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Abstract: This study investigated the translucency of 3D-printed denture base resins modified with
zirconium dioxide nanoparticles (ZrO2NPs) under thermal cycling. A total of 110 specimens were
fabricated and divided into 3 groups according to the materials, i.e., heat-polymerized resin, and
3D-printed resins (NextDent, and ASIGA). The 3D-printed resins were modified with 0, 0.5, 1, 3,
and 5 wt.% of ZrO2NPs. All the specimens were subjected to 5000 thermal cycles. The translucency
was measured using a spectrophotometer. The results showed that the heat-polymerized resin had
considerably higher translucency than the 3D-printed resins. Compared to the unmodified group,
the translucency decreased significantly after adding 5% ZrO2NPs to NextDent and 3% ZrO2NPs to
ASIGA resins. The highest translucency was achieved for NextDent by adding 0.5% ZrO2NPs and
for ASIGA without any ZrO2NPs. It was found that the average concentration level in ASIGA was
significantly higher than that in NextDent. These findings revealed that 3D-printed resins have lower
translucency than heat-polymerized acrylic resin, and adding ZrO2NPs at low concentrations did
not affect the translucency of the 3D-printed resins. Therefore, in terms of translucency, 3D-printed
nanocomposite denture base resins could be considered for clinical applications when ZrO2NPs are
added at low concentrations.

Keywords: 3D printing; ZrO2 nanoparticles; denture base; translucency

1. Introduction

The geriatric population is growing rapidly worldwide as healthcare advancements
increase life expectancy [1]. One of the most common oral conditions that affect old people
is complete edentulism [2,3]. Despite the availability of treatment modalities, a complete
denture is the most popular treatment for edentulism [4,5]. Poly(methyl methacrylate)
(PMMA) is commonly used for the fabrication of removable dental prostheses owing to its
good biocompatibility, low cost, and easy fabrication and repair [6]. However, PMMA tends
to adsorb water, compromising its physical properties [7]. Moreover, it has poor surface
characteristics, leading to denture stomatitis because of easy Candida albicans (C. albicans)
adhesion and biofilm formation [6]. Some techniques have been recently developed to
overcome these limitations, such as denture base coating, loading antifungal drugs, and
incorporating nanoparticles (NPs) to improve the mechanical properties [6].

Denture esthetics is defined as the beauty and attractiveness of a person based on the
effect produced by the prosthesis [8]. Owing to better awareness, the number of patients
demanding esthetics has risen dramatically [8]. There is strong evidence that the success of
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complete dentures is closely related to the acceptance of their esthetics [9,10]. The esthetics
of denture-base acrylic resins are significantly influenced by the translucency of removable
prostheses [11].

The light traveling through a material experiences transmission, absorption, reflection,
and scattering interactions with other light sources [12]. A translucent material allows some
light to pass through it, and the objects on the other side of the translucent material appear
fuzzy and unclear [13,14]. The translucency of a denture base gives a natural look due to the
“chameleon effect” by allowing the surroundings to be reflected and viewed through it [15].
The color and appearance of the underlying soft tissue are crucial esthetic requirements for
an acrylic denture base [15]. PMMA is a highly versatile resin for incorporating fillers to
achieve translucency [15].

Different NPs have been used in PMMA denture base materials [16–19]. Zirconium
dioxide (ZrO2), aluminum dioxide (Al2O3), titanium dioxide (TiO2), silver nanoparticles
(AgNPs), and silicon dioxide (SiO2) can reinforce denture bases and have different effects
on the final denture properties [20]. The properties of the added NPs, including their shape,
size, concentration, and interaction with the matrix, define the final characteristics of the
nanocomposite [21]. The NPs have a nanoscale size and large specific surface area relative
to their volume [22–24]. These unique properties allow strong interfacial interaction with
the organic polymers, resulting in a nanocomposite with novel mechanical, chemical, and
optical properties [23].

Aszrin et al. (2016), evaluated different types of NPs incorporated in PMMA and
found that the translucency of PMMA exhibited unpredictable negative results at different
NP concentrations [25]. Likewise, Gad et al. (2018), and Lee et al. (2007) revealed that the
decrease in translucency was directly related to the concentration of the added NPs [15,26].
In addition, introducing metal oxide NPs may change the translucency of the matrix
material owing to the natural color of the NPs. However, ZrO2 NPs are white and, thus,
are less likely to affect the color of the resin [19,27].

Nowadays, removable dentures can be manufactured using digital processes such as
computer-aided design and computer-aided manufacturing (CAD-CAM), which have been
widely used in dentistry. The fabrication process of digital dentures was first established
as a subtractive technique in which the dentures were manufactured from prefabricated
resin blocks. Recently, additive manufacturing, also known as 3D printing, was intro-
duced [28,29] to build objects via a layer-by-layer process [28,29]. 3D printing technology
can eliminate the need for conventional molds and tools and simplify the fabrication pro-
cess of a complete denture [28–30]. In addition, 3D printing technology uses a concentrated
selective laser beam to melt filament locally and can reduce the consumption of material in
the polymerization process [31]. Furthermore, 3D printing reduces the procedure time and
laboratory work [32], providing a significant improvement in terms of tissue adaptation
and duplication of existing dentures in use [33]. Moreover, by using 3D-printing method,
the margin of error made by laboratory technicians can be minimized, offering higher
accuracy than that of conventional methods [33–36].

Several studies have examined the effects of additives on 3D-printed materials [37–40].
Chen et al. (2018) discovered that a 3D-printed resin containing cellulose nanocrystals and
AgNPs (0–0.1 wt.%) exhibited higher flexural and impact strengths [37].
Mubarak et al. (2020) found that the tensile strength, tensile modulus, and flexural strength
of 3D-printed materials increased with the addition of less than 1 wt.% silver-titanium
dioxide NPs [38]. Aati et al. (2021) reported that a 3D-printed resin modified with ZrO2
showed long-term improvement in provisional restorations [39]. Moreover, the hardness
and flexural and impact strengths of a 3D-printed resin were enhanced when SiO2NPs
were incorporated [40].

A previous article published by Gad et al. (2022) [40] demonstrated that after adding
NPs to 3D-printed PMMA resin, most of the properties of the PMMA were significantly
enhanced, except for surface hardness and roughness. However, its optical properties
have not yet been assessed [39]. Evaluating the optical properties of a resin material is
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important to ensure good esthetic results. To the best of our knowledge, no prior studies
have examined the effect of adding ZrO2NPs on the translucency of 3D-printed denture
base resins. Consequently, this in vitro study investigated the translucency of 3D-printed
denture base resins modified with ZrO2NPs through thermal cycling experiments. The null
hypothesis is that adding ZrO2NPs to the 3D-printed resin does not affect the translucency
of the nanocomposite.

2. Materials and Methods

Power analysis was used to count the in vitro samples. According to the World
Health Organization formulae, a study power of 80%, a significance level of 5%, and
a marginal error of 5% were determined. A total of 110 specimens were divided into
11 groups: five groups of two different 3D-printed resins (NextDent and ASIGA) and one
heat polymerized resin.

2.1. Preparation of Nanocomposite Mixture

NextDent and ASIGA were employed in this study along with heat-polymerized
PMMA. ZrO2NPs (99.9% purity, Sigma-Aldrich, St. Louis, MO, USA) were added to the
3D-printed resins at different concentrations (0, 0.5, 1, 3, and 5 wt.%) [41]. Based on earlier
SEM and TEM analyses [15,41–44], the average granularity and surface area of the ZrO2NPs
were 40 nm and 9 m2/g, respectively [45]. To enhance the bonding between the ZrO2NPs
and resin matrix, a silane coupling agent 3- (trimethoxysilyl) propyl methacrylate (Shanghai
Richem International Co., Ltd., Shanghai, China) was used to treat the surface of ZrO2NPs
by creating reactive groups through the silanization process. The silane coupling agent was
dissolved in acetone and then ZrO2NPs were added to the mixture followed by stirring for
60 min. Then, a rotary evaporator was used for acetone eliminations followed by cooling
to obtain the silanized ZrO2NPs. The silanized ZrO2NPs were added to the 3D-printing
resins at various concentrations. Following previous studies, the modified liquid resins
were thoroughly mixed and stirred for 30 min [17,27].

2.1.1. Preparation of Heat-Polymerized Acrylic Resin Specimens

Heat-polymerized acrylic resin specimens (Major.Base.20 MAJOR, Prodotti Dentari
S.p.A. moncalieri, Italy), were manufactured based on a conventional method for denture
processing [6] and used as a control. A metal mold (15 mm × 2 mm) was used to fabricate
wax specimens, which were invested in dental stone followed by wax removal to crate
mold spaces for acrylic resin packing at the dough stage. After packing, the flask was
placed into a thermal polymerization unit to complete the polymerization cycle (heated to
73 ◦C for 90 min and then heated to 100 ◦C for an additional 30 min) [6].

2.1.2. Preparation of 3D-Printed Specimens

An open-source CAD system (123D design, Autodesk, version 2.2.14, San Rafael, CA,
USA) was used to design the 3D-printed specimens. The files were saved as STL files and
printed using a 3D-printing machine with the previously mentioned dimensions. A pure
resin was mixed using anLC 3D Mixer (NextDent, Soesterberg, The Netherlands) for 120
min. After mixing, specific concentrations of ZrO2NPs were added to the resin mix and
distributed into several bottles. These bottles were then shaken using the same mixer for
30 min before printing. The printing details for each layer are listed in Table 1 [46], along
with details regarding the printing and post-printing processes, such as the intensity of
ultraviolet (UV) light, rinsing and cleaning materials, and post-curing machines, and time.
Low-speed rotary tools were used to remove the excess resin. Finishing and polishing
were performed using a polishing cloth and polishing machine under wet conditions. The
specifications of the tools, materials, and machines are listed in Table 2 [47].
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Table 1. Materials and equipment used in the study.

Material Brand Name/Printers/
Manufacture/Printing Technology

Composition
Printing Parameters Post Printing Conditions

Layer
Thickness Orientations Light Source

/Wavelength
Rinsing/
Cleaning

Post Curing
Machine

Post Curing
Time

NextDent Denture 3D+/
NextDent 5100 3D

NextDent B.V Soesterberg, The
Netherlands/

Stereolithography

Methacrylic oligomers, methacrylate
monomer, inorganic filler,

phosphine oxides, pigments
50 µm 90◦ UV light/

405 nm

Isopropyl alcohol
99.9%/

glycerol

LC-3DPrint Box,
NextDent, Soesterberg,

The Netherlands
10 min

ASIGA DentaBASE
ASIGA MAX UV/ASIGA, Erfurt,

Germany/Digital light
processing (DLP)

7,7,9(or 7,9,9)-trimethyl-4,13-dioxo-
3,14-dioxa-5,12-diazahexadecane-

1,16-diyl bismethacrylate;
Diphenyl(2,4,6-trimethylbenzoyl)

phosphine oxide;
Tetrahydrofurfuryl methacrylate

50 µm 90◦ UV light/
405 nm

Isopropyl alcohol
99.9%/

glycerol

ASIGA Flash, ASIGA,
Sydney, Australia 20 min

Table 2. Finishing, polishing and thermo-cycling equipment and procedures.

Finishing and Polishing Thermocycling

Finishing Paper Polishing Suspension Polishing Cloth Polishing Machine Machine Cycles Temperature/Time

Silicon carbide grinding
paper 800, 1500,

and 2000 grit

0.050 µm - Master Prep
polishing suspension;

Buehler GmbH

TexMet C10in, 42-3210;
Buehler GmbH,

Düsseldorf, Germany

Metaserv 250
grinder-polisher; Buehler

GmbH, Lake Bluff, IL,
USA

Thermocycler
THE-1100/THE-1200, SD

Mechatronik GMBH
Miesbacher Str. 34 83,620

Feldkirchen-
Westerham Germany

5000 cycles 5–55 ◦C /30 s of dwell time
and 5 s for dripping
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2.2. NP Distribution and Bonding Analysis

The complete and even of distribution of NPs within the resins was analyzed using
scanning electron microscopy (SEM, FEI, Inspect S50, Brno, Czech Republic at 20 kV).
Fourier transform infrared spectroscopy (FTIR) (Nicolet 6700, FTIR spectrometer, Thermo
Fisher Scientific, Waltham, United States) was used to explore the bonding of the specimens
prepared with various ZrO2NP concentrations (0 wt, 0.5 wt, 1 wt, 3 wt, and 5 wt.%). To
obtain the FTIR spectra, the specimens were scanned between 4000 and 400 cm−1. The
specimen preparations steps for SEM and FTIR analyses were detailed in our previous
study [41].

2.3. Thermal Cycling Procedures

Before the specimens were subjected to thermocycling, they were rinsed with water,
followed by coarse and fine rubber tips. A thermocycling machine was used to simulate
intraoral temperature changes over six months. The number of cycles, temperature, dwell
time, and machine manufacturers are listed in Table 1 [48,49].

2.4. Translucency Test

Reflectance values were determined using a spectrophotometer (Color-Eye® 7000 A,
X-Rite, Carlstadt, NJ, USA). A small-aperture viewing area (10 mm × 7.5 mm) was selected.
A white tile and black trap were used to calibrate the spectrophotometer following the
manufacturer’s recommendations. Every specimen was stabilized against the port, sup-
ported at the back with the black or white reference material and then the support arm
was closed. For every disc, color measurements were performed against each background
using the (L*, a*, b*) coordinates defined by the Commission Internationale de l’Eclairage
(CIE) system. An average of three readings was obtained for each specimen using the spec-
trophotometer software. The data were tabulated and the translucency (TR) was calculated
using the following equation: TR = [(L*white − L*black)2 + (a*white − a*black)2 + (b*white
− b*black)2] 1/2 [25,50].

2.5. Statistical Analysis

A statistical package for the social sciences (SPSS Statistics for Windows, Version
27.0. Armonk, NY: IBM Corp) was used for data entry and analysis. In the descriptive
data analysis, the means and standard deviations were computed. The normality of the
data was tested using the Shapiro–Wilk test, and insignificant results indicated that the
data were normally distributed. Hence, parametric tests were employed for inferential
analysis. One-way analysis of variance (ANOVA) was used to study the variation in the
tested properties at different ZrO2NP concentration levels. In addition, two-way ANOVA
was used to study the combined effects of material type and concentration. Statistical
significance was set as 0.05.

3. Results

The FTIR spectra of HP and 3D-printed resins (NextDent and ASIGA) showed some
variations which suggests that the chemical structures of NextDent and ASIGA resins are
different. The spectra of 3D-printed resins (NextDent and ASIGA) comparison spectra
displayed similar IR bands even with the addition of ZrO2NP, suggesting that the 3D-
printed materials modified with NPs had a uniform distribution. By comparing the spectra,
it is clear that the bands of 3D-printed resins (NextDent and ASIGA) are different from
those measured for HP, particularly in the spectral region between 1600 and 400 cm−1,
highlighting the varied bonding features of the 3D-printed resins [41].

Figures 1 and 2 show photographs of the PMMA specimens with different ZrO2NP
concentrations from the NextDent and ASIGA groups, respectively. The mean and standard
deviation of the translucency are summarized in Tables 3 and 4. The mean translucency of
the control group was significantly higher than those of the NextDent and ASIGA groups
(Tables 3 and 4).
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Table 3. Translucency mean values, SD, and significance between HP and NextDent test groups.

Material ZrO2NP Concentration Mean (SD) p-Value

HP Control 11.04 (1.3)

0.000 *NextDent

0% 6.32 ± 0.48 a,b,c

0.5% 6.40 ± 0.55 a,d,e

1% 6.12 ± 0.33 b,d,f

3% 5.66 ± 0.27 c,e,f,g

5% 4.91 ± 0.35 g

* Statistically significant at a level of 0.05. Small letters indicate an insignificant difference between the pairs.

Table 4. Translucency mean values, SD, and significance between HP and ASIGA tested groups.

Material ZrO2NP Concentration Mean (SD) p-Value

HP Control 11.04 ± 1.3

0.000 *ASIGA

0% 9.26 ± 0.48 a,b

0.5% 8.86 ± 0.75 a,c

1% 8.40 ± 0.47 b,c

3% 7.13 ± 0.47 d

5% 7.46 ± 0.23 d

* Statistically significant at a level of 0.05. Small letters indicate an insignificant difference between the pairs.

One-way ANOVA revealed significant differences in the translucency of the NextDent
group (p < 0.001). The highest translucency was recorded for NextDent (0.5%)
(6.40 ± 0.55) and the lowest for NextDent (5%) (4.91 ± 0.35). Tukey’s post hoc tests
showed significantly lower translucency of the NextDent group compared with that of the
control group (p < 0.001). The NextDent modified with 5% ZrO2NP showed a significant
decrease in translucency compared to the unmodified NextDent. However, NextDent
modified with 0.5% ZrO2NP showed an insignificant increase in translucency compared to
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the unmodified NextDent. Within the modified NextDent group, significant differences
existed between 0.5% vs. 5% and 1% vs. 5%.

One-way ANOVA revealed significant differences in the translucency of the ASIGA
group (p < 0.001) (Table 4). The highest translucency was recorded for ASIGA (0%) (9.26
± 0.48) and the lowest for ASIGA (3%) (7.13 ± 0.47). Tukey’s post hoc tests showed
significantly lower translucency of the ASIGA groups compared with that of the control
group (p < 0.001). The ASIGA modified with 3% and 5% ZrO2NP exhibited a significant
decrease in translucency compared with unmodified ASIGA. A significant variation was
observed between the ZrO2NP-modified ASIGAs. Significant differences were found
between 0.5% vs. 3% and 5%, and 1% vs. 3% and 5% in the ASIGA groups.

The different concentrations of NPs resulted in different mean values for the
two 3D-printed resins. Therefore, a one-way ANOVA test was used, and a significant
p-value was found between the groups (p < 0.001). Significant results from the ANOVA
suggested the application of a post hoc test. Table 5 presents a pairwise comparison of the
samples with different NP concentrations between the two materials. It was found that the
average concentration of translucency in the ASIGA group was significantly higher than
that in the NextDent group.

Table 5. Pair-wise comparison of concentration levels between the two materials.

ASIGA

0% 0.5% 1% 3% 5%

NextDent

0% 0.000 * 0.000 * 0.000 * 0.005 * 0.000 *

0.5% 0.000 * 0.000 * 0.000 * 0.02 * 0.000 *

1% 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *

3% 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *

5% 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *
* Statistically significant at a level of 0.05.

Table 6 lists the 2-way ANOVA results, where single factors (material type and NP
concentration) had a significant effect on the tested property (p < 0.001). Moreover, it was
found that the combined effect of the material and NP concentration showed a significant
impact on the p-value (p = 0.003).

Table 6. Two-way ANOVA results for the combined effects of materials and concentration levels.

Source
Type III
Sum of
Squares

df Mean
Square F-Value p-Value

Corrected Model 329.752a 10 32.975 94.621 0.000 *

Intercept 5839.598 1 5839.598 16,756.418 0.000 *

Material 137.476 1 137.476 394.479 0.000 *

Concentration 42.095 4 10.524 30.198 0.000 *

Material *
concentration 5.880 4 1.470 4.218 0.003 *

Error 34.501 99 0.348

Total 6412.446 110
* Statistically significant at a level of 0.05.

4. Discussion

This study investigated the translucency of 3D-printed denture base resins modified
with ZrO2NPs using a thermal cycling experiment. The null hypothesis of this study
assumes that adding ZrO2NPs to the 3D-printed resin does not affect the translucency of
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the nanocomposite. The null hypothesis was rejected because of a substantial difference
in translucency values between the 3D-printed resins, conventional heat-polymerized
resin, and ZrO2NP-modified 3D-printed resins. Both ASIGA and NextDent groups ex-
hibited significant differences in translucency; however, only ASIGA yielded statistically
significant results.

The oral cavity undergoes thermal stresses due to the uptake of cold and hot liquids.
In this study, the specimens were subjected to 5000 thermal cycles to mimic half a year
of clinical use of the prosthesis under changes in the oral cavity environment [48]. ZrO2
is a biocompatible metal oxide with superior surface hardness, strength, and fracture
toughness [51,52]. ZrO2NPs have been demonstrated as a suitable reinforcing material for
3D-printed PMMA [53]. Furthermore, ZrO2 has thermal stability, corrosion resistance, and
antibacterial and antifungal effects on Aspergillus niger and C. albicans [39,54,55]. Reinforcing
PMMA with ZrO2NPs can endure denture base resins with the favorable characteristics of
ZrO2 [18].

The acceptance of dental prosthetics and patient satisfaction are now dependent on
meeting the esthetic requirements demanded by the patients [9]. To test the translucency of
the resin materials, the samples were placed over a white background. Moreover, to evalu-
ate the uniformity of the thickness, the samples were placed over a black background [55].
The translucency obtained from diffuse reflectance spectra measured using a UV-VIS spec-
trophotometer are proportional to the reflected intensity of UV light. The translucency
increases to higher readings owing to the higher UV reflectance, whereas the average total
translucency decreases to lower values owing to the lower reflectance [24]. The material
became entirely opaque when the measured translucency was zero. Translucency also
increases as the translucency readings increases [12].

Kelly et al. (1996) suggested that translucency is a key feature in material selection
and a major esthetic consideration for dental prostheses [56,57]. The success of a removable
prosthesis depends mainly on how translucent the denture base appears in comparison
with the patient’s oral mucosa [13]. The prosthesis must have an appropriate level of
translucency to appear natural. The goal is to achieve visual harmony between the re-
movable prosthesis and underlying mucosa by giving the PMMA denture base sufficient
translucency to allow the underlying soft tissues to show through, thereby achieving a
“chameleon” [15].

In this study, both 3D-printed resin groups showed low translucency values compared
to heat polymerized PMMA. The low translucency values of the 3D-printed resins are
related to the layer-by-layer printing process, where photopolymerization occurs per
printed layer [58]. Air can be trapped between the printed layers, resulting in voids that
increase the levels of water sorption of 3D-printed resins. This absorbed water disrupts the
UV beam, leading to low translucency [9]. Moreover, in terms of the monomer conversion
rate, the polymerization technique can also explain the low translucency [59]. The low
degree of polymerization of 3D-printed resins leaves unreacted monomers. When the
monomer leaches out of the resin, water diffusion into the resin can occur [9]. The Fillers
used in 3D-printed resins also have different refractive indices that can alter the optical
properties of the composite [11,60]. It has been shown that the translucency decreases with
an increasing the amount of filler added to the resin [26].

According to our findings, adding ZrO2NPs reduced the translucency of 3D-printed
resins. Similarly, Gad et al. showed that adding ZrO2NPs to PMMA decreased its translu-
cency [15]. Moreover, Aszrin et al. (2016) reported an unpredictable negative influence
on translucency by introducing various concentrations of ZrO2, Al2O3, or SiO2 filler [25].
The decrease in translucency results from the optical characteristics of ZrO2NPs and their
distribution within the resin matrix. The translucency decreases because of the crystalline
structure and high opacity of ZrO2NPs that limit the transmission of light through the
composite [15]. However, the esthetics are not affected by the white ZrO2NPs, unlike
metal nanoparticles, such as aluminum, copper, or silver NPs [61]. ZrO2NPs form clusters
that prohibit light transmission, thereby decreasing translucency. This is consistent with
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the findings of a previous study, which concluded that the agglomeration of particles
within the matrix can result in the diffuse reflectance of the UV beam, which decreases
translucency [62].

Translucency is affected by several factors, such as water adsorption, NP concentration,
and the nature of the NPs [9]. However, in our study, all the specimens were subjected to the
same treatment. Comparing the results in Table 3, the ASIGA group was more translucent
than the NextDent group. This is due to the different composition of the materials and the
addition of various amounts of filler. Increasing the filler content decreased the translucency,
consistent with the findings of a previous report [26].

3D printing technology offers advantages for denture base resin fabrication, and the
addition of NPs as a reinforcing agent is recommended to prepare nanocomposites with
better properties than the original materials. A balance between esthetics and mechanical
properties is required. Thus, when selecting a filler concentration that will enhance the
esthetics, care must be taken to avoid any adverse effects on the mechanical properties.
From a clinical point of view, the preparation of denture base materials from nanocompos-
ites with low concentrations of NPs is in terms of translucency. However, more research
is required to optimize the translucency of 3D-printed resins with and without additives.
These improvements can be achieved by modifying the composition of printed resins or by
using NPs with a refractive index close to that of the resin.

As a limitation in this study, only one type of NP and one printing orientation were
used and the specimen did not replicate the design of a denture. In addition, the heat
cycling aging only reflected half a year of intraoral use, and dynamic loading was ab-
sent. Moreover, the lack of chromogenic agents and denture disinfectants is considered
a significant limitation as these agents have a considerable effect on the color of denture
base. Future work should focus on various 3D-printed materials constructed in a denture
configuration and subjected to thermal and mechanical stresses similar to those in the
intraoral environment, as well as using multiple NP types and concentrations, and printing
orientations. In addition, a study of the effect of disinfectants and beverages on the color
stability of the introduced nanocomposite is required.

5. Conclusions

Compared with the heat-polymerized acrylic resin, both 3D-printed resins showed
low translucency values. The translucency was erratically affected by the addition of
ZrO2NPs. The 3D-printed groups modified with ZrO2NPs showed lower translucency
than the unmodified groups. All ASIGA samples demonstrated higher translucency than
NextDent samples. In terms of low translucency, adding a low concentration of ZrO2NPs
is more clinically feasible for 3D printable nanocomposite denture base resins.
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