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Abstract: Copper-based nanoparticles have been intensively studied owing to their superior an-
tibacterial activity. In this study, cuprous oxide (Cu2O) nanoparticles were synthesized using two
different methods. In particular, two methods for synthesizing copper oxide from NaOH, namely,
with and without the addition of NH3, were used to adjust the morphology of the nanoparticles.
The nanoparticles from the NH3 and NaOH samples possessed an octahedral morphology. The
crystal structure of the samples was confirmed by X-ray diffraction. The size distribution of the NH3

sample was narrower than that of the NaOH sample. Furthermore, the average size of the NH3

sample was smaller than that of the NaOH sample. Unexpectedly, the antibacterial activity of the
NH3 sample was found to be lower than that of the NaOH sample. X-ray photoelectron spectroscopy
and Fourier-transform infrared spectroscopy revealed that the adsorbed NH3 caused the surface
oxidation of Cu2O nanoparticles with azide (N3) formation on surface.
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1. Introduction

Because of the recent pandemic, wearing a mask has become a daily routine. Conse-
quently, there have been periods when mask prices have become extremely high owing to
the sold-out phenomenon, resulting in an increase in the reuse rate of masks [1]. However,
although masks play a role in filtering viruses or bacteria, they do not kill bacteria or
viruses. In addition, reusing masks is undesirable because the humid and warm internal
conditions due to exhalation create an environment in which bacteria can thrive [2]. To
prevent the growth of bacteria due to such contamination, research has been conducted to
impart antibacterial activity to filter materials. Such studies have mainly involved the use
of silver nanoparticles to impart antibacterial properties. Therefore, the United States Food
and Drug Administration has recently begun to regulate the use of silver nanoparticles [3].
Meanwhile, the United States Environmental Protection Agency confirmed that copper
and its alloys were the first metallic antimicrobial agent [4]. Thus, research on antibacterial
agents that could replace silver has become active. Copper has been used for antibacterial
purposes since ancient times owing to its excellent antibacterial activities. It is cheaper
than silver and exists abundantly on earth; therefore, many studies on the development
of antibacterial agents using copper have been conducted [5–17]. In particular, inorganic
antibacterial agents are usually produced and used with nanometer size to increase the
surface area. Nanoparticles are mainly synthesized using methods such as the chemical
reduction method [18–22] or hydrothermal synthesis method [23,24]. Studies have been
conducted to control the size and shape of particles using the chemical reduction method
because the properties of nanoparticles depend on their size, shape, crystal structure,
etc. [25–28]. Copper undergoes oxidation when exposed to the atmosphere [29,30]. Thus,
if produced in nanoparticle form, its contact area with oxygen increases, leading to faster
oxidation; this makes maintaining the antibacterial properties of copper difficult. Oxi-
dized copper is classified into two types: cuprous oxide (Cu2O) and cupric oxide (CuO).
Cu2O is superior to CuO in terms of antibacterial activity [31]. In particular, the catalytic
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activity, antibacterial activity, and adsorption characteristics of Cu2O nanoparticles have
been reported to be excellent when the crystal plane (111) is present on the surface of the
particles [32–34]. Although mechanisms of the antibacterial activity of copper have not
been clearly identified, it is generally known to be caused by direct contact between copper
and bacterial cells [4,9]. Although antibacterial and adsorption properties depend on the
surface properties of nanoparticles, most studies measured only the crystal information of
nanoparticles through X-ray diffraction (XRD) and did not analyze the surface properties.
This may cause the antibacterial activity of the synthesized Cu2O to be incorrectly analyzed.
When NH3 was included among materials added to control the shape of Cu2O particles,
the antibacterial performance was diminished compared to the particles synthesized using
other methods. The present study confirmed the reason for the decreased antibacterial
properties of Cu2O octahedral nanoparticles prepared using two different methods.

2. Materials and Methods

The synthesis of Cu2O octahedra was performed using two methods. The first method
used NH3 as an additive. A difference in growth rate in the <100> direction compared
to the <111> direction was generated by controlling the molar ratio of NH3 and copper
ions; accordingly, spherical and octahedral particles could be synthesized [32]. The <100>
direction was parallel to the x-, y-, and z-axis, and the <111> directions were perpendicular
to the (111) facet groups. In the other method, by increasing the amount of NaOH to be
added and adsorbing an extra OH− group on the (111) crystal plane, a Cu2O octahedron
with dominant crystal growth in the <100> direction could be synthesized [35].

Cu(NO3)2·3H2O (99–104%) and hydrazine hydrate (N2H4, 50–60%) reagents were
purchased from Sigma-Aldrich (Merck Co., Ltd., Darmstadt, Germany). Furthermore,
NaOH beads (97%) and ammonium hydroxide (25–28%) were purchased from DAEJUNG
(Seoul, Korea). All materials were used without additional purification processes.

The entire Cu2O nanoparticle synthesis was performed while maintaining a tempera-
ture of 15 ◦C using a beaker with a double jacket and a chiller, and stirring at 300 rpm using
an overhead stirrer. In the octahedral nanoparticles prepared by adding NH3 (NH3 sample),
4.5 mL of 14.03 M NH3 was added to 180 mL of a 0.05 M solution of Cu(NO3)2·3H2O and
stirred, and 18 mL of 1 M NaOH was added dropwise. The solution was stirred for 15 min,
and 1.5 mL of 17.66 M N2H4, a reducing agent, was added and stirred for 90 min. In the
synthesis using only NaOH (NaOH sample), 42.2 mL of 1 M NaOH was added dropwise
to 360 mL of a 0.025 M Cu(NO3)2·3H2O solution and stirred for 15 min. Subsequently,
1.875 mL of 17.66 M N2H4 was added and stirred for 2 h. The synthesized nanoparticles
were washed 3–4 times with deionized (DI) water and ethanol and vacuum-dried.

The synthesized sample was analyzed using a scanning electron microscope (SEM,
Hitachi SU820, Hitachi. Co., Ltd., Tokyo, Japan) to confirm particle size and shape, and
XRD (/MAX 2500-V/PC, Rigaku Co., Ltd., Tokyo, Japan) was employed to acquire a diffrac-
tion pattern using a Cu-Kα wavelength to obtain crystal parameter values through peak
analysis. Fourier-transform infrared spectroscopy (FT-IR Varian, 670, Varian Inc., CA, USA)
was performed to analyze the vibration pattern of the material adsorbed on the surface. For
the surface analysis of the nanoparticles, X-ray photoelectron spectroscopy (XPS, Thermo
Scientific Nexsa, Thermo Fisher Scientific, Middlesex County, MA, USA) measurements
were performed, and the core level shift was analyzed to obtain the information of oxi-
dation states between Cu and O atoms. The X-ray source type used was the Microfocus
monochromatic Al-KA (1486.6 eV) X-ray source.

To compare the antibacterial properties of the synthesized nanoparticles, the colony-
forming units (CFU) of general bacteria were counted and evaluated using the dry medium
film method. The antimicrobial evaluation method was as follows: first, bacteria present
on the hand were collected using a pipette swab and diluted 10 from 1 to 104 times using
a sterile dilution solution; then, 1 mL of the diluted solution was inoculated in each dry
medium and cultured in an incubator at 37 ◦C for 24 h. One colony obtained from the
previous culture was placed in 9 mL of buffered peptone water (BPW) solution using a
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sterilized loop and subjected to primary incubation for 24 h under the same conditions
as mentioned above. One milliliter of the cultured solution was placed in 9 mL of the
new BPW solution and incubated for a second time for 24 h, and the second cultured
solution was diluted 10 times to the power of 1–3 and incubated in a dry medium to
obtain the standard bacterial solution. In the experimental group, 0.01 g of the synthesized
nanoparticles was dispersed in 30 mL of DI water, mixed with a standard bacterial solution
at a volume ratio of 1:1, and cultured. In the control group, DI water was added to the
standard bacterial solution in the same way as in the experimental group and cultured to
compare the number of CFUs.

3. Results and Discussion

To confirm the crystal structure and component, XRD measurement was conducted
on the Cu2O nanoparticles synthesized using the two methods. The crystal structure was
confirmed using the International Center for Diffraction Data (ICDD) library.

As shown in Figure 1, the XRD pattern of the particles synthesized by adding NH3
(hereinafter, NH3 sample) matched the crystal pattern of ICDD PDF <01-071-4310> Cu2O,
and the XRD pattern of the particles synthesized by adding NaOH (hereinafter, NaOH
sample) matched the crystal pattern of ICDD PDF <98-000-0186> Cu2O; thus, the crystal
structures of both samples were confirmed. The average crystal size was obtained from
the Scherrer equation using the full width at half maximum obtained through the analysis
of the crystal planes of the main peaks (111) and (200) of the XRD patterns, and the d-
spacing value was obtained using Bragg’s law. The crystal sizes of the NH3 and NaOH
samples were 19 and 25.04 nm, respectively; thus, the crystal size was larger when only
NaOH was used. The size distribution of the nanoparticles verified from the SEM images
shown in Figure 2 was 300–450 and 250–730 nm for NH3 and NaOH, respectively; the size
distribution of the NaOH sample was wider than that of the NH3 sample.
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Figure 2. SEM images of Cu2O NPs (a) with NH3 and (b) without NH3.

The antibacterial evaluation presented in Figure 3 and Table 1 reveals that an average
of 706.8 colonies were formed in the control group (a) and 54.3 colonies were formed in the
NaOH sample (b). By contrast, the number of colonies in the NH3 sample (c) significantly
increased to 466.3 compared to that in the NaOH sample. This is an unexpected result because
the NaOH sample had a larger average size of nanoparticles compared with the NH3 sample;
thus, its antibacterial activity was expected to be worse than that of the NH3 sample. When
the NaOH sample was thermally treated at 80 ◦C, 465.5 colonies (a higher value than in the
untreated sample) were obtained. The surface oxidation of the Cu2O particles was assumed
to be the reason for the decreased antibacterial activity of the NH3 sample.
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Figure 3. Antibacterial activity of (a) control, (b) NaOH sample (c) NH3 sample, and (d) 80 ◦C treated
NaOH sample.

Table 1. Average colony number of samples.

Sample Control NaOH NH3 NaOH 80 ◦C

Colony count (average) 706.8 54.3 466.3 465.5

Figure 4 shows the FT-IR spectra of the NH3 and NaOH samples. In the spectrum
of the NaOH sample, Cu2O and CuO, represented by 623 cm−1 [36] and 497 cm−1 [37],
respectively, were observed. However, in addition to the Cu2O peak at 623 cm−1 and the
CuO peak at 516 cm−1 [38] in the spectrum of the NH3 sample, a new peak appeared at
2053 cm−1, which was close to 2030 cm−1, the peak that was observed in Busca et al.’s
study [39]. This peak is attributed to the azide (N3) species. In addition, a N–H stretching
peak at 3317 cm−1 was observed [40].
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Figure 4. FT-IR spectra of the NH3 and NaOH samples.

To investigate the surface properties of the nanoparticles, XPS measurement, which could
be used to analyze the surface information to a depth of 10 nm, was applied to the samples.
Figure 5 shows the binding energy of the Cu 2p3/2 region according to the presence or absence
of 80 ◦C heat treatment of the NH3 and NaOH samples. The vacuum-dried NH3 and NaOH
samples appeared as Cu2O in the XRD pattern shown in Figure 1. However, surface analysis
with XPS revealed that the NH3 sample had a strong Cu2+ satellite peak between 940 and
945 eV and peaks at 933.66 and 953.5 eV; thus, CuO could be inferred to exist on the surface.
By contrast, the NaOH sample had a Cu2O peak at 932.48 eV and the bonding of Cu2O existed
at 952.3 eV, indicating that the surface was Cu2O [41].
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In the case of heat-treated samples at 80 ◦C, the surface of both samples was oxidized,
forming a CuO layer. In the crystal structure obtained from XRD measurement after thermal
treatment with different temperatures to compare the oxidation stability (Figure 6), the
NH3 sample showed a CuO crystal phase from 200 ◦C, while the NaOH sample showed a
CuO crystal phase after 300 ◦C; the thermal oxidation stability of the NaOH sample was
better than that of the NH3 sample. This is consistent with the preceding results from XPS,
in which the surface of the NH3 sample was already oxidized to form CuO.
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As illustrated in Figure 7, the peaks related to the azide (N3) group and a wide N–H
group of 3317 cm−1 formed in the NH3 sample decreased gradually as the heat treatment
temperature increased, and all peaks disappeared after the heat treatment at 300 ◦C. The
phenomenon in which an azide group is formed on the Cu2O surface is assumed to occur
when NH3 is decomposed while being adsorbed on the Cu2O surface. A previous study
reported that the formation of an azide group after N2H4 adsorbed on the TiO2 surface was
decomposed on the surface with NH3 [42].
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The CuO shell formation of Cu2O nanocrystals is considered to be similarly associated
with the adsorption of NH3. Incidentally, a study reported that NOx is reduced using NH3
and Cu2O catalysts [43]. Because Cu(NO3)2 is used as the precursor, sufficient NO3

− ions
are present around it. Therefore, NH3 and NO3

− ions present on the metal surface are
assumed to interact and reduce to NO2; accordingly, Cu2O is oxidized to form CuO on the
surface. The result that NO3

− ions adsorbed on the metal surface are reduced to NO2
−

ions has been reported [44].
When the NH3 sample was heated at heat treatment temperatures of 80 ◦C, 200 ◦C,

and 300 ◦C, the peaks of the azide group of 2053 cm−1 formed on the surface gradually
decreased in size as the temperature increased and disappeared at 300 ◦C. In addition, the
N–H plane observed at 3317 cm−1 disappeared equally.

4. Conclusions

This study revealed that, when NH3 is added in the synthesis of Cu2O nanoparticles,
a CuO shell is formed on the surface of the Cu2O nanoparticles. Consequently, the an-
tibacterial activity of the nanoparticles from the NH3 sample was lower than that of the
Cu2O nanoparticles prepared using only NaOH. When fabricating nanoparticles, which
have important surface properties, NH3 could form unwanted oxides on the surface owing
to redox reactions; thus, because XRD crystal analysis cannot reveal oxides formed on
the surface, surface analysis techniques such as XPS must be performed simultaneously
to accurately study nanoparticle properties. For further understanding oxidation caused
by NH3 adsorption, using another copper precursor such as copper acetate (Cu(Ac)2) or
copper chloride (CuCl2), or another reducing agent with NH3 could be part of future
experiments. These are currently being considered for further investigation. In addition,
to investigate the effect of CuO shell on various species such as Gram-positive (pyogenes,
Strep. agalactiae, enterococci) or Gram-negative (Acinetobacter, E. coli, Klebsiella) bacteria,
the antibacterial activity of each species could be further examined. Although the formed
CuO shell on Cu2O nanoparticles diminished the antibacterial activity, the Cu2O/CuO
core–shell nanoparticles are expected to be used as photoelectrochemical catalysts owing to
the charge separation for organic degradation [45,46].
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