless greatly enhance the exchange of262

information [114] (social networks [113], human brain [115,116]), matter (electrons in quantum dot263

systems [83,87], sap in the vascular tissue in plants [117]), or energy (in power grids [59,60]) between264

the involved nodes. However, as discussed in [118], it is necessary to quantify how small ` is and how265

big ÖCã is. This could be the case for the proposed network under certain circumstances.266

To quantify whether or not our network is small world, we will made use of a new metric, the267

Small-World Propensity (SWP), recently proposed in [118]. It aims at measuring the extent to which268

the network under evaluation shows small-world structure by capturing the deviation of the network’s269

clustering coefficient at hand, ÖCã, and characteristic path length, `, from those of both lattice (CL, LL)270

and random (CR, LR) networks with the same number of nodes and the same degree distribution. The271

SWP is defined as [118]272

SWP ✏ 1 � ⇧D2
C + D2

L
2 ↵ , (16)

with
DC = CL � C

CL � CR
, (17)

and
DL = L � LR

LL � LR
. (18)

As discussed in [118], networks with high small-world features (low DC and DL) will have a value273

of the SWP close to 1. The authors have chosen a threshold value of 0.6 to differentiate a network with274

a strong small-world propensity from a network with a weak small-world propensity.275

Figure 3(a) shows the average shortest path length ` for different networks generated by the276

proposed method. They only differ in the number of nodes, which ranges from N = 103 to N = 104
277

nodes. We have also considered the average shortest path length ` for two different temperatures.278

The red line corresponds to the results computed at room temperature T = 300K, while the blue one279

corresponds to the results computed at a lower temperature T = 180K. Aiming to obtain statistical280

values, we have generated 50 realizations of each associated network. Additionally, we have also281

plotted the dotted, black line ln N for comparative purposes.282

Please note in Figure 3(a) that both curves scales with N with a tendency slightly lower than283

ln N, which gets closer and closer to ln N as N approaches 10000 nodes. This could be indicative of a284

small-world network.285 ÖCã ⌅ 0.12286
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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of each complex network. Additionally, we have also plotted the dotted line ln N for comparative275
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different temperatures, 180 and 273 K. Any point on the lines is the mean value computed over 50
realizations of each network to obtain accurate statistical values. The dotted line is ln N for comparative
purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
been computed for different values oh increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180 and 300 K. Any point on the lines is the mean value computed
over 50 realizations of each network to obtain accurate statistical values. The dotted line is ln N for
comparative purposes. (b) Small World Propensity, stated by Equation (16) as a function the number of
nodes. It has been computed for different values of increasing temperature T.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.

Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180K and 300 K. Any point on the lines is the mean value computed over
50 realizations of each network to obtain accurate statistical values. The dotted black line represents
ln N for comparative purposes. (b) Small World Propensity, stated by Equation (12) as a function the
number of nodes. It has been computed for different values of increasing temperature T.

To discern whether or not the small world feature exists we have used the SWP metric [95],261

represented in Figure 3(b) as a function of the number of nodes.262

It shows that, at room temperature and above (T = 300, 340, 380), the network exhibits a constant,263

high value of SWP ⌅ 0.82, higher than the threshold value SWPTh = 0.6 established in [95]. That is,264

at the representative room temperature, the space-energy embedded network associated to the ODS265

system shows a strong small-world propensity: low DC and DL.266

This is not the case for networks at T < 200K. At low temperatures (T = 100, 140, 180, 200, and267

220 K, in our simulations, to save computational time), SWP remains constant, SWP ⌅ 0.4. This means268

that in this low temperature range there is no small-world.269

T = 300, 340, 380 K270

T = 180 K271

T = 300 K272

T = 280 K273
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Figure 3(a) shows the average shortest path length ` (over 50 realizations) of different space-energy246

embedded networks (generated by the method proposed in Section 2.2) as a function of the network247

size, which range from from N = 103 to N = 104 nodes.248

For illustrative purposes, we have represented the average shortest path length ` for two249

different temperatures that, as will be explained later on, are representative of two classes of networks250

(small-world networks, and no-small-networks). The red line corresponds to the results computed at251

room temperature T = 300K, while the blue one corresponds to those at a lower temperature, T = 180K.252

Additionally, we have also plotted the dotted, black line ln N for comparative purposes. Please note in253

Figure 3(a) that both curves scales with N with a tendency slightly lower than ln N, which gets closer254

and closer to ln N as N approaches 104 nodes. One might think that this is indicative of a small-world255

network. But this is not enough, and even could be misleading. Note that the clustering coefficients are256

very different in both cases. At low temperature, the clustering coefficient is small ÖCã ⌅ 0.12. However,257

at room temperature, the clustering coefficient is high ÖCã ⌅ 0.48. The network at room temperature258

appears to include the two typical ingredients of the small world: short ` (scaling ` ⇥ ln N) and high259 ÖCã. But, what do “short” and “high” mean here?260
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Usually, many small networks has short average shortest path and high clustering. The clustering
or transitivity quantifies the probability that two neighboring nodes of a given node i are connected.
This concept is easy to understand within the context of social networks: the fact that usually “the
friend of a friend is a friend” leads to high clustering coefficient. The clustering coefficient is a local
property capturing the density of triangles in the graph: two nodes that both are connected to a third
node are also directly connected to each other. A node i in the network has ki links that connects
it to ki other nodes. The clustering coefficient of node i is defined as the ratio between the number
Mi of links that exist between these ki nodes and the maximum possible number of links, that is,
Ci = 2Mi/ki(ki � 1) [52]. The mean clustering coefficient of the whole network is:

ÖCã = 1
N =

i
Ci. (15)

As mentioned, the most striking idea of small-world networks –characterized by high local260

clustering and short average shortest path between any two nodes– is that, even though they can be261

made up of a huge number of interacting nodes, they nonetheless greatly enhance the exchange of262

information [114] (social networks [113], human brain [115,116]), matter (electrons in quantum dot263

systems [83,87], sap in the vascular tissue in plants [117]), or energy (in power grids [59,60]) between264

the involved nodes. However, as discussed in [118], it is necessary to quantify how small ` is and how265

big ÖCã is. This could be the case for the proposed network under certain circumstances.266

To quantify whether or not our network is small world, we will made use of a new metric, the267

Small-World Propensity (SWP), recently proposed in [118]. It aims at measuring the extent to which268

the network under evaluation shows small-world structure by capturing the deviation of the network’s269

clustering coefficient at hand, ÖCã, and characteristic path length, `, from those of both lattice (CL, LL)270

and random (CR, LR) networks with the same number of nodes and the same degree distribution. The271

SWP is defined as [118]272

SWP ✏ 1 � ⇧D2
C + D2

L
2 ↵ , (16)

with
DC = CL � C

CL � CR
, (17)

and
DL = L � LR

LL � LR
. (18)

As discussed in [118], networks with high small-world features (low DC and DL) will have a value273

of the SWP close to 1. The authors have chosen a threshold value of 0.6 to differentiate a network with274

a strong small-world propensity from a network with a weak small-world propensity.275

Figure 3(a) shows the average shortest path length ` for different networks generated by the276

proposed method. They only differ in the number of nodes, which ranges from N = 103 to N = 104
277

nodes. We have also considered the average shortest path length ` for two different temperatures.278

The red line corresponds to the results computed at room temperature T = 300K, while the blue one279

corresponds to the results computed at a lower temperature T = 180K. Aiming to obtain statistical280

values, we have generated 50 realizations of each associated network. Additionally, we have also281

plotted the dotted, black line ln N for comparative purposes.282

Please note in Figure 3(a) that both curves scales with N with a tendency slightly lower than283

ln N, which gets closer and closer to ln N as N approaches 10000 nodes. This could be indicative of a284

small-world network.285 ÖCã ⌅ 0.12286
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 4. (a) Normalized mobility (with respect to the value of room temperature) as a function of
temperature T (K). (b) Small World Propensity as a function of T(K). See the main text for further
details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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Figure 3. (a) Normalized size of the giant component with respect to the total number of nodes,
SGC = NGC/N, as a function of the average node degree Ökã. See the main text for further details.
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3. Simulation work285

286

3.1. Methodology287

As we mentioned in the introduction, the S system contains two types of disorder. The first of288

them is determined by the fact that the QDs are located in a random way by means of the algorithm289

described in Section ?? to fulfill the minimum inter-dot distance condition. The second type of disorder290

has its origin in that, in real QD layers, there are thermodynamic fluctuation in the dot size, which leads291

to nodes with different energy levels. We have assumed the energy level distribution as a Gaussian292

distribution with (dimensionless) mean µ = EQD = 0.4, and standard deviation s = 10�3. Thus each293

QD (node) i is described by its corresponding ei energy level, a sample from the N (µ, s). This energy294

level ei acts as an attribute called hidden variable or fitness (see [85] for details in the context of SN).295

Aiming to obtain statistical values, we generate ensembles of networks with a sufficiently large296

number of networks. In the experiments carried out we have led to the conclusion that it is sufficient297

to generate 50 realizations of each complex network.298

299

3.2. Testing the weak overlap hypothesis300

We start this experimental part by aiming to check whether the small overlapping hypothesis301

(stated by (??)) is true or false. In this respect, Figure 4 shows the mean value of the overlaps as a302

function of the normalized distance between dot centers (dE,ij/RQD) in two cases. The first one, on303

Figure 4a, corresponds to networks in which rmin = 20 RQD. All possible overlaps are Oij < 10�1,304

at least 1 order of magnitude lower than Öi∂iã = 1. Figure 4b represents the study case in which305

rmin = 40 RQD, and shows how all the overlaps are Oij < 10�2, at least 2 orders of magnitude below306
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different temperatures, 180 and 273 K. Any point on the lines is the mean value computed over 50
realizations of each network to obtain accurate statistical values. The dotted line is ln N for comparative
purposes. (b) Small World Propensity, stated by Equation (15) as a function the number of nodes. It has
been computed for different values oh increasing temperature T.
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comparative purposes. (b) Small World Propensity, stated by Equation (16) as a function the number of
nodes. It has been computed for different values of increasing temperature T.
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180K and 300 K. Any point on the lines is the mean value computed over
50 realizations of each network to obtain accurate statistical values. The dotted black line represents
ln N for comparative purposes. (b) Small World Propensity, stated by Equation (12) as a function the
number of nodes. It has been computed for different values of increasing temperature T.

To discern whether or not the small world feature exists we have used the SWP metric [95],261

represented in Figure 3(b) as a function of the number of nodes.262

It shows that, at room temperature and above (T = 300, 340, 380), the network exhibits a constant,263

high value of SWP ⌅ 0.82, higher than the threshold value SWPTh = 0.6 established in [95]. That is,264

at the representative room temperature, the space-energy embedded network associated to the ODS265

system shows a strong small-world propensity: low DC and DL.266

This is not the case for networks at T < 200K. At low temperatures (T = 100, 140, 180, 200, and267

220 K, in our simulations, to save computational time), SWP remains constant, SWP ⌅ 0.4. This means268

that in this low temperature range there is no small-world.269
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Figure 3. (a) Average shortest path, as a function of the number of nodes of the network, for two
different limiting temperatures, 180K and 300 K. Any point on the lines is the mean value computed over
50 realizations of each network to obtain accurate statistical values. The dotted black line represents
ln N for comparative purposes. (b) Small World Propensity, stated by Equation (12) as a function the
number of nodes. It has been computed for different values of increasing temperature T.

To discern whether or not the small world feature exists we have used the SWP metric [95],261

represented in Figure 3(b), as a function of the number of nodes.262

For low temperatures (T = 100, 140, 180, 200, and 220 K, in our simulations, to save computational263

time), the networks have a SWP that remains constant, SWP ⌅ 0.4. This means that in this low264

temperature range there is a no small-world regime.265

At T ⌅ 290 K266

It shows that, at temperatures close to267

For the high energies explored (T = 290, 300, 340, 380 K), the networks have SWP > SWPTh = 0.6,268

and thus are in the small-world regime.269

T = 300 K270

T = 340, 380 K271

room temperature and above (T = 300, 340, 380 K), the network exhibits a constant, high value272

of SWP ⌅ 0.82, higher than the threshold value SWPTh = 0.6 established in [95]. That is, at the273
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a concordance between the increase in hopping carrier mobility with temperature (Figure 4(a)) and the314

the growth of the SWP with temperature (Figure 4(b)).315
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Figure 4. (a) Normalized mobility µ/µ
ò
0,LCC as a function of temperature T (K) for low carrier

concentration (relative concentration n/NS & 10�4). (b) Small World Propensity as a function of
T(K). The number of network nodes is N = 104. See the main text for further details.

T ⌅ 285K316

To discuss it better, let us return to Figure 3(b), showing the SWP at different temperatures. For317

low temperatures (T < 220), the networks have SWP ⌅ 0.4, and are in the no small-world regime.318

For high temperatures (T > 285), the networks have SWP > SWPTh = 0.6, and are in the small-world319

regime. In between these two regimes, there is an “intermediate regime” in which, as temperature320

rises from 240 to 280 K, the SWP increases, approaching the threshold value SWPTh = 0.6 from below.321

A transition to the small world seems to emerge in 240K < T < 280K. If we now turn our attention322

back to Figure 4(a), it can be seen that normalized mobility has already begun to rise appreciably as323

temperature rises from 240 up to ⌅ 280 K. In parallel we can observe in the Figure 4(b) that as the324

temperature approaches the room temperature from below, the network exceeds the threshold and325

begins to exhibit a strong small-world propensity. It seems to be a parallelism between the well-known326

dependence of carrier mobility on temperature ⇥ln(µ/µ
ò
0,LCC ö T�2� and the potential emergence of327

the small-world property with increasing temperature.328

We realize that studying a system as extremely complex as an ODS through a network –an329

alternative mathematical representation that we build by selecting some of its properties (for example,330

the random distributions of sites in space and energy together with the carrier hopping rates in the331

GDM model) to the detriment of others– could be argued as a reductionist approach [56,101]. We332

have shown in Section 1 that there are many works that shows how NS predicts collective emerging333

phenomena in systems that are difficult or even impossible to explain based only on the properties of334

the elements that make them up. NS is just a different, complementary approach, which can be used335

in parallel with other well-established, and does not intend and cannot replace the other successful336

methods that are applied in Materials Science and Nanotechnology.337

Related to this complementary character of the NS, we can consider a final example to illustrate338

the versatility of NS. Imagine a simple system that is made up of seven sites (= nodes) that are placed339

at random in space, as shown in Figure 5(a). The blue nodes have an energy e1 while the red ones have340

a different energy e2, slightly higher than e1. Since T ⌅ 0K then only tunneling between sites with the341

same energy are allowed. Blue nodes may have some links depending on their distance (Equation (5)).342

Figure 3. (a) Average shortest path as a function of the number of nodes of the network, for two
different limiting temperatures, 180 K and 300 K. Any point on the lines is the mean value computed
over 50 realizations of each network to obtain accurate statistical values. The dotted black line
represents ln N for comparative purposes. (b) small-world propensity, stated by Equation (12) as a
function the number of nodes. It has been computed for different values of increasing temperature T.

In between these two regimes, Figure 3b shows that there is an “intermediate regime”
in which, as temperature rises (T = 240, 260, 280, 285 K), the SWP starts to grow first
slowly (T = 240, 260 K) and then faster (T = 280, 285 K), approaching the threshold
value SWPTh = 0.6 from below. This seems to suggest the emergence of the small-
network nature.

Regarding this, the question that now arises is whether or not this has any influence
on the charge carrier hopping transport in ODSs.

3.4. Carrier Mobility and Network Structure

Assisted by Figure 1b, we have mentioned that hopping transport in the GDM for
ODSs consists of downward transitions in energy for carriers with ε > εt, and phonon-
assisted upward transitions, for carriers with ε < εt [17,26,42]. εt is the energy value that
optimizes the hopping rates in Equation (3) with respect to energy, including its percolation
origin and the dependence of carrier concentration on the Fermi level EF [42,96]. Once
εt is obtained, the carrier mobility, for low carrier concentration (relative concentration
n/NS ≤ 10−4), can be approximated by [42,97,98]

µ ≈ µ0,LCC ⋅ exp(−2r(εt)
ξloc

−
εt

kBT
−

1
2( σ

kBT
)2), (13)

where r(εt) is the typical distance between localized states with energies ε < εt.
The network model we suggest in the present work allows for obtaining an estimation

of the value of r(εt) based on the average space–energy distance between the network
nodes having an energy distance function εij (Equation (4)) approaching εt. In the set of
simulations described in Section 3.3 we have found that the estimated value r̃(εt) seems to
have the trend

r̃(εt)∝ ξloc
εt

kBT
. (14)

We interpret this dependency as follows: as T rises, the increasing number of available
phonons allows for hops that are further away in energy but closer in space, making
r̃(εt) decrease inversely proportional to T. Including this in Equation (15), we obtain the
approximated equation for the hopping mobility in the proposed network framework as

µ ≈ µ
∗
0,LCC ⋅ exp(−A∗( σ

kBT
)2). (15)
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The coefficient A∗ that appears in Equation (15) has a slight dependence on the site
concentration NS and the localization length ξloc, as shown in [97]. To take this into account,
we have considered two sets of simulations that differ in the value of the NSξloc parameter.
The first set corresponds to NSξloc = 0.001. When analyzing the results we have obtained
that is A∗ ≈ 0.47. The second set of simulations corresponds to NSξloc = 0.025. In this case,
the value of A∗ coefficient reduces to A∗ ≈ 0.40. This decreasing trend agrees with the
results obtained in [87,97,99] using analytical methods. In these works, the coefficient A∗
is called C and its analytical estimates have been found to be C ≈ 0.46 (at NSξloc = 0.001)
and C ≈ 0.38 (at NSξloc = 0.02). We are aware that this difference is probably caused by
numerical effects associated with the finite size of the explored network. Our result has
been obtained with a network made up of N = 104 nodes, which is the largest size that we
have been able to simulate because of our computational limitations. However, it has been
proven [100] that this order of magnitude of N is sufficient in the energy scale of 0.1 eV, the
one considered in our simulations. In any case, Equation (15) exhibits the usual behavior of
ODSs with Gaussian DOS [17] ln(µ/µ

∗
0,LCC)∝ T−2.

Using Equation (15), Figure 4a shows the normalized mobility µ/µ
∗
0,LCC as a function

of the increasing temperature T(K). Figure 4b, in turn, represents the dependence of the
SWP on T. In these figures, we have selected the temperature interval 180 K ≤ T ≤ 300 K
to show better the “intermediate regimen” (230 K ≤ T ≤ 285 K) in which the small-world
nature begins to emerge. From the viewpoint of NS, the small-world property is related to
the ease with which information, matter, or energy flows between nodes. In our problem,
there seems to be a concordance between the increase in hopping carrier mobility with
temperature (Figure 4a) and the growth of SWP with temperature (Figure 4b).

To discuss this further, let us return to Figure 3b, showing the SWP at different
temperatures. For low temperatures (T < 220), the networks have SWP ≈ 0.4, and are in
the no small-world regime. For high temperatures (T > 285), the networks have SWP >
SWPTh = 0.6, and are in the small-world regime. In between these two intervals, there is an
intermediate regime in which, as temperature rises from 230 to 285 K, the SWP increases,
approaching the threshold value SWPTh = 0.6 from below. A transition to the small world
seems to emerge in 230 K < T < 285 K. If we now turn our attention back to Figure 4a, it can
be seen that normalized mobility has already begun to rise appreciably as temperature rises
from ≈230 up to ≈280–290 K. In parallel we can observe in Figure 4b that as the temperature
approaches ≈285 K from below, the network exceeds the threshold and begins to exhibit
a strong small-world propensity. It seems to be a parallelism between the well-known
dependence of carrier mobility on temperature (ln(µ/µ

∗
0,LCC ∝ T−2) and the potential

emergence of the small-world property with increasing temperature.
We realize that studying a system as extremely complex as an ODS through a network—

an alternative mathematical representation that we build by selecting some of its properties
(the random distributions of sites in space and energy together with the carrier hopping
rates in the GDM model) to the detriment of others—could be argued to be a reductionist
approach [56,101]. We have shown in Section 1 that there are many works that show
how NS predicts collective emerging phenomena that are difficult or even impossible to
explain based only on the properties of the elements that make them up. NS is simply
a different, complementary approach, which can be used in parallel with other well-
established methods, and does not intend to and cannot replace the other successful
methods that are applied in materials science and nanotechnology.
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Figure 4. (a) Normalized mobility µ/µ
∗
0,LCC as a function of temperature T (K) for low carrier

concentration (relative concentration n/NS ≤ 10−4). (b) small-world propensity as a function of T(K).
The number of network nodes is N = 104. See the main text for further details.

Related to this complementary character of the NS, we can consider a final example
to illustrate the versatility of NS. Imagine a simple system that is made up of seven sites
(=nodes) that are placed at random in space, as shown in Figure 5a. The blue nodes have an
energy ε1 while the red nodes have a different energy ε2, slightly higher than ε1. Because
T ≈ 0 K, only tunneling between sites with the same energy is allowed. Blue nodes may
have some links depending on their distance (Equation (5)). Nearby red nodes may also
have some links. However, there are no links between node 1 (blue, energy ε1) and 7 (red,
energy ε2) because, despite being very close in space, they have different energy and, as
there is no phonon available, then p1,7 ≪ p1,2.

(a)

1 2

3 4
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our problem there seems to be a concordance between the increase in hopping carrier mobility with337

temperature (Figure 4(a)) and the the growth of the SWP with temperature (Figure 4(b)).338
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Figure 4. (a) Normalized mobility µ/µ
ò
0,LCC as a function of temperature T (K) for low carrier

concentration (relative concentration n/NS & 10�4). (b) Small World Propensity as a function of
T(K). The number of network nodes is N = 104. See the main text for further details.

To discuss it better, let us return to Figure 3(b), showing the SWP at different temperatures. At339

low temperatures (T =180, 200, 220 and 240 K) the network has a very weak propensity to small340

world. However, at T = 280K the SWP begins to approach the threshold 0.6. If we now turn our341

attention back to Figure 4(a), it can be seen that normalized mobility has already begun to rise342

appreciably. In parallel we can observe in the Figure 4(b) that as the temperature approaches the room343

temperature from below, the network exceeds the threshold and begins to exhibit a strong small-world344

propensity. It seems to be a parallelism between the well-known dependence of carrier mobility345

on temperature ⇥ln(µ/µ
ò
0,LCC ö T�2� and the potential emergence of the small-world property with346

increasing temperature.347

We realize that studying a system as extremely complex as an ODS through a network –an348

alternative mathematical representation that we build by selecting some of its properties (for example,349

the random distributions of sites in space and energy together with the carrier hopping rates in the350

GDM model) to the detriment of others– could be argued as a reductionist approach [54,118]. We have351

shown in Section 1 that there are many papers that point out that NS is an unifying and extremely352

powerful approach that enables to analyze, within the same conceptual framework, a huge variety of353

very different systems whose interacting elements are organized in a networked structure. NS help354

capture the most essential properties of a system, and using its mathematical tools, makes it possible355

to explain and/or predict complex, emergent phenomena, which go beyond the individual behavior356

of their constituent individual entities. NS is just a different approach, which can be used in parallel357

with other well-established, and does not intend and cannot replace the numerous successful methods358

that are applied in Materials science and Nanotechnology.359

e1360

4. Summary and conclusions361

This paper proposes to model organic disordered semiconductors (ODSs) as a network embedded362

in both space and energy because ODSs are disordered not only in space but also in energy, which363

Version November 10, 2022 submitted to Nanomaterials 11 of 21

our problem there seems to be a concordance between the increase in hopping carrier mobility with337

temperature (Figure 4(a)) and the the growth of the SWP with temperature (Figure 4(b)).338
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Figure 4. (a) Normalized mobility µ/µ
ò
0,LCC as a function of temperature T (K) for low carrier

concentration (relative concentration n/NS & 10�4). (b) Small World Propensity as a function of
T(K). The number of network nodes is N = 104. See the main text for further details.
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our problem there seems to be a concordance between the increase in hopping carrier mobility with337

temperature (Figure 4(a)) and the the growth of the SWP with temperature (Figure 4(b)).338
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Figure 4. (a) Normalized mobility µ/µ

ò
0,LCC as a function of temperature T (K) for low carrier

concentration (relative concentration n/NS & 10�4). (b) Small World Propensity as a function of
T(K). The number of network nodes is N = 104. See the main text for further details.
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low temperatures (T =180, 200, 220 and 240 K) the network has a very weak propensity to small340

world. However, at T = 280K the SWP begins to approach the threshold 0.6. If we now turn our341

attention back to Figure 4(a), it can be seen that normalized mobility has already begun to rise342

appreciably. In parallel we can observe in the Figure 4(b) that as the temperature approaches the room343

temperature from below, the network exceeds the threshold and begins to exhibit a strong small-world344

propensity. It seems to be a parallelism between the well-known dependence of carrier mobility345

on temperature ⇥ln(µ/µ
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increasing temperature.347
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alternative mathematical representation that we build by selecting some of its properties (for example,349

the random distributions of sites in space and energy together with the carrier hopping rates in the350
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very different systems whose interacting elements are organized in a networked structure. NS help354

capture the most essential properties of a system, and using its mathematical tools, makes it possible355

to explain and/or predict complex, emergent phenomena, which go beyond the individual behavior356

of their constituent individual entities. NS is just a different approach, which can be used in parallel357

with other well-established, and does not intend and cannot replace the numerous successful methods358
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2.2 Some definitions in Multilayer Complex Networks

To represent a system that consist of several networks at multiple levels, the
Multilayer Network Theory [121] considers structures that have layers in ad-
dition to nodes and edges [121].

Fig. (a) represents the most simplified concept of a multilayer network with 2
layers. Layer 1 represents a complex network with N1 nodes while layer 2 is a
network with N2 nodes. The complete 2-layer network has N1+N2 nodes. The
corresponding adjacency matrix of the 2-layer complex network represented
in Fig. (b) is made up of the sub-matrices A1 (the one corresponding to the
network in layer 1), A2 (network in layer 1), C12 (which contains the links
between layers 1 and 2), and C21.

2.3 Small-world property and robustness

There is a property of some complex networks that has been found to be
specially beneficial for smart grids [77,71]: the “small world”. Some properties
of small-world networks that help understand our model are:

● A small-world network is a complex network in which the mean distance or
average path length ` is small when compared to the total number of nodes
N in the network: ` = O(logN) as N →∞. That is, there is a relatively short
path between any pair of nodes [97,131]. The term “small-world networks” is
often used to refer Watts-Strogatz (WS) networks, first studied in [131]. Fig.
?? (b) shows the aspect and P (k) of a WS we have generated with N = 100
nodes and “rewiring probability” p = 0.2. It has a short mean distance,
` � 6.04, and high clustering, C ≈ 0.274. Most of small world networks have
exponential degree distributions [132].● Fig. ?? (b) (N = 100 and p = 0.2) also illustrates that the architecture
of real small-world networks is extremely heterogeneous: the vast majority
of the elements are poorly connected, but simultaneously few have a large
number of connections [133]. The robustness of small-world network has
been explored in [134,135] leading to the conclusion that, in non-sparse WS
network (M ∼ 2N), simultaneously increasing both rewiring probability and
average degree (�k� = 1

N ∑N
i=1 ki) improve significantly the robustness of the

small-world network.● An interesting variation of the WS model is the one proposed by New-
man and Watts [136] (NW small-world model) in which one does not break
any connection between any two nearest neighbors, but instead, adds with
probability p a connection between a pair of nodes. It has been found that
for su�ciently small p and su�ciently large N , the NW model is basically
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Figure 5. (a) A network with sites randomly distributed in space at very low temperature. Blue
nodes have energy ε1 while the red ones, energy ε2. (b) Example of the emerging multilayer network
as T increases. Each layer corresponds to a spatial network whose nodes have the same energy.
(c) Corresponding adjacency matrix. See the main text for further details.

However, as T increases, phonon-assisted transition is allowed, and the network in
Figure 5a can now be unfolded into two layers, each corresponding to an energy level, as
shown in Figure 5b. At room temperature, node 1, which is spatially very close to node 7, is
now linked to node 7 (dotted line) because now there is phonon absorption and p1,7 > p1,2.
This is a toy example of a “multilayer network” [102]. Each layer is a network with some
properties. In our example, a layer is a network formed by all nodes with the same energy.
Figure 5b represents this concept. The first layer represents a network with N1 = 4 blue
nodes with energy ε1 while the second one contains a network with N2 = 3 red nodes with
energy ε2. The complete two-layer network has N1 + N2 = 7 nodes.

The corresponding binary adjacency matrix of the two-layer network, represented
in Figure 5c is made up of the sub-matrices A1 (the one corresponding to the network in
layer 1), A2 (the adjacency matrix for the network in layer 2), and C12 and C21. These are
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matrices that encode the inter-layer connections between the networks elements in layers 1
and 2. In our example, there is only a link between node 1 in layer 1 and node 7 in layer 2
(Figure 5b). Its corresponding matrix element in C12 has been marked in Figure 5c.

4. Summary and Conclusions

This paper proposes to model organic disordered semiconductors (ODSs) as a network
embedded in both space and energy because ODSs are disordered not only in space but also
in energy, which makes carrier transport more complex than in ordered semiconductors.
Despite not being crystalline materials, ODSs have more and more practical importance
because they have mechanical flexibility and a low cost, which is crucial for manufacturing
wearable electronics and flexible solar cells. Additionally, because it is feasible to control
the design of their constituent molecules, ODSs can be used to manufacture not only high-
quality bio-sensors but also organic thermoelectric devices, organic thin-film transistors,
and organic light-emitting diodes. The not-so-positive characteristic of ODSs is that charge
carrier transport is difficult to model because it consists of carrier hops between localized
quantum states, which are disordered in both space and energy. Furthermore, modeling
is even more complex because hopping transport in ODSs is a variable-range hopping
(VRH) in which a carrier in an initial state i (with energy εi and located at site ri ∈ R3) may
either hop to a near state j at rj and with different energy ε j (via phonon interaction) or may
tunnel to a farther state m with the same energy εi. This hopping, involving confined states
having a Gaussian density of states, is called Gaussian disorder model (GDM). In thermal
equilibriums, the average carrier rate transition between two states i and j is modeled using
Miller–Abrahams (MA) hopping rates Γij, which are proportional to a negative exponential
that includes both the spatial distance and an energy-difference function (temperature
dependent) between the states involved.

An ODS can be thus seen as a complex system made up of a huge number of molecules,
states, or sites (NS ≈ 1020 cm−3) that interact with each other by exchanging charge carriers
according to MA hopping rates. It is precisely this abstraction that compels us to use
network concepts. Network science can be applied to any system made up of many
elements that interact with each other exchanging information, energy, or particles. The
essential principle is to map the system into a network (graph) in which any interacting
element is represented by a node (vertex) and the interaction between them by a link (edge).

Specifically, in the proposed network, each quantum-localized state ∣i⟩ in the ODS
system is represented as a node i in the network. Note that each has two attributes:
location ri ∈ R3 (space embedding) and energy εi taken from a Gaussian distribution
(energy embedding). In turn, a link between two nodes i and j is activated according to the
probability pij for a carrier to hop between them (or, equivalently, by the MA hopping rate
Γij). The matrix containing these rates is the weighted adjacency matrix W that, in turn,
helps obtain the Laplacian matrix L. In NS, L is especially useful because it allows, among
other features, to study the random walk (RW) of a carrier hopping through network nodes.
The reason why we use RWs is because the transport is incoherent due to the carrier–
phonon interaction, which causes the carrier to lose its phase information. In particular,
the proposed network Laplacian matrix allow for the studying of carrier dynamics using
edge-centric random walks, in which links are activated by the corresponding carrier
hopping rates.

As a methodological approach aiming to obtain statistical values, we have generated
50 different realizations for any network with a number of nodes N.

We have built sets of spatial energy embedded networks with a number of nodes that
ranges from N = 103 to N = 104 nodes. In turn, each of these networks has been generated
at different temperatures (T = 100, 140, 180, 200, 220, 240, 260, 280, 285, 290, 300, 340, 380 K).
As the link generation is ruled by carrier rates (which in turn depend on T), the networks
obtained at each temperature, even having the same number of nodes, can be very different.
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In fact, they are so different that the results seem to suggest that networks at room
temperature exhibit a small-world nature, while at low temperatures, this does not occur.
From the NS perspective, the small-world property is related to the ease with which
information, matter, or energy flows between nodes. What should be checked in our
problem is if this supposed structure enhances carrier transport. To quantify whether or
not our explored networks have the small-world property, we have made use of a recently
developed metric, the small-world propensity (SWP), which ranges between 0 and 1. The
larger the SWP metric is, the more likely it is that the network is a small-world network.
There is a threshold value, SWPTh = 0.6, to differentiate a network with strong small-world
propensity from others with weak small-world propensity. A network with extremely high
small-world features will have a value of SWP approaching unity.

We have found that for low temperatures (T < 220), the networks have SWP ≈ 0.4 <
SWPTh = 0.6, and are in a non-small-world regime. For high temperatures (T > 285), the
networks have SWP > SWPTh = 0.6, and are in a small-world regime. In particular, at
room temperature, the networks exhibit a high value of SWP = 0.82. In between these two
intervals, there is an intermediate regime in which, as temperature rises from 230 to 285 K,
the SWP increases, approaching the threshold value SWPTh = 0.6 from below. A transition
to a small-world regime seems to emerge at 230 K < T < 285 K.

The fact that the small-world property emerges and begins to become dominant as
temperature increases, together with the general fact that small-world structure enhances
transport in many systems, has inspired us to test whether or not there is any relationship
between carrier mobility and the emergent small-world structure. In this respect, using
parameters obtained from the network simulations, we have obtained an equation for the
hopping carrier mobility µ which, although approximated (because of the finite size of
the networks), exhibits nonetheless the well-known dependency ln(µ/µ

∗
0,LCC)∝ T−2. The

comparison of this dependence with the one of the SWP metrics on temperature suggests
that there is a parallelism between the quick growth of mobility with temperature and the
emergence of the small-world property with increasing temperature.
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Abbreviations
The following abbreviations have been used in this manuscript:

ARP Average Return Probability.
CTQW Continuous-Time Quantum Walks.
DOS Density of States.
GDM Gaussian Disorder Model.
MA Miller–Abrahams.
NS Network Science.
ODS Organic Disordered Semiconductor
OFET Organic Field-Effect Transistors.
OLED Organic Light-Emitting Diodes.
OS Organic Semiconductors.
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OTFT Organic Thin-Film Transistors.
QT Quantum Transport.
RGG Random Geometric Graph.
RN Random Network.
RW Random Walk.
SW Small-World.
SWP Small-World Propensity.
SN Spatial Networks.
TE Transport Energy.
VRH Variable-Range Hopping.

Symbol Definition or Meaning

A Adjacency matrix of a graph G.
aij Element of the adjacency matrix A

D
Node degree matrix: diag(k1,⋯, kN). It is the diagonal matrix formed from the
nodes degrees.

dE(i, j) Euclidean distance between any pair of nodes i and j in a network.

dij

Distance between two nodes i and j. It is the length of the shortest path (geodesic path)
between them, that is, the minimum number of links when going from one node to
the other.

EF Fermi level.
εi Energy of state i.
εT Transport energy.
ηHT Hopping transport efficiency.

G Graph G ≡ G(N ,L, W), where N is the set of nodes (card(N ) = N), L is the set of links,
and W is weighted adjacency matrix that emerges from our method to link formation.

γ0 Attempt-to-escape frequency.
Γij Miller–Abrahams hopping rate between states i and j.

∣i⟩ Ket vector in the Hilbert space H. It corresponds to the electron wave function in
nanostructure (≡ site ≡ node ≡ ket) i.⟨i∣ Bra vector in the dual space corresponding to the ket ∣i⟩ ∈ H⟨k⟩ Average node degree.

kBT Thermal energy.
ki Degree of a node i. It is the number of links connecting i to any other node.

`
Average path length of a network. It is the mean value of distances between any pair of
nodes in the network.

L Set of links (edges) of a network (graph).
L Laplacian matrix of a graph G.
M Size of a graph G. It is the number of links in the set L.
µ Carrier hopping mobility.
µ
∗
0,LCC Carrier hopping mobility at low temperature and low carrier concentration.

n Carrier concentration.

N
Order of a graph G = (N ,L). It is the number of nodes in set N , that is the cardinality of
set N : N = ∣N ∣ ≡ card(N ).

N Set of nodes (or vertices) of a graph.
NS Site concentration.
pj↝k Probability for an electron to evolve between kets ∣j⟩ and ∣k⟩ in the time interval t.
p(t) Average return probability

P(k) Probability density function giving the probability that a randomly selected node has
k links.

σ The energy scale of the Gaussian DOS.
W Weighted adjacency matrix.
ξloc Carrier localization length.
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