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Abstract: We study photoluminescence of InP/InAsP/InP nanostructures monolithically integrated
to a Si(100) substrate. The InP/InAsP/InP nanostructures were grown in pre-formed pits in the
silicon substrate using an original approach based on selective area growth and driven by a molten
alloy in metal–organic vapor epitaxy method. This approach provides the selective-area synthesis of
the ordered emitters arrays on Si substrates. The obtained InP/InAsP/InP nanostructures have a
submicron size. The individual InP/InAsP/InP nanostructures were investigated by photolumines-
cence spectroscopy at room temperature. The tuning of the emission line in the spectral range from
1200 nm to 1550 nm was obtained depending on the growth parameters. These results provide a path
for the growth on Si(100) substrate of position-controlled heterojunctions based on InAs1−xPx for
nanoscale optical devices operating at the telecom band.

Keywords: III–V nanostructures; InAsP/InP; silicon photonics; photoluminescence

1. Introduction

Today, silicon is the most used semiconductor in the modern micro and nanoelectronic
industry. However, despite the current level of and miniaturization of silicon technology,
an efficient silicon laser, which is necessary for the needs of optoelectronics, is still far from
being realized due to the indirect structure of the silicon band gap. In turn, many III–V
compounds have a direct-gap structure and high efficiency of light emission. Therefore, in
order to drive the further development of silicon photonics and to achieve its new function-
ality, a monolithic integration of III–V materials with well-developed silicon technology
is necessary.

The use of III–V nanostructures integrated with silicon is promising for creating
devices for new integrated photonics [1–4], optical interconnects [5], and optoelectronic
devices for high-speed signal processing [6,7]. At the same time, such integration is a
difficult task due to the large lattice mismatch of most III–V materials with Si, a significant
difference in thermal expansion coefficients, and a too high defect density for instrumental
applications [8].

Currently, several competing approaches to the integration of III–V semiconductors
with a silicon platform are being actively studied: the use of buffer layers [9–11], wafer
bonding methods [12–15], selective growth methods [7,16–20], and also growth nanos-
tructures using catalyst drops [21–23]. The most researched are approaches using wafer
bonding methods. Their implementation implies the transfer of a finished III–V structure
containing a highly efficient active region onto a silicon substrate with passive photonic
structures. However, achieving high reliability, acceptable device yield, low cost, and
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the ability to integrate with complex optoelectronic integrated circuits remains a major
challenge for this approach.

An alternative here is to grow III–V structures directly on silicon. As a rule, the
effectiveness of such solutions is limited by the occurrence of defects in the active region
of devices. Several recent works have investigated methods for filtering defects in such
structures [8], the use of which, as a rule, negatively affects the compactness, complexity
and cost of manufacturing such structures and the possibility of scaling to large areas.

Selective growth (SAG) and droplet growth methods are considered promising because
they eliminate the use of expensive III–V substrates, complex wafer bonding technolo-
gies, and the difficulty of precise positioning when combining III–V and Si components
at the micro level. In recent years, some groups have managed to obtain high-quality
III-V structure nanostructures grown directly on Si, suitable for creating single laser struc-
tures [16,18,24,25]. In particular, SAG approaches have been used to create highly ordered
arrays of nanostructures with precise positioning [8,18,26,27].

On the other hand, recently developed methods of epitaxial synthesis using droplets
of group III metals make it possible to obtain III–V nanostructures on Si with a low defect
density due to the small area of contact with the substrate and the relaxation of elastic
stresses on the lateral surface. Significant progress has been made in the synthesis of
ordered heterostructured III–V nanowires on a Si substrate [28,29]. More recently, a new
epitaxial growth method using organometallic vapor phase epitaxy, called selective melt-
based growth (MADSAG), has been introduced recently [30]. This method is a combination
of growth elements, drop-induced group III element and SAG. The proposed approach
combines the advantages of two methods: accurate positioning of nanostructures and
growth selectivity, on the one hand, and a high degree of control over nucleation in the
liquid phase, on the other hand. It was shown that the new approach makes it possible
to obtain InP nanoinserts of high crystalline quality in a Si(100) substrate without using a
buffer layer.

Further development of the proposed method was the formation of a semiconductor
III-V heterostructure of controlled composition to obtain PL emission in the silicon trans-
parency window (from 1.3 and 1.55 µm). In this work, we study the optical properties of
such III-V heterostructures, formed by InP/InAsP/InP layers in the nanoinsertions synthe-
sized by the MADSAG method in silicon. It is shown for the first time that it is possible
to realize an ordered array of submicron-sized near-IR emitters with high structural and
optical quality. By changing the growth parameters of the InAsP layer, one can control the
emission wavelength of InP/InAsP/InP nanoinsertions in the range of 1.2–1.55 µm.

2. Materials and Methods

III–V nanoinsertions were epitaxially grown inside the openings in Si(001) substrate.
Technology aspects of the InP MADSAG growth were properly investigated in our pre-
vious work [30]. Here we used the growth in the optimized conditions for formation of
InP/InAsP/InP heterostructure on Si(100). As in [30] prior to growth, Si(001) surface was
covered by 100 nm-thick SiNx mask. The arrays of 200 nm wide holes in the mask were
defined using the deep ultraviolet lithography. The distance between the centers of the
holes was 600 or 800 nm. Next, deep-reactive ion etching with SF6 chemistry was employed
to etch isotopically 300 nm deep holes inside Si. The sidewalls of the holes were covered
with SiNx and then, at the bottom of the holes the {111} planes of Si were opened using
KOH wet etching (Figure 1a). The dry etch leaves the rough and defective surface at the
bottom of the hole, which can cause polycentric nucleation and formation of various types
of defects in the III–V material. Additional KOH wet etch leaves flat {111} planes behind
which is necessary to have more controllable nucleation and high crystalline quality [31].
The epitaxial growth started with the formation of InP layer inside the holes in Si (001)
using the MADSAG approach. For the InP layer deposition trimethylindium (TMIn) and
phosphine (PH3) were used. The MADSAG approach implies formation of the In-rich melt
at the bottom of the hole which is then crystallized to InP during the annealing under
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90 sccm flux of PH3 at substrate temperature of 600 ◦C, Figure 1b. Next, the InAsxP1−x
layer was formed, for which the supply of PH3 was stopped, and the arsine (AsH3) flux
was supplied. The interaction of arsenic with the InP surface at selected temperatures
(500 ◦C) resulted in the replacement of phosphorus by arsenic in the upper layers and the
formation of an InAsxP1−x layer (Figure 1c). For the InAsxP1−x layer formation substrate
temperature was set 500 ◦C. At the final stage (Figure 1d), an InP layer was formed covering
the structure, which was formed similarly to the initial InP. The formed nanostructures
were studied via scanning electron microscope Zeiss Supra 25 at 28 kV (SEM, Carl Zeiss
AG, Oberkochen, Germany, 28kV). SEM contrast in secondary electrons was obtained
at an accelerating voltage of approximately 30 kV. SEM image of a cross section of an
InP/InAsxP1−x/InP heterostructure in silicon is presented in (Figure 1e).
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Figure 1. (a–d)—scheme of the main stages of the formation of InP/InAsxP1−x/InP nanoinclusions
in silicon using the MADSAG method, (e)—SEM image of a cross section of an InP/InAsxP1−x/InP
heterostructure in silicon.

Samples S1 and S2 were formed with a single layer of InAsxP1−x as described above
but in Samples S1 for InAsxP1−x layer formation we performed the annealing under 175
sccm of AsH3 flux during 180 s and in Samples the annealing time was 60 s to tune emission
wavelength. In Sample S3 we used growth parameters of the sample S2, but 5 InAsP layers
were formed separated by an InP layer. The growth parameters are presented in Table 1.

Table 1. Description of the Samples S1–S3.

Sample Annealing Time under
175 sccm of AsH3 Flux Number of InAsxP1−x Layers

S1 180 s 1
S2 60 s 1
S3 60 s 5

PL maps and spectra were measured using an Integra Spectra (NT-MDT, Zelenograd,
Russia) confocal microscope at room temperature. The Nd:YLF laser operating in con-
tinuous mode (527 nm wavelength) was used for excitation. The excitation laser beam
was focused using a 100× objective (M Plan APO NIR, Mitutoyo, Japan) with a numerical
aperture NA = 0.5. The pump power density can be varied from 0.2 to 230 kW/cm2. The
same objective was used to collect the photoluminescence signal of InP/InAsxP1−x/InP
nanostructures. The scanning over the surface was performed with a set of mirrors. The
emission was directed to the entrance slits of a monochromator (MS5204i, Sol Instruments,
Republic of Belarus) using mirrors. Detection was performed using a cooled InGaAs CCD
array (iDus, Andor, UK).
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3. Results and Discussion

Figure 2a,b shows plan-view and cross-section, respectively, SEM images obtained
from sample S1 with a distance between the centers of the etch pits of 800 nm. It can be
seen that the growth of the InP/InAsxP1−x/InP material in the pits proceeds unevenly.
Most of the pits in this sample turned out to be unfilled, and only in some pits a material
fills in the pit in silicon. A decrease in the distance between the pits to 600 nm led to the
even smaller filling of the pits, and therefore we did not study that sample further.

A confocal microscope was used to study the photoluminescence (PL) of the resulting
nanostructures. At a distance between the centers of adjacent pits of 800 nm, it is possible
to locally study the PL of free-standing nanoinsertion. The PL spectra were mapped from
the area of the sample marked with a square in Figure 2a. In the PL intensity distribution
measured in the spectral range of 800–1650 nm (Figure 2c), there are bright spots, which
correspond to the positions of the large-volume nanoinsertion visible in the SEM image
and indicated as points 1, 2 and 3 in Figure 2a. Point 4 corresponds to a nanoinsertion of a
small volume, point 5 is located on the surface of the sample between the pits.
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Figure 2. (a)—SEM obtained from the top of sample S1; (b)—SEM image of the cross-section of the
sample S1; (c)—map of the distribution of photoluminescence intensity in the spectral range from 800
to 1650 nm in the area of the sample marked with a rectangle in (a).

The PL spectra obtained at points 1–5 are shown in Figure 3a. In the spectra obtained
at points 1–4, an intense line is observed, with a spectral position of the maximum at ~915
nm, which corresponds to the emission of InP in the sphalerite phase [32]. On the spectra
obtained at points 1–3 there is an additional broad line located from 1300 to 1650 nm with a
maximum near 1.45 µm. We associate this line with the emission of the narrow-bandgap
InAsxP1−x insertion in the InP/InAsxP1−x/InP heterostructure. The absence of this line
at point 4 indicates that the formation of a complete InP/InAsxP1−x/InP heterostructure
occurs only in some pits, which are visualized in SEM as large-volume nanoinsertions. At
point 5, the spectrum demonstrates an almost zero intensity over the entire wavelength
range, which indicates the absence of III–V material deposition on the Si3N4 surface, and
all material from this region is collected in pits. The inhomogeneity of the collection of this
material into the pits leads to the inhomogeneity of the InP/InAsxP1−x/InP nanostructures
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themselves, which explains the difference in the position of the maximum of the PL line at
points 1–3 in Figure 2a.
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(b)—PL spectra from single InP/InAsxP1−x/InP nanoinsertion in sample S1 obtained at different
optical pump powers (0.11 mW (14 kW/cm2)–1.81 mW(230 kW/cm2)).

The spectral position of the maximum PL intensity in the spectra obtained at points
1–3 varies from 1430 nm to 1460 nm (photon energy ~0.849—0.867 eV). One can estimate
the average concentration of arsenic (x) in the InAsxP1−x alloy at these points using the
expression, which neglects the quantum-size effect:

EG(x) = x EInAs + (1 − x) EInP − CInAsP x (1 − x) (1)

where EInAs and EInP of 0.354 and 1.344 eV are the band gaps of InAs and InP, respectively,
CInAsP = 0.1 eV is the bowing parameter [33]. The average concentration of arsenic in the
sample S1 is thus estimated to be ~45–47%. The observed variation in the position of the PL
intensity maximum within 30 nm from one nanoinsertion to another (1430 nm to 1460 nm)
can be a consequence of fluctuations in the average mole fraction of InAs just within only
3%, due to a rather strong dependence of the InAsxP1−x bandgap on the x composition. The
PL spectra from one InP/InAsxP1−x/InP nanoinsertion of sample S1 obtained at different
optical pump powers at room temperature are shown in Figure 3b. It can be seen that as
the optical pump power increases, the PL maximum shifts to shorter wavelengths, which
can be explained by the inhomogeneity of the composition of the InAsxP1–x nanoinsertion
and its limited volume. At a low pump power, the lower energy states in the InAsxP1−x are
predominantly occupied, with an increase in the carrier concentration, the higher-energy
states are gradually filled and the PL maximum is shifted to the short-wavelength region.
In addition, due to the limited volume of the InAsxP1−x insert, with an increase in the
optical pump power, the increase in the intensity of the InAsxP1−x line saturates, which is
not observed for the InP spectral line.

A SEM image of the surface of sample S2, in which the annealing time during the sup-
ply of AsH3 was decreased compared to sample S1, is shown in Figure 4a. The SEM images
show a periodic structure (the distance between the centers of the pits was 800 nm) as in the
S1 structure. It is also seen that, again, in most of the pits, the InP/InAsxP1−x/InP material
is located inside the pit, and only at a few points the formation of InP/InAsxP1−x/InP is
visible. PL intensity distribution over the same area of the sample is shown in Figure 4b for
the spectral range of InAsP emission (1150–1400 nm). One can observe areas of bright PL
intensity, which position corresponds on the SEM image of sample S2 to the large-volume
nanoinsertion indicated by points 1, 2 and 3.
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range from 1150 to 1400 nm of the same section of the sample.

The emission spectra obtained in the whole 800–1650 nm interval at points of bright
intensity are shown in Figure 5. The spectra show a line corresponding to carrier recombi-
nation in the InP and a broad line with a maximum at approximately 1200 nm, which we
associate with formed InAsxP1−x material. The large spectral width of the line indicates
fluctuations of InAsxP1−x composition. The shift of the InAsxP1−x spectral line to the
short-wavelength region compared to sample S1 is due to the lower flux of the As precursor
and thus the lower InAs mole fraction. The exposure time in arsine vapor as well as its flow
highly affect the substitution of phosphorus by arsenic [34] in InP. For example, in [35] the
formation of In(P)As quantum dots upon exposure to an As flow of the InP(311)B surface
was studied. The PL wavelength of the formed quantum dots strongly depended on the
substrate temperature and exposure duration and varied from ~1200 to ~1600 nm, which
well coincides with our results.
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The position of the PL maximum in the studied nanostructure varies in the spectral
range 1193–1220 nm (1.039 eV–1.016 eV). From these data, one can similarly, as was done
for sample S1, determine the spread of the average composition for arsenic in the formed
nanoinsertions, which corresponds to an arsenic concentration from 29% to 31%. The
resulting spread of arsenic concentration in the structure S2 does not exceed 3%, which
indicates a high homogeneity and reproducibility of the technological process.

Despite the fact that the initial pits in Si are identical to each other, the formed nanoin-
sertions of samples S1 and S2 show fluctuations in shapes and sizes. The observed non-
uniformity in the distribution of the InP/InAsxP1−x/InP material over different pits we
associate with the effect of the Ostwald ripening process (the formation of larger nanoin-
sertions from the material of the smaller ones) [30]. To reduce this effect in sample S3,
the amount of material was increased by 5-fold repetition of the steps of forming the
InAsxP1−x/InP layers. Figure 6a shows a SEM image with a top-view of this sample. It can
be seen that in this structure, all the nanoinsertions are formed and there are no unfilled
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pits. Figure 6b shows a PL map in the spectral range from 1150 to 1400 nm in the same area
of the sample.
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Figure 6. (a)—SEM image obtained from above sample S3; (b)—map of the photoluminescence
intensity distribution in the spectral range from 1150 to 1400 nm in the sample area highlighted by
the rectangle in (a).

The periodic structure of the emitters is visible now, the position of which corresponds
to the position of the InAsxP1−x/InP nanostructures in silicon. Spectra from InAsxP1−x/InP
nanostructures marked with points 1, 2 and 3 are presented in Figure 7a. The spectra
obtained from single InAsxP1−x/InP emitters are dominated by a bright spectral line, with a
maximum near 1200 nm. The spectrum also contains a less intense line of InP luminescence.
The PL intensity of the InAsxP1−x line varies from point to point, which is most likely due
to the uneven redistribution of the material between the etch pits. With an increase in the
amount of deposited material in sample S3 compared to the previous samples, the intensity
of the InAsxP1−x PL line increases. With an increase in the optical pump power (Figure 7b),
the intensity of this line does not saturate up to at least 230 kW/cm2 (inset to Figure 7b).
This is in contrast with sample S1, where a bend is observed. The scatter in As composition
(x) in sample S3, which we also estimated using formula (1), also does not exceed 3%.
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Figure 7. (a)—PL spectra of sample S3 obtained at points 1–3 at a pump power density of 127 kW/cm2.
(b)—PL spectra from single InP/InAsxP1−x/InP nanoinsertion in sample S3 obtained at different
optical pump powers (0.11 mW(14kW/cm2)–1.81mW(230kW/cm2); inset: Pl intensity of the samples
S2 and S3 versus optical pump power.
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4. Conclusions

In this work, we study InP/InAsxP1−x/InP nanostructures with submicron lateral size
formed by the molten alloy driven selective-area growth (MADSAG) method in silicon.
This novel method makes it possible to grow In(As)P nanoinsertions in silicon with a
minimum number of defects due to close to equilibrium thermodynamic conditions of
crystallization in a single drop. Using the method, the III–V semiconductor heterostructures
of controlled composition were formed in Si with room-temperature emission in the Si
transparency window from 1.2 to 1.55 µm. The optical properties of the obtained structures
were studied, depending on the deposition parameters. It is shown that the proposed
method makes it possible to form an ordered array of submicron near-IR emitters with
high structural and optical quality. The variation of arsenic concentration in the InAsxP1−x
alloy from point to point within the array is as low as 3%. The observed variation of
the PL maximum position in the studied nanostructure is due to the strong band gap
composition dependence. By tiny changes of the MADSAG deposition conditions, one
can control the emission wavelength of InP/InAsxP1−x/InP nanoinsertions from 1200
to 1550 nm. To obtain equal redistribution of III–V materials in pits and therefore more
homogeneous PL intensity from pit to pit, additional research is required. The epitaxial
growth is strongly affected by the diffusion of adatoms over the SiNx mask surface. In its
turn, the diffusion length depends on the substrate temperature and V-to-III ratio. Thus,
studies of the growth parameters (temperature, V-to-III ratio, growth rate and growth
interruptions) on uniformity are planned.
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