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Abstract: Carbon-based microwave-absorbing materials with a low cost, simple preparation process,
and excellent microwave absorption performance have important application value. In this paper,
biomass-based carbon fibers were prepared using cotton fiber, hemp fiber, and bamboo fiber as
carbon sources. Then, the precise loading of NiFe2O4 nanoparticles on biomass-based carbon fibers
with the loading amount in a wide range was successfully realized through a sustainable and
low-cost route. The effects of the composition and structure of NiFe2O4/biomass-based carbon
fibers on electromagnetic parameters and electromagnetic absorption properties were systematically
studied. The results show that the impedance matching is optimized, and the microwave absorption
performance is improved after loading NiFe2O4 nanoparticles on biomass-based carbon fibers.
In particular, when the weight percentage of NiFe2O4 nanoparticles in NiFe2O4/carbonized cotton
fibers is 42.3%, the effective bandwidth of NiFe2O4/carbonized cotton fibers can reach 6.5 GHz with
a minimum reflection loss of −45.3 dB. The enhancement of microwave absorption performance is
mainly attributed to the appropriate electromagnetic parameters with the ε’ ranging from 9.2 to 4.8,
and the balance of impedance matching and electromagnetic loss. Given the simple synthesis method,
low cost, high output, and excellent microwave absorption performance, the NiFe2O4/biomass-based
carbon fibers have broad application prospects as an economic and broadband microwave absorbent.

Keywords: biomass-based carbon fibers; NiFe2O4 nanoparticles; electromagnetic parameters;
microwave absorption performance

1. Introduction

With the widespread application of electronic and electrical equipment, wireless
communication systems, and radar stealth technology, the problems of electromagnetic
pollution and electromagnetic interference have become increasingly serious, leading to the
research on electromagnetic wave-absorbing materials receiving increasing attention [1–3].
Microwave-absorbing materials are being widely applied in both civil and military areas,
and the requirements for the material preparation with low cost, high output, and ease to
manufacture, and for the performance with thin thickness, lightweight, wide frequency
band, and strong absorption are also higher and higher, which brings more challenges to
researchers in material preparation and regulation [4–7]. According to the electromagnetic
energy conversion principle, to achieve efficient and broadband absorption of electro-
magnetic waves, microwave-absorbing materials need to have two conditions: one is the
electromagnetic waves can effectively enter the interior of microwave-absorbing materials,
which involves the problem of impedance matching; the other is the absorbing material
can effectively attenuate the electromagnetic waves entering its interior, which involves
the issue of electromagnetic loss [8,9]. Impedance matching and electromagnetic loss are
usually contradictory, and the controllable adjustment of electromagnetic parameters plays
a decisive role in balancing impedance matching and electromagnetic loss [10–12].
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In recent years, carbon materials have attracted extensive attention from microwave-
absorbing material researchers because of their good chemical and thermal stability, excel-
lent dielectric properties, and low density [13,14]. Optimizing the composite consisting of
magnetic nanomaterial and carbon material can not only overcome the defect of the high
density of magnetic materials such as ferrite, magnetic metal, magnetic metal oxide, and al-
loy, but also regulate electromagnetic parameters and improve electromagnetic matching,
achieving better electromagnetic wave absorption than a single microwave-absorbing
material. Various carbon materials, such as carbon fibers, carbon nanotubes, graphene,
and metal organic-framework compounds have been widely used as carbon sources of
carbon-based composite microwave-absorbing materials [15–18]. Biomass is a cheap, eco-
friendly, and resource-rich renewable resource. After the carbonization of biomass, porous
carbon materials with multi-stage pore size distribution can be obtained [19,20]. Recent
studies have found that the porous carbon structure can not only reduce the density of ma-
terials, but also enhance impedance matching and achieve excellent microwave absorption
performance [21,22]. Zhou et al. [23] prepared three-dimensional porous carbon/Fe3O4@Fe
at different calcination temperatures using a towel gourd sponge as carbon source. When
the calcination temperature was 600 ◦C, the minimum reflection loss (RL) of the com-
posite was −49.6 dB with an effective bandwidth of 5 GHz. The synergistic effects of
three-dimensional porous structure, interface polarization, dielectric loss, and magnetic
loss contribute to the enhancement of microwave absorption performance. Therefore, it is
a sustainable, ubiquitous, and low-cost method to obtain porous carbon materials from
biomass. Because of the unique characteristics, such as hierarchical structure, periodic
mode, and some individual nanostructures, it is desirable to prepare porous carbon mi-
crowave absorbent using biomass under mild conditions. Although some progress has
been made in the exploration of such materials, the proportion regulation of porous carbon
materials and magnetic components is the basis and key for the continuous and controllable
regulation of electromagnetic parameters, which requires breakthroughs in the selection of
carbon sources, the choice of preparation methods, and the control of process conditions.

Some previous results, both for conductive and magnetic inclusions, showed the
influence of the shape of the additives in the electromagnetic behavior of the composites.
Pinto et al. showed how additives based on magnetic metallic iron with the same crystallo-
graphic structure but with different morphologies (filaments and spherical particles) confer
different electromagnetic characteristics [24]. Other works, such as Copper microwires
composite and Fe-based amorphous magnetic microwires with a high aspect relationship
allowed the obtention of sheets of thickness below 1 mm with reflection loss below −20 dB
in the X-band [25,26]. Natural plant fiber materials have orderly optimized and stable mor-
phology and structure. Moreover, the main component of natural plant fiber is cellulose,
which is an economical and feasible raw material for the preparation of porous carbon
fibers with multi-level pore size distribution. At present, the research of natural plant fibers
in the field of microwave-absorbing materials has just started [27–29]. Ferrite nanoparticles
have high permeability and good oxidation resistance. The electromagnetic parameters of
carbon matrix composites can be continuously adjusted by regulating the loading amount
of ferrite nanoparticles [30,31]. This feature can not only overcome the shortcomings of
easy agglomeration and high density of magnetic materials, but also facilitate the study of
electromagnetic loss mechanism and broaden the frequency band of microwave absorbents.

In this paper, we take the carbonized cotton fiber, carbonized hemp fiber, and car-
bonized bamboo fiber obtained by calcination of cotton fiber, hemp fiber, and bamboo fiber
as carbon sources, and introduce different contents of NiFe2O4 nanoparticles, preparing a
new carbon-based microwave-absorbing material with excellent microwave absorption per-
formance by continuously adjusting electromagnetic parameters through composition de-
sign. The effects of the composition and structure of NiFe2O4 nanoparticles/biomass-based
carbon fibers on electromagnetic parameters and microwave absorption properties were
systematically investigated. The electromagnetic loss mechanism was also revealed, which
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provided theoretical support and experimental basis for designing cheap, lightweight,
and efficient carbon-based microwave-absorbing materials.

2. Materials and Methods
2.1. Materials

Ferric chloride (FeCl3·6H2O), nickel nitrate (Ni(NO3)2·6H2O), and sodium hydrox-
ide (NaOH) are analytical reagent grade, which were purchased from Shanghai Macklin
Biochemical Co., Ltd. (Shanghai, China), Tianjin Bodi Chemical Co., Ltd. (Tianjin, China),
and Tianjin Kaitong Chemical Reagent Co., Ltd. (Tianjin, China), respectively. The natural
plant fibers were purchased from Jiangxi Zhonggan Medical Instrument Co., Ltd. (Nan-
chang, China). High purity N2 (Taiyuan Taineng Gas Co., Ltd., Taiyuan, China) was used
as protective gas.

2.2. Preparation of NiFe2O4/Carbonized Cotton Fibers

NiFe2O4/carbonized cotton fibers were fabricated through a three-step process.
(1) An appropriate amount of cotton fibers were put into a porcelain boat, then cal-

cinated at 700 ◦C for 3 h in a tubular electric furnace in a N2 atmosphere. The sample
obtained was carbonized cotton fiber, named CCF.

(2) Amounts of 0.01 mol FeCl3·6H2O and 0.005 mol Ni(NO3)2·6H2O were dissolved in
30 mL water, and then 30 mL NaOH solution with the concentration of 2 mol/L was added
under constant stirring. After stirring for 0.5 h, the precursor was put into a hydrothermal
reactor and heated, at 200 ◦C, for 15 h in an electric blast drying oven. After cooling,
washing, and drying at 60 ◦C for 12 h, NiFe2O4 nanoparticles were prepared.

(3) First, 0.3 g, 0.5 g, 1.0 g, and 1.5 g of NiFe2O4 nanoparticles were put into a beaker
with 30 mL distilled water, respectively, and ultrasonic for 0.5 h in an ultrasonic cleaner
to form NiFe2O4 suspension. Then, a certain quality of carbonized cotton fibers were
put into the beaker and ultrasonicated for 1 h. Finally, the carbonized cotton fibers were
taken out by tweezers, and dried at 60 ◦C for 6 h. Different contents of NiFe2O4 nanoparti-
cles were loaded on the carbonized cotton fibers, and the obtained samples were named
NiFe2O4/CCF-1, NiFe2O4/CCF-2, NiFe2O4/CCF-3, and NiFe2O4/CCF-4, respectively.

2.3. Preparation of NiFe2O4/Carbonized Hemp Fibers and NiFe2O4/Carbonized Bamboo Fibers

Carbonized hemp fibers and carbonized bamboo fibers were prepared by changing the
cotton fibers to hemp and bamboo fibers under the same conditions. NiFe2O4/carbonized
hemp fibers and NiFe2O4/carbonized bamboo fibers were designed with the same preparation
method of NiFe2O4/CCF-2, which were named NiFe2O4/CHF and NiFe2O4/CBF, respectively.

2.4. Characterization

XRD-6100 powder X-ray diffractometer (XRD, Shimadzu, Kyoto, Japan) was used
to analyze the phase composition of the samples. The morphology of the samples was
characterized by a JSM-7001F scanning electron microscope (SEM, Japan Electronics Co.,
Ltd., Kyoto, Japan) with energy dispersive spectrometer (EDS, Bruker, Karlsruhe, Germany)
and a JEM-1011 transmission electron microscope (TEM, Japan Electronics Co., Ltd., Ky-
oto, Japan). STA6000 synchronous thermal analyzer (PerkinElmer, Waltham, MA, USA)
was used for thermogravimetric (TG) analysis, and the temperature ranged from room
temperature to 700 ◦C, with a heating rate of 10 ◦C/min. The magnetic properties of the
samples were studied by using a Lakeshore 7404 vibrating sample magnetometer (VSM,
LakeShore Company, Columbus, OH, USA). For the microwave absorption performance
test, the synthetic product was mixed with paraffin and pressed into a cylindrical compact
(Φout = 7.0 mm, Φin = 3.0 mm). Then, the annular test sample in the coaxial mold was
connected with an Agilent N5244A vector network analyzer (Agilent Technologies Inc.,
Santa Clara, CA, USA) to test the scattering parameters (abbreviated as S parameters,
including S11, S21, S12, and S22). The complex permittivity (εr) and the complex perme-
ability (µr) of the sample were calculated based on the S parameters in the vector network



Nanomaterials 2022, 12, 4063 4 of 15

analyzer in the frequency range of 2–18 GHz. Based on the above-measured εr and µr,
the transmission line theory was used to calculate the RL, which could be calculated by the
following formulas: [32,33]

Zin = (µr/εr)1/2tanh[j(2πfd/c)(µrεr)1/2], (1)

RL(dB) = 20log|(Zin − Z0)/(Zin + Z0)|, (2)

where Zin is the input impedance of the absorbent, Z0 is the characteristic impedance of
the free space, f is the frequency of the electromagnetic wave, d is the thickness of the
absorbent, and c is the speed of light in free space.

3. Results

XRD was used to analyze the phase of the samples. Figure 1 shows the XRD spec-
tra of CCF, NiFe2O4/CCF-1, NiFe2O4/CCF-2, NiFe2O4/CCF-3, and NiFe2O4/CCF-4.
For CCF, wide peaks at approximately 10◦–30◦ and 40–50◦ indicate amorphous carbon [34].
For NiFe2O4/CCF-1, NiFe2O4/CCF-2, NiFe2O4/CCF-3, and NiFe2O4/CCF-4, apart from
the diffraction peaks of amorphous carbon, all diffraction peaks correspond to the NiFe2O4
spinel phase (JCPDS NO.10-0325). The sharp diffraction peaks indicate the good crys-
tallinity of NiFe2O4. From NiFe2O4/CCF-1 to NiFe2O4/CCF-4, the diffraction peaks of
NiFe2O4 gradually increase, and the amorphous carbon peaks gradually weaken, indicat-
ing the increase in the loading amount of NiFe2O4. These results show that the coexistence
of NiFe2O4 and amorphous carbon can be achieved by this method. In addition, the XRD
patterns have no impurity peak, indicating the high purity of NiFe2O4 nanoparticles.
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Figure 1. XRD patterns of CCF, NiFe2O4/CCF-1, NiFe2O4/CCF-2, NiFe2O4/CCF-3, and NiFe2O4/CCF-4.

The morphology of the synthetic samples was studied by SEM, as shown in Figure 2.
Figure 2a,b shows the SEM images of CCF, and it is clear that the CCF is twisted and
fibrous with a smooth fiber surface. Figure 2c–i shows the SEM images of NiFe2O4/CCF-1,
NiFe2O4/CCF-2, NiFe2O4/CCF-3, and NiFe2O4/CCF-4. It is obvious that the NiFe2O4
nanoparticles are successfully loaded on CCF. Moreover, the NiFe2O4 nanoparticles have
octahedral morphology, and the particle size is about 100 nm. From NiFe2O4/CCF-1 to
NiFe2O4/CCF-4, the number of the NiFe2O4 nanoparticles on CCF shows an upward
trend, indicating the increase in the loading amount of NiFe2O4 nanoparticles, which is
consistent with the XRD results. The TEM images of the NiFe2O4 nanoparticles were shown
in Figure S1. It is clear that the NiFe2O4 nanoparticles have clear edges and corners, and the
size of the vast majority of nanoparticles is in the range of 80–120 nm. Figure 3 shows
the EDS element diagram and elemental mapping images of NiFe2O4/CCF-2. It displays
that the NiFe2O4/CCF-2 is mainly composed of C, O, Fe, and Ni elements, and the O, Fe,
and Ni elements are displayed along the NiFe2O4 nanoparticles.
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To quantitatively analyze the loading amount of NiFe2O4 nanoparticles on the NiFe2O4/
carbonized cotton fibers, we studied the TG curves of NiFe2O4/carbonized cotton fibers
in the air atmosphere, as shown in Figure 4. The TG curves show the mass percentage
of the residue in the process of temperature change. Since the carbonized cotton fiber
can be burned completely in air atmosphere, and the residual product is only NiFe2O4,
the loading amount of NiFe2O4 nanoparticles can be estimated according to the TG curves.
It is estimated that the loading amount of NiFe2O4 nanoparticles in NiFe2O4/CCF-1,
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NiFe2O4/CCF-2, NiFe2O4/CCF-3, and NiFe2O4/CCF-4 is 7.6 wt% (weight percentage),
21.0 wt%, 42.3 wt%, and 55.3 wt%, respectively. In addition, the NiFe2O4/carbonized
cotton fibers have small weight loss below 450 ◦C, displaying good thermal stability.
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To study the magnetic properties of NiFe2O4/CCF-1, NiFe2O4/CCF-2, NiFe2O4/CCF-3,
and NiFe2O4/CCF-4, we measured the hysteresis loops at room temperature within the
magnetic field of −20 kOe–20 kOe, as shown in Figure 5. It can be seen that these
four samples all show ferromagnetic behavior. The saturation magnetization (MS) of
NiFe2O4/CCF-1, NiFe2O4/CCF-2, NiFe2O4/CCF-3, and NiFe2O4/CCF-4 is 4.7 emu/g,
10.5 emu/g, 22.3 emu/g, and 30.3 emu/g, respectively. It is obvious that the MS increases
with the increase in the loading amount of NiFe2O4 nanoparticles, and this result is consis-
tent with the XRD, SEM, and TG results.
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From the above analysis, NiFe2O4/carbonized cotton fibers with different loading
amounts of NiFe2O4 nanoparticles were successfully prepared. Generally speaking, elec-
tromagnetic parameters are the most direct characterization parameters of the interaction
between absorbing materials and electromagnetic waves, so the regulation of electromag-
netic parameters is the most direct and effective means of designing absorbing materials.
The most important electromagnetic parameters are complex permittivity (εr = ε′ − jε”) and
complex permeability (µr = µ′ − jµ”). ε′ and ε”, respectively, represent the capacity and loss
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of electric field energy, while µ′ and µ”, respectively, represent the storage and loss of mag-
netic energy [35,36]. Figure 6 shows the complex permittivity and complex permeability of
CCF, NiFe2O4/CCF-1, NiFe2O4/CCF-2, NiFe2O4/CCF-3, and NiFe2O4/CCF-4 with the
filling ratio of 25 wt% in paraffin matrix. As can be seen from Figure 6a,b, the ε′ all show a
downward trend in the frequency range of 2–18 GHz. This is a typical frequency dispersion
phenomenon, which widely exists in carbon materials and is conducive to microwave
absorption [37,38]. In addition, the ε′ decreases with the increase in NiFe2O4 content owing
to the poor conductivity of NiFeO4 nanoparticles. This is because the introduction of the
NiFeO4 nanoparticles into carbonized cotton fibers hinders the electron migration, result-
ing in fewer conductive network connections and reduced conductivity of the composite.
For NiFe2O4/CCF-4, the ε” is stable at about 2.1 in the frequency range of 2–18 GHz, while
the ε” slowly decreases from 7.6, 7.4, 4.4, and 3.5 to 5.1, 4.9, 3.4, and 2.4, respectively, for CCF,
NiFe2O4/CCF-1, NiFe2O4/CCF-2, and NiFe2O4/CCF-3. According to the Debye theory,
the relationship between ε′ and ε” can be further deduced as the following formula: [39,40].
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where εs and ε∞ are static dielectric constant and dielectric constant at infinite frequency,
respectively. Therefore, the Debye relaxation process can be represented by the Cole–Cole
semicircle, and a semicircle represents a relaxation process. As shown in Figure S2, the CCF,
NiFe2O4/CCF-1, NiFe2O4/CCF-2, and NiFe2O4/CCF-3 display two Cole–Cole semicircles,
and the NiFe2O4/CCF-4 displays three Cole–Cole semicircles. The distinct Cole–Cole semi-
circles indicate the occurrence of the polarization relaxation process, and NiFe2O4/CCF-4
shows a stronger polarization relaxation behavior. As can be seen from Figure 6c,d, the µ′

and µ” are very low for CCF, showing a weak storage and loss of magnetic energy in the
range of 2–18 GHz. Moreover, the µ” shows three vibration peaks at about 7 GHz, 12 GHz,
and 17 GHz, and increases with the increase in NiFe2O4 content due to the magnetic prop-
erties of NiFe2O4 nanoparticles. Generally speaking, the magnetic loss is usually related
to natural resonance, exchange resonance, and eddy current loss [41]. Eddy current loss
can be determined by C0 (C0 = µ”µ′−2f−1 = 2πµ0σd2/3) [42,43]. If the main reason for the
magnetic loss is eddy current loss, the value of C0 is constant. The C0 displays a similar
vibration trend to that of µ” in the frequency range 2–18 GHz (Figure S3), confirming that
the natural resonance and exchange resonance are the main magnetic loss mechanism.

Generally speaking, a RL value lower than −10 dB means more than 90% microwave
absorption. Only absorbent with RL lower than −10 dB can be used in practice, so the
effective bandwidth represents the width of the frequency range when RL = −10 dB. Ac-
cording to the formulas (1) and (2) above, the RL is closely related to the thickness of
the absorbent and the frequency of the electromagnetic wave. The minimum RL and
effective bandwidth are obtained from the RL curve, so the minimum RL and effec-
tive bandwidth of microwave absorption are closely related to the thickness of the ab-
sorbent. Therefore, we simulated the RL curves of CCF, NiFe2O4/CCF-1, NiFe2O4/CCF-2,
NiFe2O4/CCF-3, and NiFe2O4/CCF-4 at different thicknesses, as shown in Figure 7. As can
be seen from Figure 7a, for CCF, the effective bandwidth is 4.5 GHz (13.5–18 GHz) at a
thickness of 1.5 mm. For NiFe2O4/CCF-1, when the thickness is 2 mm, the effective
bandwidth is also 4.5 GHz (10.5–15 GHz). For NiFe2O4/CCF-2, when the thickness is
2 mm, the effective bandwidth can reach 5.8 GHz (11.7–17.5 GHz). For NiFe2O4/CCF-3,
when the thickness is 2.5 mm, the effective bandwidth reaches 6.5 GHz (11.3–17.8 GHz)
with a minimum RL of −33.2 dB; when the thickness rises to 3 mm, the minimum RL
is −45.3 dB. For NiFe2O4/CCF-4, the minimum RL is −18.8 dB with an effective band-
width of 5.6 GHz (11.9–17.5 GHz). In addition, as shown in Figure 7a–e, it can be seen
that the RL peak moves to the low-frequency region with increasing thickness. Figure 7f
shows the RL curves at 2.5 mm for these five samples. Obviously, the RL peak shifts
to the high-frequency region by decreasing the complex permittivity under the same
thickness by comparing these five samples, and this can be explained by the geometric
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effect [44,45]. When the thickness (tm) of the absorbent follows the 1/4 wavelength model:
tm = nλ0/4(|µr||εr|)1/2 = nc/4f m(|µr||εr|)1/2(n =1,3,5, . . . ), the input impedance is the
same as the air wave impedance, and the RL (dB) reaches a minimum value. Simulation and
calculation of the absorber thickness (tm) versus peak frequency (f m) for these five samples
are shown in Figure S4, and it is obvious that the calculated results agree well with the
simulated values. For the 1/4 wavelength model, the f m is inversely proportional to the tm
and complex permittivity. For the same sample with the same µr and εr, the f m is inversely
proportional to the tm, so the RL curve moves to the low frequency with increasing the thick-
ness. For different sample in the same thickness, the RL curve moves to the high frequency
with decreasing the electromagnetic parameters. Thus, from CCF to NiFe2O4/CCF-4,
it is understandable that the optimal RL moves to the high thickness with decreasing
the complex permittivity for these five samples. As an essential standard for evaluating
microwave absorption performance, the minimum RL value and effective bandwidth are
also compared with other reported carbon-based absorbents, as shown in Table 1 [46–53].
Obviously, the NiFe2O4/carbonized cotton fibers show wider effective bandwidth and
stronger RL with a low filling rate. What is more, compared with the microwave absorbents
such as ferrite, magnetic metal, magnetic metal oxide, and alloy, the NiFe2O4/CCF has a
lower density; compared with the preparation of carbon fiber, the CCF has a very simple
preparation method [54]. In a word, the use of cotton fibers, simple preparation methods,
and excellent microwave absorption performance give NiFe2O4/CCF broad application
prospects as an economical, lightweight, and broadband microwave absorbent.
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Table 1. Microwave absorption performance of some reported carbon-based absorbents.

Sample Filling
Rate (wt%)

Effective Absorption
Bandwidth (GHz)

Minimum
RL (dB) References

MOF-Derived Porous Co/C Nanocomposites 60 5.8 −35.3 [46]
NiFe2O4 hollow particle/graphene 15 4.5 −40.9 [47]

Ferrite/Co/porous carbon 70 4.8 −31.0 [48]
Fe@porouscarbon@carbonfiber 25 5.2 −46.2 [49]

RGO-PANI-NiFe2O4 30 5.3 −49.7 [50]
Ni/Carbon nanocomposites 25 4.4 −21.2 [51]

CoNi@Ccomposites 50 5.0 −35.8 [52]
CoFe2O4@graphene composites 45 4.6 −42 [53]

NiFe2O4/carbonized cotton fibers 25 6.5 −45.3 This work
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Impedance matching and electromagnetic loss are two key factors affecting microwave
absorption performance. The impedance matching can be expressed by the impedance
matching coefficient (Z = Zin/Z0 = (µr/εr)1/2) [55,56]. The closer the Z is to 1, the bet-
ter the impedance matching is. Recent studies have found that the εr value is much
higher than the µr value for carbon materials [57,58]. Therefore, the decrease in the εr
can increase the impedance matching coefficient and improve the impedance matching
of the absorbent. Moreover, the electromagnetic loss can be determined by the dielec-
tric loss factor (tanδe = ε”/ε′) and magnetic loss factor (tanδm = µ”/µ′) [59,60]. Figure 8
shows the impedance matching coefficient, tanδe, and tanδm of CCF, NiFe2O4/CCF-1,
NiFe2O4/CCF-2, NiFe2O4/CCF-3, and NiFe2O4/CCF-4. As seen in Figure 8a, the Z follows
the order of CCF < NiFe2O4/CCF-1 < NiFe2O4/CCF-2 < NiFe2O4/CCF-3 < NiFe2O4/CCF-4,
which is opposite to the complex permittivity. So the existence of NiFe2O4 with relatively
lower conductivity improves the percolation threshold in the NiFe2O4/biomass-based
carbon fibers system and hence maintains a good impedance matching [61]. As seen
in Figure 8b,c, it is obvious that the tanδe is much larger than the tanδm, showing that
the dielectric loss plays a major role. What is more, the tanδe shows an upward trend
in the frequency of 2–18 GHz, which is highly beneficial to high-frequency microwave
absorption. The tanδm shows a similar tendency to that of µ”, showing that the magnetic
loss is mainly influenced by the imaginary part of the complex permeability. For CCF
and NiFe2O4/CCF-1, although the tanδe is higher than 0.4 in the frequency of 2–18 GHz,
the impedance matching coefficient is much lower than that of NiFe2O4/CCF-3, so the
microwave absorption performance is slightly worse. For NiFe2O4/CCF-4, although the
impedance matching is the best, the electromagnetic loss is relatively small, which is not
conducive to microwave absorption. For NiFe2O4/CCF-3, the tanδe is only lower than
NiFe2O4/CCF-1, while the tanδm is only lower than NiFe2O4/CCF-4, so the NiFe2O4/CCF-3
has relatively high electromagnetic loss. In addition, the low value of −45.3 dB at 11 GHz
may be attributed to the high tanδe and tanδm value in the range of 10–14 GHz. Therefore,
the excellent microwave absorption performance of NiFe2O4/CCF-3 can be attributed to
the appropriate loading amount of NiFe2O4 nanoparticles with moderate electromagnetic
parameters, and the balance of impedance matching and electromagnetic loss.
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During the research, NiFe2O4/carbonized hemp fibers were also successfully prepared
by changing the cotton fibers to hemp fibers under the same conditions. Figure 9a shows the
XRD spectrum of NiFe2O4/CHF. In addition to the diffraction peaks of NiFe2O4, the wide
peaks at 10◦–30◦ and 40–50◦ are the diffraction peaks of carbonized hemp fibers. Figure 9b
shows the TG curves of NiFe2O4/CHF in the air atmosphere, revealing that the loading
amount of NiFe2O4 nanoparticles in NiFe2O4/CHF is 8.3 wt%. Figure 10a–d show the SEM
images of NiFe2O4/CHF at different magnifications. From the SEM images, we can observe
that the NiFe2O4 nanoparticles are attached to the surface of the carbonized hemp fibers.
Figure 10e–i show the element diagram and elemental mapping images of NiFe2O4/CHF
in Figure 10d. It displays that the NiFe2O4/CHF is mainly composed of C, O, Fe, and Ni
elements, and the Fe, Ni, and O elements are distributed along the NiFe2O4 nanoparticles
on the carbonized hemp fibers. In addition, when the hemp fibers were changed to
bamboo fibers under the same conditions, NiFe2O4 nanoparticles were also loaded on
the carbonized bamboo fibers. Moreover, the microwave absorption performance of the
NiFe2O4/carbonized bamboo fibers was also investigated (See Supporting Information
Figure S5–S7). In general, the experimental results indicate that this facile self-assembly
technology is universally applicable in designing other types of carbon matrix composites.
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Figure 10. (a–d) SEM images, (e) EDX spectra, and (f–i) elemental mapping images of NiFe2O4/
carbonized hemp fibers.



Nanomaterials 2022, 12, 4063 12 of 15

The electromagnetic properties of NiFe2O4/CHF dispersed in paraffin matrix with
33 wt % are shown in Figure 11. Figure 11a illustrates the complex permittivity of
NiFe2O4/CHF. The ε′ decreases from 9.4 to 5.5, and the ε” is in the range of 2.1–2.6 with
three vibration peaks. Figure 11b shows the complex permeability of NiFe2O4/CHF.
Interestingly, the µ” shows an opposite trend to ε”, showing that there is an obvious
electromagnetic synergistic effect, which is conducive to electromagnetic loss. Figure 11c
displays the simulated RL curve of NiFe2O4/CHF at different thicknesses. The effective
bandwidth is 5.85 GHz (12.15–18 GHz) with a minimum RL of −23.1 dB at a thickness of
2.0 mm. Figure 11d shows the impedance matching coefficient of NiFe2O4/CHF, which
shows an upward trend in the frequency range 2–18 GHz, implying that the well-matched
characteristic impedance contributes to high-frequency microwave absorption. Figure 11e
illustrates the dielectric loss factor and magnetic loss factor. The curves of dielectric loss
tangent and magnetic loss tangent are similar to ε” and µ”, respectively. This illustrates that
the loss tangent is mainly affected by the imaginary part of the complex permittivity and
permeability. Moreover, the dielectric and magnetic loss tangent present opposite vibration
peaks, indicating a strong electromagnetic coupling effect [62]. In addition, the dielec-
tric loss tangent gradually increases, which is in favor of high-frequency electromagnetic
loss. Figure 11f corresponds to the Cole–Cole curve of NiFe2O4/CHF, which has three
Cole–Cole semicircles, meaning that it has multiple relaxation processes and promoted
interfacial polarization. Such polarization processes are conducive to dielectric loss. In a
word, the impedance matching, and the synergy between dielectric loss and magnetic loss
contribute to the enhanced microwave absorption performance of NiFe2O4/CHF.
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4. Discussion

To sum up, taking cotton fiber, hemp fiber, and bamboo fiber as the carbon source,
the accurate loading of NiFe2O4 nanoparticles with different contents on biomass-based
carbon fibers was successfully achieved. The results show that the impedance match-
ing is optimized, and the microwave absorption performance is improved after loading
NiFe2O4 nanoparticles on the biomass-based carbon fibers. In particular, when NiFe2O4
nanoparticles are loaded with 42.3 wt%, the effective bandwidth of the NiFe2O4/carbon
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cotton fiber can reach 6.5 GHz with a minimum RL of −45.3 dB. The enhancement of
microwave absorption performance is attributed to the appropriate loading amount of
NiFe2O4 nanoparticles with moderate electromagnetic parameters, and the balance of
impedance matching and electromagnetic loss. This study is expected to provide a new
way for designing new carbon-based microwave-absorbing materials.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12224063/s1, Figure S1: (a,b) TEM images of the NiFe2O4
nanoparticles in different magnification; Figure S2: Cole–Cole curves of (a) CCF, (b) NiFe2O4/CCF-1,
(c) NiFe2O4/CCF-2, (d) NiFe2O4/CCF-3, and (e) NiFe2O4/CCF-4; Figure S3: Values of C0 (C0 = µ”µ′−2f−1)
of CCF, NiFe2O4/CCF-1, NiFe2O4/CCF-2, NiFe2O4/CCF-3, and NiFe2O4/CCF-4; Figure S4:
Simulation and calculation of the absorber thickness (tm) versus peak frequency (f m): (a) CCF,
(b) NiFe2O4/CCF-1, (c) NiFe2O4/CCF-2, (d) NiFe2O4/CCF-3, and (e) NiFe2O4/CCF-4; Figure
S5: XRD pattern of NiFe2O4/carbonized bamboo fibers; Figure S6: (a–d) SEM images, (e) EDX
spectra, and (f–i) elemental mapping images of NiFe2O4/carbonized bamboo fibers; Figure S7:
Frequency dependence of the simulated reflection loss for NiFe2O4/carbonized bamboo fibers at
different thicknesses.
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