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Abstract: This study focuses on overcoming the agglomeration issue of nano-SiO2 powder in cement,
facilitating the strengthening mechanism of cement-based materials. A nano-SiO2 precursor solution
(NSPS) was added to cement-based materials to replace nano-SiO2 powder. The influencing laws
of the alkalinity and dosage of the NSPS on the mechanical properties of cement were investigated.
Further, the strengthening mechanism of the mechanical properties of cement-based materials after
internal nano-SiO2 production was analysed. The results show that (1) when the alkalinity of the
precursor solution is a weak acid (pH = 6), the compressive strength of cement-based materials after
internal nano-SiO2 production is 25%~36% higher than that of pure cement-based materials and
16%~22% higher than that of cement-based materials with silica fume; (2) when the solid content
of SiO2 in the current displacement solution is about 0.16% of the cement mass, the compressive
strength of the prepared cement-based material is the highest. With the continuous increase in the
solid content of SiO2 in the precursor solution, the compressive strength of cement-based materials
after internal nano-SiO2 production decreases but is always greater than the compressive strength
of the cement-based material mixed with nano-SiO2 micro powder. According to a microstructural
analysis, nano-SiO2 particles that precipitate from the precursor solution can facilitate the hydration
process of cement and enrich the gel products formed on the cement particle surface. In addition,
new network structures among cement particles are formed, and precipitated nano-SiO2 particles
fill in the spaces among these cement particles as crystal nuclei to connect the cement particles
more tightly and compact the cement-based materials. This reinforces the mechanical properties of
cement-based materials.

Keywords: nano-SiO2 precursor solution (NSPS); internal production; cement-based materials;
compressive strength; strengthening mechanism

1. Introduction

Nano-SiO2 (NS) is a typical nanomaterial used for the modification of cement-based
materials; its diameter is about 10–100 nm. With a smaller particle size and higher poz-
zolanic activity than silica powder, nano-SiO2 can be used in fillers, volcanic ash, and
seeds more effectively [1–5]. It can also react quickly with calcium hydroxide to generate
calcium silicate hydrate, facilitating hydration reactions of gel materials and compacting
their microstructure [6,7]. This improves the structure and performance of cement mor-
tar and cement mortar–aggregate interfaces, facilitating improvements to the mechanical
properties, durability, and impermeability of concrete [8–13]. These advantages have led
to nano-SiO2 being widely used in the modification of cement-based composites [14,15].
The results of [16,17] show that nano-SiO2 can improve the early strength of concrete but
has little impact on the later strength. The study found that after the incorporation of
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about 3% nano-SiO2 to replace silica ash, the strength of cement stone, cement sand, and
concrete was improved compared with the use of silica ash (10%) alone. The strength of
cement stone increased by about 20%, the strength of cement sand increased by about 10%,
and the increase in concrete strength was less than 10%. Su Yong [18] believes that the
excessive incorporation of nano-SiO2 will cause a sharp increase in water demand and
nano-SiO2 dispersion deterioration, causing the strength of concrete to decrease. Based
on the above analysis, it can be seen that although nanomaterials have a certain effect on
enhancing cement-based materials, the improvement effect is not substantial, which is far
from people’s expectations for nanomaterials.

Based on previous research by the authors [19], an NSPS can be prepared using the
liquid-phase method. NSPS solutions are acid solutions in which nano-SiO2 particles have
not yet precipitated. After it is added to cement mortar, SiO2 precipitates as nanoparti-
cles that may disperse uniformly in cement mortar. This preparation method not only
requires simple technology and is low-cost but can also easily mitigate the agglomeration
issue affecting nano-SiO2 [20]. The aforementioned studies only focus on the preparation
technique of the precursor solution, in addition to the synthesis and precipitation of nano-
SiO2 in cement-based materials. However, a systematic and in-depth experimental study
and mechanism analyses on how cement-based materials participate in the reaction and
whether they contribute to the improvement of the mechanical properties of cement-based
materials are imperative.

This paper focuses on how an NSPS can enhance the mechanical properties of cement-
based materials. With pure cement-based materials and cement-based materials mixed
with nano-SiO2 mineral powder as reference materials, through the combination of a
compressive strength test and scanning electron microscopic (SEM) detection test, this
paper studies how an NSPS with different pH values participates in the hydration reaction
of cement-based materials; the influence of the solid content of nano-SiO2 in the precursor
solution on the hydration products; and how the generated hydration products can improve
the compressive strength of cement-based materials [2]. Finally, the basic principle of the
hydration of cement-based materials generated with nano-SiO2 is analysed in the form of a
mechanism diagram. The gel products generated by hydration act on the pores between
cement particles to enhance the mechanical properties of cement-based materials [20].

2. Raw Materials and Test Methods
2.1. Raw Materials

(1) Cement
P.O 42.5 cement was produced by ZHONG LIAN Cement Group, Zhonglian, Qingdao,

China. Its density was 3.14 g/cm3, and the water requirement for normal consistency was
28.0%. The 0.08 mm square hole sieve residue was 1.02%, and the specific surface area was
3300 cm2/g. Its specific chemical composition is given in Table 1.

Table 1. Chemical composition of cement.

Ingredient SiO2 Al2O3 Fe2O3 CaO MgO Na2O f-CaO Loss

Content/% 21.85 5.62 2.99 61.55 2.64 0.44 0.92 2.53

(2) Sodium silicate
Sodium silicate was the silicon source for preparing the nano-SiO2 precursor solu-

tion based on the liquid-phase method; it is an adhesive in aqueous silicate solutions.
The sodium silicate solution was obtained from Zhonglian Cement Group, Zhonglian,
Qingdao, China. Its specific physical properties and chemical composition are given in
Tables 2 and 3, respectively.
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Table 2. Physical performance index of Water Glass.

Main
Ingredients Modulus Baume

(◦)
Moisture

Content (%)
Density
(g/cm3)

Melting Point
(◦C)

Boiling
Point (◦C)

Vapor Pressure
(kPa)

Na2SiO3 3.15 38 63 2.33 1410 2355 18

Table 3. Chemical Composition of Water Glass.

Chemical Element SiO2 Na2O Al2O3 Fe2O3 CaO K2O TiO2 S

Content (%) 71.60 26.52 0.72 0.22 0.14 0.15 0.04 0.38

(3) Acetic acid
The mass fraction of the acetic acid medium used was 99% (analytically pure), and the

physical properties of the acetic acid media are given in Table 4.

Table 4. Physical properties of acetic acid.

Molecular
Formula

Density
(kg/L)

Substance
Concentration

(mol/L)

Viscosity
(m. Pa.s)

Specific Heat
Capacity

(kJ/(kg·°C))

Saturated Vapor
Pressure (kPa)

Boiling
Point
(°C)

Melting
Point
(°C)

CH3COOH 1.05 17.14 1.22 2.08 1.52 117.9 16.6

(4) Nano-SiO2 mineral powder
Nano-SiO2 powder, an amorphous white powder with a particle size ranging between

1 and 100 nm, was chosen as the control group. It is non-toxic, tasteless, and non-polluting,
with a spherical microstructure that looks like a flocculent and networked quasi-granular
structure. Its molecular and structural formula is SiO2, and it is insoluble in water. The
nano-SiO2 powder was produced by a company in Shanghai; its specific physical properties
are given in Table 5.

Table 5. Physical Properties of Nano-SiO2 Powder.

Surface Whiteness Average Grain
Diameter (nm)

Specific Area
(m2/g)

Density
(g/cm3)

Loss on
Drying (%)

Melting
Point (°C)

Element
Content (%)

White
powder 94.7 ≤20 600 2.6 5.1 1610 SiO2 ≥ 99.9

2.2. Mix Design and Preparation of Specimens
2.2.1. Preparation of NSPS

Sodium silicate solution was dropped into the diluted acetic acid excitant solution
using a dropper, during which the mixture was stirred quickly to avoid transient coagula-
tion into flocculates because of excessive local alkalinity. The pH changes were monitored
throughout the titration process using an acidimeter until the pH of the solution increased
to the target value. The NSPS was prepared following this procedure.

2.2.2. Calculation of Available SiO2 Solid Content in the Precursor Solution

The available SiO2 solid content in the precursor solution was calculated as follows:

mSiO2 = m2 × c2 × (1 − 63%)× 71.6% (1)

The water content in the precursor solution was calculated as:

m0 = m1 × c1 + m2 × c2 (2)
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where mSiO2 is the available nano-SiO2 solid content in the precursor solution (g); m0 is the
mass of solute in the precursor solution (g); m1 is the mass of acetic acid (g); c1 is the mass
percentage concentration of acetic acid (%); m2 is the mass of sodium silicate (g); c2 is the
concentration of sodium silicate (%); m is the total mass of the precursor solution; and 63%
and 71.6% refer to values in Tables 2 and 3.

2.2.3. Preparation of Cement-Based Specimens through Internal Nano-SiO2 Production

According to the GB/T 17671-2021 test method of cement mortar strength (ISO
method) [21], the precursor solution prepared in Section 2.2.1 was added during the
preparation of cement-based materials. In this process, the mixture was stirred quickly and
uniformly to complete the preparation of cement-based materials with internal nano-SiO2
production. Then, 40 mm × 40 mm × 160 mm moulds were prepared. All specimens were
vibrated on the vibration table for 2 min. Subsequently, the mould mortar specimens were
cured for 24 h at 20 ± 2 ◦C and a relative humidity of ≥90%. Specimens were demoulded
after 24 h of casting and then cured at a constant temperature of 21 ± 1 ◦C and relative
humidity of ≥95% for 3 days, 7 days, and 28 days, successively. At least six specimens
were prepared for each formula. To prevent the evaporation of water, a plastic film was
used to cover the specimens during the solidification and hardening process [22].

2.2.4. Microstructural Analysis

An FEI QUANTA 250 environmental scanning electron microscope (SEM) in USA
coupled with an OXFORD Ultim Extreme - Energy Dispersive Spectroscopy (EDS) in
Britain were used to examine the morphology of the reaction products formed in the
cement-based materials after internal nano-SiO2 production. Samples for analysis were
5 mm thick, cut with a diamond precision saw from a freshly fractured piece of the cement-
based materials. These samples were immersed in absolute ethyl alcohol to terminate
hydration and vacuum-dried at 45 ◦C. The dried sample was epoxy-impregnated, polished,
gold-coated, and examined using SEM in BSE mode. The element compositions were
quantitatively analysed through EDX. During fine polishing, an oil-based lubricant was
applied to disperse the polishing. These trials were conducted using 28-day mortar samples
prepared and cured as described above [23].

2.3. Research Content
2.3.1. Effects of the Alkalinity of the Precursor Solution on the Compressive Strength of
Cement-Based Materials

Cement mortar specimens with the precursor solution were prepared according to the
ISO standard of the Cement Mortar Strength Test Method. The compressive strengths of
these cement mortar specimens at different ages after internal production were tested by
changing the alkalinity of the precursor solution. The effects of the alkalinity of the precur-
sor solution on the mechanical properties of cement-based materials were also studied [24].

Three alkalinity levels (4, 6, and 8) were set for the precursor solution. The precursor
solution was prepared at each alkalinity level according to the procedure outlined in
Section 2.2.1. The available SiO2 solid contents were calculated using Equation (1), obtaining
0.11 g, 0.74 g, and 0.82 g, respectively. The water contents were calculated according to
Equation (2) and were found to be 40.88 g, 47.93 g, and 48.85 g, respectively. The specific
mixing ratios are given in Table 6. The water mass in Table 6 was calculated according to the
total water content (225 g). Precursor solutions with different alkalinity levels were added
to the cement mortar to prepare the cement mortar specimens (J1–J3). Further, pure cement-
based materials without precursor solutions were prepared as the control group (J0).

For the convenience of comparative analysis, cement mortar specimens with nano-SiO2
powder were prepared. The dosage of nano-SiO2 powder was consistent with the nano-SiO2
solid contents in the precursor solution, which were 0.11 g, 0.74 g, and 0.82 g, respectively.
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Table 6. The ratio of precursor solution with different alkalinity levels.

Number
Nano-SiO2 Precursor Solution

Cement/g Water/g Sand/g
Acetic Acid/g Sodium silicate/g pH SiO2 Solid Content/g

J0 / / / 0 450 225 1350
J1 40 1.70 4 0.11 450 184.12 1350
J2 40 11.11 6 0.74 450 177.07 1350
J3 40 12.33 8 0.82 450 176.15 1350

2.3.2. Effects of Available SiO2 Solid Content in the Precursor Solution on the Compressive
Strength of Cement-Based Materials

Cement mortar specimens with different SiO2 solid contents in their precursor solu-
tions were prepared according to the ISO standard of the Cement Mortar Strength Test
Method. The compressive strengths of cement mortar specimens with precursor solutions
at different ages after internal production were tested by changing the SiO2 solid contents.
The effects of the SiO2 solid content in the precursor solution on the mechanical properties
of cement-based materials were also studied.

The alkalinity of the precursor solution was set to 6, and the mass of the precursor
solution was set to 40 g, 60 g, 80 g, and 100 g in different tests. The available SiO2 solid
content was calculated according to Equation (1), which was divided into four levels:
0.74 g, 1.10 g, 1.47 g, and 1.84 g. The precursor solution at each alkalinity level was
prepared according to the process given in Section 2.2.1. The water contents were calculated
according to Equation (2), which were found to be 47.93 g, 71.90 g, 95.86 g, and 119.83
g, respectively. The specific mixing ratios are given in Table 7. The precursor solutions
with different available SiO2 solid contents were added to the cement mortar to prepare
their corresponding cement mortar specimens (S1–S4). Furthermore, a pure cement-based
material—without a precursor solution—was prepared as the control group (S0).

Table 7. Cement-based material ratio of precursor solution with different nano-SiO2 content.

Number SiO2 Solid Content/g pH Water/g Cement/g Sand/g

S0 / / 225 450 1350
S1 0.74 6 177.07 450 1350
S2 1.10 6 153.10 450 1350
S3 1.47 6 129.14 450 1350
S4 1.84 6 105.17 450 1350

To facilitate comparative analysis, the dosage of nano-SiO2 powder was consistent
with the nano-SiO2 solid content in the precursor solution at 0.74 g, 1.10 g, 1.47 g, and
1.84 g, respectively.

2.3.3. Microstructural Analysis of Cement-Based Materials after Internal Nano-SiO2 Production

(1) Grouping and mixing ratios of specimens
One group of precursor solutions was selected. Its alkalinity was set to 6, and the

available SiO2 solid content and water content were 0.74 g and 47.93 g, respectively. The
precursor solution was prepared according to the procedure given in Section 2.2.1 and then
added to the cement. The specific mixing ratio is given in Table 8. The prepared specimen
is denoted as W2. W0 refers to the pure cement-based material before adding the precursor
solution, and W1 refers to the cement-based material with 0.74 g of nano-SiO2 powder.
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Table 8. Specific mixing ratio.

Number SiO2 Solid Content/g pH Nano-SiO2 Powder/g Water/g Cement/g

W0 / / / 225 450
W1 / / 0.74 225 450
W2 0.74 6 / 177.07 450

(2) Preparation and analysis of specimens
Fresh cement pastes of W0–W2 were put in 40 mm × 40 mm × 40 mm cubic test

moulds, followed by compaction through vibration. Next, the cement pastes were cured
for 15 h under standard conditions to prepare the cement paste samples. At this time, the
strengths of the cement paste samples were preliminarily established, which was conducive
to the preparation of samples. The hydration reaction of cement had just commenced, and
the internal structure was relatively loose. This was a good time to observe the reaction
products of cement hydration and nano-SiO2.

3. Experimental Results and Analysis
3.1. Effects of the Alkalinity of the Precursor Solution on the Compressive Strength of
Cement-Based Materials

The influence of the alkalinity of the precursor solution on the compressive strength
of cement-based materials is shown in Figure 1, where CBM refers to pure cement-based
materials, MP-CBM refers to cement-based materials with nano-SiO2 powder, and PS-CBM
refers to cement-based materials with the precursor solution. It can be seen in Figure 1a
that when the pH of the precursor solution was 4, the compressive strengths of CBM, MP-
CBM, and PS-CBM increased with time. Specifically, PS-CBM had the lowest compressive
strength, while MP-CBM had the highest compressive strength.

In Figure 1b, when the pH of the precursor solution was 6, the compressive strengths
of CBM, MP-CBM, and PS-CBM increased with time. Specifically, the compressive strength
of PS-CBM was the highest, followed by that of MP-CBM. The compressive strength of
CBM was the lowest. At 3 d, 7 d, and 28 d, the compressive strengths of PS-CBM were about
17.45%, 21.30%, and 16.80% higher than those of MP-CBM, respectively. The increase was
the highest after 7 d, which was about 25–36% higher than that of CBM. The compressive
strengths of PS-CBM at 3 d, 7 d, and 28 d were 68.96%, 45.66%, and 43.62% higher than
those when the pH of the precursor solution was 4, respectively. With the increase in age,
the increasing rate of compressive strength decreased. However, the overall compressive
strength of PS-CBM was higher than that of CBM and PS-CBM; the increasing rate was
relatively ideal.

It can be seen from Figure 1c that when the pH of the precursor solution was 8, the
compressive strength of PS-CBM was similar to that of MP-CBM at 3 d, but it was 6.84% and
3.28% higher than that of MP-CBM at 7 d and 28 d, respectively. The compressive strengths
of both MP-CBM and PS-CBM were always higher than that of CBM. The compressive
strengths of PS-CBM at 3 d, 7 d, and 28 d decreased by 15.40%, 15.16%, and 12%, respectively,
compared to those when the pH of the precursor solution was 6. With changes in age,
the decreasing rate of compressive strength declined, and the overall decreasing rate
was obvious.
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3.2. Effects of the Available SiO2 Solid Content in the Precursor Solution on the Compressive
Strength of Cement-Based Materials

The effects of the available solid content of SiO2 in the precursor solution on the
compressive strength of cement-based materials are shown in Figure 2. The blue lines, from
the bottom to the top, represent the compressive strengths of PS-CBM at 3 d, 7 d, and 28 d.
The red lines, from the bottom to the top, represent the compressive strengths of MP-CBM
at 3 d, 7 d, and 28 d. The compressive strengths of CBM are the three values in the upper
part when the available SiO2 solid content is 0.
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It can be seen in Figure 2 that the compressive strengths of PS-CBM first increased and
then decreased with increases in the available SiO2 solid content in the precursor solution.
The compressive strengths of MP-CBM first increased and then decreased with increases
in the nano-SiO2 powder content. However, the compressive strengths of MP-CBM were
all lower than those of PS-CBM. Moreover, the compressive strengths of PS-CBM and
MP-CBM were 25.78–35.73% and 7.69–11.71% higher than those of CBM, respectively.

Furthermore, the compressive strength of PS-CBM reached the maximum value earlier
than that of MP-CBM. When the compressive strength of MP-CBM reached a maximum, it
was lower than that of PS-CBM.

4. Microstructural Analysis of Cement-Based Materials after Nano-SiO2 Internal Production
4.1. Pure Cement-Based Materials

The microstructure of pure cement-based materials after hydration for 15 h is shown
in Figure 3a. In W0, there were large gaps and relatively independent pores among cement
particles, an uneven cement surface, and a relaxed and porous structure. The cement
particles were wrapped by layers of floccules, which covered the cement particles like
layers of yarn. Moreover, many interlacing and needle-like hydration products were
generated on the cement particle surface.
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4.2. Cement-Based Materials with Nano-SiO2 Powder

The microstructure of cement-based materials with nano-SiO2 powder after hydration
for 15 h is shown in Figure 3b. There was obvious powder agglomeration among the
cement particles. A layer of white hydration products—calcium silicate gel—was adhered
to the agglomeration surface. The agglomerates and agglomeration layer adhered to the
cement particle surface, which then filled in the gaps among cement particles. However, the
agglomeration was relatively loose, and the internal structural compactness was relatively
poor [25,26]. The cement particles of cement mortar with nano-SiO2 powder were more
compact and had smaller pores than W0 [27,28].

4.3. Cement-Based Materials with Internal Nano-SiO2 Production

The microstructure of cement-based materials with internal nano-SiO2 production
after hydration for 15 h is shown in Figure 3c. The hydration degree of cement particles
was uniform. Particles were wrapped and covered by gel. The flat floccules began to wrap
cement particles gradually, and particles became tightly connected. The hydration products
surrounding the cement particles gradually increased, as did the thickness of the hydration
layer. They filled in the spaces surrounding the cement particles and tightly connected them,
increasing the compactness of the cement mortar gradually and decreasing the number of
pores. In comparison to pure cement mortar and cement mortar with nano-SiO2 powder,
cement mortar with internal nano-SiO2 production exhibited a more compact structure,
tighter connection of the generated gel products, and smaller pores. As a result, the ability
of the structural system to resist external loads was strengthened [29,30].

4.4. Energy Spectrum Test Results

An energy spectrum analysis diagram of cement paste in a small area under 10,000×
magnification is shown in Figure 4. The cement particles mainly contained Ca, Si, Al, and
Fe, while the precursor solution mainly contained Si and O. When the cement particles
just have contact with the NSPS, the surfaces of the cement particles partially dissolve, and
the calcium ions in the cement particles dissolve in the water, forming a strongly alkaline
solution. In an alkaline environment, not only does the active Si-O bond on the surface of
cement particles break, which causes silicon to enter the solution and combine with water,
but it also promotes the precipitation of H2SiO3 in the NSPS [19].
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5. Reaction Mechanism Analysis of Cement-Based Materials with Nano-SiO2
Internal Production
5.1. Reaction Mechanism of CBM

The reaction mechanism of CBM is shown in Figure 5. Cement particles that were not
hydrated in the beginning remained independent. After hydration began, cement reacted
with water to generate a thin layer of calcium silicate hydrate (C-S-H) gel surrounding
it. As the hydration process continued, C-S-H became thicker and thicker and wrapped
the cement particles tightly, which were pulled together and bonded tightly, increasing
the strength of the mortar. However, there were still spaces among the particles, which
influenced the strength development.
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of CBM.

5.2. Reaction Mechanism of MP-CBM

The reaction mechanism of MP-CBM is shown in Figure 6. The initial state, when
nano-SiO2 powder was added to the cement-based materials, is shown in Figure 6a. Owing
to the small size, large specific surface area, and low density of nano-SiO2 powder particles,
they agglomerated after adding them to cement mortar and stirring. The internal structure
of the micro-agglomerates was as loose as flour paste, exhibiting a poor agglomeration
force and cohesive force. With increases in the nano-SiO2 powder content, there were more
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floccules on the cement particle surface, and the viscosity of cement mortar increased, thus
decreasing its liquidity correspondingly.
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of MP-CBM.

As the hydration continued, Ca(OH)2—which was formed from the hydration be-
tween nano-floccules and cement particles—reacted to generate C-S-H, which wrapped
the floccule surfaces (Figure 6b). The addition of nano-SiO2 powder accelerated cement
hydration. Since the generated C-S-H tightly wrapped the floccules, they were separated
from external products. The nano-SiO2 powder in the floccules could not continue to
participate in the reaction, resulting in a looser internal structure but a compact external
structure of the floccules.

It can be seen in Figure 6c that, during late cement hydration, adding nano-SiO2
powder facilitated the large-scale generation of hydration products on cement particle
surfaces. The C-S-H was thickened, and cement particles became more tightly connected.
Moreover, nano-SiO2 powder agglomerations filled in gaps among cement particles to bind
particles tighter and made them more compacted, further facilitating the development of
mortar strength. However, the strength, in terms of resisting external stress, was not fully
developed due to the incomplete reaction in nano-SiO2 powder agglomerations [31].

5.3. Reaction Mechanism of PS-CBM

The reaction mechanism of PS-CBM is shown in Figure 7. The scenario in which
the precursor solution was just added to cement-based materials is shown in Figure 7a.
Since cement-based materials are alkaline, nano-SiO2 particles in the precursor solution
precipitated very quickly from the solution and dispersed uniformly in the mortar [32].
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Figure 7b shows that the addition of the precursor solution accelerated cement hy-
dration, leading to the increased generation of C-S-H. Further, cement particles became
wrapped by the generated C-S-H gel. In addition, there were several active groups on
uniformly dispersed nano-SiO2 nanoparticle surfaces in the mortar (-Si-OH), which had
ultrahigh chemical activity. They underwent a pozzolanic reaction with the cement hydra-
tion product Ca(OH)2, generating C-S-H gel and decreasing the content of Ca(OH)2, which
could easily corrode.

Figure 7c shows that nano-SiO2 particles could not only start a pozzolanic reaction
but could also serve as crystal nuclei in cement mortar. The newly generated C-S-H gel
bonded to the nanoparticle surfaces and changed their structural form. New networks were
rebuilt based on the original network structure of hardened cement mortar [16]. These new
networks filled in spaces among cement particles to increase the compactness and bonding
strength among particles. Hence, the mechanical properties of cement-based materials
were effectively improved.

5.4. Microstructural Model of PS-CBM

The microstructural reaction model of PS-CBM is shown in Figure 8. The diagram of
PS-CBM is shown in Figure 8a. Figure 8b is an enlarged view of Figure 8a, which mainly
comprises cement particles, precipitated nano-SiO2 particles, and reaction products. The
NSPS, prepared using the liquid-phase technique, is a slightly acid solution in which nano-
SiO2 particles have not yet precipitated. After they were added to cement mortar, the SiO2
in the solution will precipitate as nanoparticles and disperse uniformly in cement mortar
(Figure 8a). The precipitated nano-SiO2 particles underwent a pozzolanic reaction with
Ca(OH)2 in cement-based materials to generate C-S-H gels [5]. Further, nano-SiO2 particles
served as crystal nuclei in cement-based materials. As nodes of networks, nano-SiO2
particles could bond more extensively with nano-level C-S-H gels (Figure 8c). Three-
dimensional network structures were formed, which changed the structural form and
filled in small pores in hardened cement-based materials. As a result, the compactness of
cement-based materials was improved, and their compressive strength increased.
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5.5. Microstructural Model of Precipitated Nano-SiO2 Particles

Nano-SiO2 particles mainly serve as activators and reactants in cement-based materials
(Figure 9). In Figure 9a, the precursor solution facilitated the hydration process of cement
as an activator after it was added to cement-based materials. When the nano-SiO2 particles
precipitated as reactants, they could react with dissolved calcium and water in cement
hydration products to produce C-S-H due to their own adsorption. The produced C-S-H
adhered to nano-SiO2 particles. Nano-SiO2 provided new nucleation sites for C-S-H gel
as active fillers. It can be seen in Figure 9c that, as the reaction continued, more and more
C-S-H gels formed around the particles. The nano-SiO2 particles mutually bonded to
form new spatial network structures, which filled in the pores among cement particles.
This decreased the number of pores, increased the cohesive strength, and improved the
compactness of the base material.
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6. Conclusions

The strengthening effects of an NSPS on cement-based materials are mainly affected
by the pH value of the precursor solution and the content of nano-silica precipitated from
the precursor solution. Changes in these two factors affect the mechanical strength of
cement-based materials mainly as follows: (1) when the current drive solution is acidic, the
compressive strength of cement-based materials after internal nano-SiO2 production is the
largest, which is greater than that when the precursor solution is acidic or alkaline, and it is
greater than the compressive strength of cement-based materials mixed with nano-SiO2
powder; (2) with the increase in the solid content of nano-SiO2 in the precursor solution,
the compressive strength of the cement-based material prepared with it first reaches the
highest point and then gradually decreases, but its compressive strength is always greater
than that of the cement-based material mixed with nano-SiO2 mineral powder. The above
results indicate that the precursor solution makes a great contribution to the compressive
properties of cement-based materials. However, the hydration heat and hydration kinetics
of the NSPS on cement-based materials also need to be further tested and simulated to
study the impact of the NSPS on the entire hydration process of cement-based materials.
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