
Citation: Ma, R.; Xue, Y.; Ma, Q.;

Chen, Y.; Yuan, S.; Fan, J. Recent

Advances in Carbon-Based Materials

for Adsorptive and Photocatalytic

Antibiotic Removal. Nanomaterials

2022, 12, 4045. https://doi.org/

10.3390/nano12224045

Academic Editors: Jerzy

P. Lukaszewicz and Piotr Kamedulski

Received: 27 October 2022

Accepted: 16 November 2022

Published: 17 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Review

Recent Advances in Carbon-Based Materials for Adsorptive and
Photocatalytic Antibiotic Removal
Raner Ma, Yinghao Xue, Qian Ma, Yanyan Chen, Shiyin Yuan and Jianwei Fan *

State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and
Engineering, Tongji University, Shanghai 200092, China
* Correspondence: fanjianwei@tongji.edu.cn

Abstract: Antibiotics have been a primary environmental concern due to their widespread dispersion,
harmful bioaccumulation, and resistance to mineralization. Unfortunately, typical processes in
wastewater treatment plants are insufficient for complete antibiotic removal, and their derivatives in
effluent can pose a threat to human health and aquatic communities. Adsorption and photocatalysis
are proven to be the most commonly used and promising tertiary treatment methods. Carbon-based
materials, especially those based on graphene, carbon nanotube, biochar, and hierarchical porous
carbon, have attracted much attention in antibiotic removal as green adsorbents and photocatalysts
because of their availability, unique pore structures, and superior physicochemical properties. This
review provides an overview of the characteristics of the four most commonly used carbonaceous
materials and their applications in antibiotic removal via adsorption and photodegradation, and the
preparation of carbonaceous materials and remediation properties regarding target contaminants
are clarified. Meanwhile, the fundamental adsorption and photodegradation mechanisms and
influencing factors are summarized. Finally, existing problems and future research needs are put
forward. This work is expected to inspire subsequent research in carbon-based adsorbent and
photocatalyst design, particularly for antibiotics removal.

Keywords: carbon-based materials; antibiotics; adsorption; photocatalysis; graphene; carbon nan-
otube; biochar; hierarchical porous carbon

1. Introduction

There have been growing concerns over water pollution due to human activities and
technological and industrial development. Because some synthetic organic chemicals pose a
significant risk to the ecological environment or human health while being used extensively,
they have attracted the attention of researchers, and are defined as emerging contaminants
(ECs) [1,2]. ECs encompass a wide range of artificial chemicals, such as pharmaceutical
and personal care products (PPCPs), endocrine-disrupting compounds (EDCs), surfactants,
and pesticides, among others [3–6]. They are difficult to remediate by natural attenuation
and conventional treatment processes, so they easily accumulate in the ecosystem [7].

The excess presence of pharmaceuticals in water is emerging contamination, and
antibiotics are one of the most common treatment groups. Antibiotics refer to metabolites
produced by microorganisms such as fungi, bacteria, and actinomycetes that impede
the growth and reproduction of other microbes [8,9]. Antibiotics are extensively used
in aquaculture and human/animal therapies, resulting in a direct discharge of antibiotic
residue into water sources, causing pollution problems [10]. Due to the antibacterial
ability arising from functional groups of antibiotics, such as the linear fused tetracyclic
nucleus (four rings) of tetracyclines, four-membered β-lactam ring of β-lactams, and large
lactone ring of macrolides, the degradation of antibiotic molecules by microorganisms is
beset with difficulties [11]. It was reported that antibiotics existing in sediments, soil, and
water not only bring biochemical pollution, but also hasten the formation of antibiotic-
resistance genes (ARG) and antibiotic-resistant bacteria (ARB) [12]. Therefore, the removals
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of antibiotics and their derivatives from water environments are urgent. Research showed
that sulfonamides are the most frequently detected in all kinds of water environments,
followed by fluoroquinolones, macrolides, and tetracyclines, while other categories of
antibiotics are not as frequently detected [13]. Therefore, the removal of these four groups
of antibiotics has attracted most researchers’ attention.

Various techniques have been devised to remove or reduce the concentration of antibi-
otics in the water environment, ranging from advanced oxidation such as ozonation, Fenton
and photo-Fenton processes, and electrochemical oxidation to biological, photocatalysis,
chlorination, membrane separation and adsorption [11,14–16]. Among them, adsorption is
especially attractive for its facile operation, high efficiency, and potential scaling up [17].
As a green AOP technology, photocatalysis is expected to use the strong oxidation ability
of photogenerated holes to mineralize antibiotic pollutants completely, without forming
intermediates [18,19].

Both the efficiency of the adsorption and the photocatalysis process is strongly influ-
enced by the type of materials and their characteristics. Compared to other commonly
used adsorbents and photocatalysts, carbon-based materials show more advanced prop-
erties, including large specific surface areas (SSAs), developed pore structures, abundant
functional groups, and high chemical stability [20]. Until now, many efforts have been
made in pore structure engineering that can be classified as hierarchical porous structures,
interconnected pores, carbonaceous defects, and graphene assemblies. In addition, more
researchers are focusing on doping carbonaceous materials with heterogeneous atoms such
as B, N, S, O, and P, and loading functional compounds like metals (oxides) to enhance the
performance of adsorbents/catalysts for targeted pollutant removal [21–23]. As a result,
carbon-based materials have been widely applied in both treatment processes in the past
few years, showing great potential in applications of antibiotic removal.

In this review, we focus on removing antibiotics via adsorption and photodegradation
by typical carbon-based materials. We consider graphene, carbon nanotube, biochar, and
hierarchical porous carbon as the four primary carbonaceous materials, discussing their
preparation and remediation properties regarding each target contaminant (Figure 1).
Meanwhile, the basic adsorption and photodegradation mechanisms and influencing
factors are summarized. Finally, existing problems and future research needs are put
forward. We expect this review to inspire subsequent research in carbon-based adsorbent
and photocatalyst design, particularly for antibiotics removal.
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2. Characteristics of Carbonaceous Materials

The main carbonaceous materials used for antibiotic removal are graphene, carbon
nanotube (CNT), biochar (BC), and hierarchical porous carbon (HPC), which is a novel,
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precisely designed carbonaceous material. They have many advantages, such as simple
synthesis methods, cheap and readily available raw materials, large porosity, high SSA,
well-developed and adjustable pore structure consisting of micropores, mesoporous, and
macropores, and a large number of oxygen-containing functional groups, so they have
many potential application prospects in antibiotic removal.

2.1. Graphene and Its Derivatives

Graphene is a two-dimensional nanomaterial in which carbon atoms connected by
sp2 hybridization are closely packed into a single atomic layer of honeycomb-like crystal
lattice which is organized through σ- and π-bonds. This material is the basis for all forms
of graphite: folded-up graphene becomes fullerene (0D), a rolled-up graphene layer forms
a carbon nanotube (1D), and graphite (3D) sheets become graphene when taken apart. It
has the characteristics of good stability, conductivity, optical properties, and adsorption
capacity, which makes graphene-based materials a new type of environmentally friendly
catalysts with more active sites.

Synthesis approaches have a crucial impact on the performance and quality of graphene,
and there are different synthetic routes such as chemical vapor deposition, the exfoliation
method, and the organic synthesis approach [24]. These synthesis methods can be divided
into two approaches: the top-down approach, based on reducing van der Waals forces of
attraction between the graphite layers, and the bottom-up approach, based on combining
unique molecular building blocks. In its pure form, graphene cannot perform well in
water due to its hydrophobic nature. Thus, materials with hydrophilic properties, such as
graphene oxide (GO) and reduced graphene oxide (rGO), are prepared for water treatment
purposes. GO is graphene modified with oxygen-containing functional groups, showing
various active sites (hydroxyl, carboxyl, epoxy, and carbonyl) in the carbon lattice. rGO
is a type of GO with lesser oxygen content and higher interaction with the π bond of
organic molecules, making it more efficient to remove the contaminants in the water. The
graphene can be functionalized through covalent and noncovalent bonding to augment its
loading capacity, specificity, biocompatibility and solubility (Figure 2), and graphene-based
composites were invented to improve its binding affinity for anionic compounds and ability
to be detached from treated wastewater.
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Graphene-based materials are widely used in wastewater treatment via separation,
membrane, and degradation processes. They are proven to be incredibly effective for the
adsorption of inorganic contaminants such as heavy metal ions and rare earth metal ions,
as well as organic contaminants, especially dyes, antibiotics [25], and AOPs such as the
Fenton process, electro-Fenton process, photocatalysis, photoelectrocatalysis, ozonation,
and sonolysis [26].
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2.2. Carbon Nanotube (CNT)

A carbon nanotube, several microns in length, is a hollow cylindrical tube with side
walls composed of sp2 hybridized carbon atoms, including two types: single-walled carbon
nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). SWCNTs with a
diameter between 0.4 and 3 nm are formed by curling a single layer of graphene. MWCNTs,
whose outer and inner diameters are 2–100 nm and 1–3 nm, respectively, are made of two or
more graphene sheets rolling into cylindrical shapes [27]. Due to of the attractive properties
of CNTs, such as large surface area-to-volume ratio, high thermal and chemical stability,
well-defined adsorption sites, easy attachment of functional groups, and nanoparticle
loading [28], much research has been conducted to develop its potential in wastewater
treatment applications.

CNTs are produced by using carbon sources and energy. Generally, there are three
main synthesis methods: (1) the arc discharge method between graphite electrodes, (2)
the laser ablation method catalyzed by transition metals, and (3) the chemical vapor
deposition method for bulk fabrication [27]. Due to the defects of traditional CNTs, such as
easy entanglement and agglomeration, surface inertness, and dispersing difficulty in the
polymer matrix, it is hard to exert their decontamination performances, so their application
is greatly restricted [29]. Therefore, similarly to graphene, functional methods based on
covalent and noncovalent bonding are applied to equip CNTs with the required functional
groups and make them more dispersible, increasing their affinity for water contaminants
(Figure 2). Surface-modified CNTs have been studied extensively to remove heavy metals
and organics from wastewater by adsorption. Furthermore, CNT composites can be
prepared by introducing nanoparticles, high molecular polymers, etc., as photocatalysts
and electrocatalysts (electrochemical reaction electrodes, microbial dye battery electrodes).

2.3. Biochar (BC)

Biochar is the solid carbonaceous residue from various agricultural and industrial
biomasses via thermal methods. It is a low-cost, porous, and stable carbonaceous material
with high SSA, high surface activity, and high ion exchange capacity that is well suited for
use as an adsorbent and as a support matrix for metals and metal oxides [30,31].

As a biomass-derived material, BC is fabricated from different biomass feedstocks,
including agricultural residues, forestry waste, organic fraction of municipal solid waste,
industrial biomass by-products, and animal manures, via pyrolysis (300–700 ◦C) under
oxygen-free or oxygen-limited conditions [32]. Critical physical properties of BC, sur-
face area, and porosity play crucial roles in the wastewater treatment process. Moreover,
biomass characteristics, including morphology structure, particle size, and pyrolysis pa-
rameters, predominantly temperature, are key influencing factors [33]. Higher pyrolysis
temperature (>500 ◦C) results in lower oxygen content, greater hydrophobicity, higher
surface area, and higher micropore volume, making the produced BC more suitable for re-
moving organic pollutants. Conversely, BC pyrolyzed under lower temperatures (<500 ◦C)
is better fit for the removal of inorganic pollutants [34].

To enable BC to better fulfill the requirements of practical applications in pollutant
removal, modification is widely used to improve its adsorption or catalysis performance
and alleviate secondary pollution. Physical modification methods, including steam/gas
activation (air, CO2), ball milling, and microwave pyrolysis, have been applied to develop
the pore structure of BC, and enhance its hydrophobicity and stability [35]. Chemical modi-
fication methods involving the action of chemical compounds can increase BC’s surface
functional groups, polarity, and porosity. Acids, H2O2, and KMnO4 are common oxidants,
while alkalis are reducers [35]. BC-based composites prepared by combining BC with
clay minerals, metals, metal oxides, carbon materials, and polymers via impregnation, co-
pyrolysis, or co-precipitation offer enhanced adsorption capabilities and conduct particular
functionalities in contaminants removal [36]. In general, loaded magnetic materials enable
BC to have magnetic separation properties, loaded carbonaceous materials improve their
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porosity, loaded TiO2 makes it catalytic, and loaded nano zero-valent iron can make it
highly reactive.

2.4. Hierarchical Porous Carbon (HPC)

Hierarchical porous carbon is a novel carbonaceous material that contains two, or
all three, types of interconnected pores (micropores (<2 nm), mesopores (2–50 nm), and
macropores (>50 nm)), which serve different functions. Micro and smaller mesopores
can provide a large surface area to promote active site dispersion, larger mesopores can
minimize diffusive resistance to mass transport and allow easy access to the micropores,
and macropores shorten mass-transfer pathways as reactant reservoirs. Moreover, the
interconnected hierarchical pore structures can facilitate reactant entry into micropores and
expedite the reaction rate [37,38]. In conclusion, because the space in HPC is effectively
utilized, HPC with multiple levels of pores has higher SSA and pore volume than carbon
materials with single-type pores [39,40]. It exhibits excellent performance in applications
like adsorption, catalysis, and energy storage due to the functional synergy of the above
structures.

The typical preparation strategies of HPC are the hard/soft template method and
the template free method [41]. The hard template method synthesizes HPC materials by
using silica, metal oxides, inorganic salts, and sublimable organic compounds as hard
templates, incorporating them into carbons or carbon precursors, and removing them by
either chemical etching or dissolution. Unlike hard templates, soft templates are mainly
organic molecules or block copolymers that can be deposited or evaporated during an-
nealing, avoiding the template removal step after pyrolysis. The template free method
fabricates HPC by pyrolyzing select carbon precursors, mainly biomass and pre-engineered
organic matter with intrinsic macropores, and constructing hierarchical porous structures
by chemical activation. There are also some modification methods for HPC to develop
additional micropores and mesopores, such as a combination of template carbonization
and chemical activation (i.e., KOH or NaOH) to optimize the synthesis process and treat
precursors with different chemicals [39]. Changing the feedstock to heteroatom containing
materials to prepare heteroatom-doped HPC can change its physicochemical and electronic
properties, and enhance its adsorption, catalysis, and electrochemistry performance [37].

Some researchers have paid attention to the application of HPC in removing organic
contaminants from wastewater by adsorption. They studied organic contaminants included
dye [42,43], antibiotic [44,45], hydrocarbon [46,47], bilirubin [48], etc.

3. Adsorption Removal of Antibiotics by Carbon-Based Materials

There has been extensive research on using carbonaceous materials to remove antibi-
otics by adsorption. Adsorption is an exothermic process that occurs on a surface, and
involves the accumulation of adsorbate molecules in a gaseous or liquid form. Adsorp-
tion on carbonaceous materials includes four steps: (1) transport of solute from the bulk,
(2) diffusion through the liquid film around the porous carbon particle, (3) diffusion in
the liquid contained in the pore space, and (4) interaction between adsorbate and adsor-
bent [49]. The adsorption interactions between carbon-based materials and antibiotics can
be summarized into physical and chemical adsorption. Weak Van der Waal interactions,
π-π interactions, electrostatic contacts, and pore-filling/size-selective adsorption are the
main mechanisms of physical adsorption. For chemical adsorption, surface chemical bonds
or inner sphere coordination complexes are formed on an adsorbate and adsorbent surface
either by electron pairing or electron transfer via Lewis acid-base interaction, ion/ligand
exchange, and oxidation or reduction [50]. The existence of functional groups (–COOH,
–OH, –NH2) in the carbonaceous materials may also have an impact on the adsorption
process and efficiency [51]. The adsorption of antibiotics from the aqueous phase by car-
bonaceous materials is mainly influenced by three factors: the functional groups in the
carbon materials, the pore size and pore uniformity of carbon materials, and environmental
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parameters, including pH, temperature, the concentration of inorganic salt, and other
organic substances in the aqueous solution [52].

3.1. Graphene-Based Materials Applied in Antibiotics Adsorption

Several excellent properties make graphene an effective adsorbent for removing an-
tibiotics.: (1) highly exposed atoms lead to easy contact with antibiotics (mainly by π-π
interaction), (2) porous structure and high surface area ensure faster diffusion or surface
reactions of antibiotics, resulting in rapid and effective adsorption, and (3) lower cost of
large-scale production [53]. The adsorption of GO, rGO, functionalized graphene, and
graphene-based composites on antibiotics will be presented and discussed below. Table 1
lists recent studies of graphene-based adsorbents on antibiotics.

GO has been investigated extensively for antibiotic adsorption removal, particularly
in aqueous environments due to its high hydrophilicity. It has been reported that GO can
effectively sorb sulfamethoxazole (SMX), ciprofloxacin (CIP) [54], and various tetracycline
antibiotics [55] via π-π interaction and electrostatic attractions. Recently, Salihi et al. (2020)
reported on the adsorption behaviors of trimethoprim (TMP) and isoniazid (INH) onto
GO. The maximum adsorption capacities of TMP and INH were 204.08 mg g−1 (pH = 8)
and 13.89 mg g−1 (pH = 2), respectively [56]. Moreira et al. (2020) verified the simulta-
neous adsorption degradation of norfloxacin (NOR) by GO, with a removal capacity of
374.9 mg g−1 [57]. Moreover, GO also exhibited good adsorption properties for cephalexin
(CFX) (164.35 mg g−1)[58] and azithromycin (AZM) (55.55 mg g−1) [59]. Fewer studies
were conducted on rGO. For example, Liu et al. (2016) examined the adsorption of two
sulfonamide antibiotics by two rGOs, which are less affected by dissolved organic matter
than CNTs and graphite [60].

For better adsorption properties, hydrophilic functional groups (–OH, epoxide, –
COOH) are often used for the covalent modification of graphene, and graphene-based
composites were prepared by heteroatom doping [61], nanoparticle loading, and organic
molecular and polymeric modification [62]. Recently, different types of components are
often used simultaneously in modifications to achieve a synergistic effect, among which
magnetic nanoparticles such as Fe3O4 are most commonly used to obtain good solid-liquid
separation properties [62,63]. For instance, Lin et al. (2021) fabricated an ethanolamine
and Fe3O4 nanoparticle; a co-functionalized, graphene-based adsorbent with magnetic
properties by co-precipitation. The introduction of ethanolamine into GO can decrease the
possibility of agglomeration, while Fe3O4 nanoparticles can make the adsorbent rapidly
separate using a magnetic field. Due to the synergy, in only five minutes, the adsorp-
tion capacities of the material for TC and levofloxacin (LVX) were 315.25 mg g−1 and
229.53 mg g−1 [64]. In addition, natural materials like chitosan [65] and attapulgite [66]
have also been used to modify graphene to adsorb antibiotics.

To overcome the shortcomings of the 2D nanostructure, three-dimensional (3D)
graphene materials were synthesized, including aerogels and hydrogels. A ring defects-rich
and pyridinic N-doped graphene aerogel was fabricated by Wang et al. (2022), and exhib-
ited an outstanding performance for TC removal (adsorption capacity of 607.1 mg g−1) as a
floating adsorbent [67]. Moreover, ultra-thin g-C3N4 modified graphene oxide hydrogels
were prepared via a one-step hydrothermal reaction by Wang et al. (2022), which exhibited
super high co-adsorption capabilities for TC and Cu(II) [68]. These aerogels and hydrogels
have large adsorption capacity and can be easily modified and separated from water.

MOFs/GO composites are also becoming promising adsorbents for wastewater treat-
ment, as the metal ions in MOFs can interact with the epoxy and hydroxyl functional groups
on both sides of the GO flakes. Chen et al. (2022) synthesized Alg-Cu@GO@MOF-525 by
dispersing GO with copper alginate and in situ growth of MOF-525, which helped reduce
aggregation. The SSA of the material was as high as 807.3 m2 g−1, which is favorable for
the adsorption of TC (adsorption capacity of 533 mg g−1) [69].
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Table 1. Adsorption characteristics of antibiotics by graphene-based materials.

Antibiotic
Class

Antibiotic
Compounds Adsorbent Temperature

(K) pH Equilibrium
Time (Min)

Adsorption
Capacity

Qm (mg g−1)
Refs.

Tetracycline

Tetracycline GO 298 3.6 190 313.48 [55]
Tetracycline MAEGO 303 4 1440 487.82 [64]
Tetracycline GO@ATP 308 5 120 [66]
Tetracycline DNGA 298 4 20 607.1 [67]
Tetracycline UCN-GH 298 5 100 [68]
Tetracycline Alg-Cu@GO@MOF-525 318 7 900 533.2 [69]

Oxytetracycline GO 298 3.6 90 212.31 [55]
Oxytetracycline GO 293 5 60 130.4 [61]
Oxytetracycline B-rGO 293 5 60 83.9 [61]

Doxycycline GO 298 3.6 90 398.41 [55]

Doxycycline GO@Fe3O4@β-
cyclodextrin 298 7 45 204.5 [70]

Sulfonamide

Sulfamethoxazole GO 298 5 1440 240 [54]

Sulfamethoxazole
GO@β-cyclodextrin@

dopamine
hydrochloride

308 2 90 144 [62]

Sulfadiazine
GO@β-cyclodextrin@

dopamine
hydrochloride

308 2 90 152 [62]

Trimethoprim GO 298 8 60 204.08 [56]
Isoniazid GO 298 2 60 13.89 [56]

Quinolone
Ciprofloxacin GO 298 5 2880 379 [54]
Norfloxacin GO 303 7 30 374.9 [57]
levofloxacin MAEGO 303 4 1440 330.71 [64]

β-lactams Cephalexin GO 298 7 420 164.35 [58]

Macrolide Azithromycin GO 298 7 0.25 55.55 [59]

3.2. Carbon Nanotube-Based Materials Applied in Antibiotics Adsorption

The large SSA, biological harmlessness, and an abundance of oxygen-containing
functional groups of CNTs offered various potential applications for the adsorption of
antibiotics in an aqueous environment. Table 2 illustrates data on antibiotic removal by
various CNTs.

Earlier research focused on using pristine and oxidized MWCNTs to adsorb different
kinds of antibiotics, such as sulfonamides [71], amoxicillin [72], fluoroquinolone [73], and
ciprofloxacin [74], and comparing the adsorption effect of different types of CNTs towards
antibiotics. In most instances, SWCNT showed the highest adsorption capacity for its large
surface area and unique basic surface [74,75].

CNT-based composites have been studied extensively for the adsorption removal of
antibiotics, especially for TC and CIP. Various magnetic carbon nanotube adsorbents were
developed via coprecipitation [76–78] or hydrothermal [79] methods for their magnetic
separation ability, which could improve the recyclability of CNTs. For example, Sereshti
et al. (2022) developed Fe3O4 doped and CdS functionalized MWCNTs, used for TC and
cefixime removal. Due to the introduction of Fe3O4, the material was magnetized and
could be easily separated by an external magnet [78]. However, adsorption site occupation
by ferrites may lead to a decrease in adsorption capacity. Zhao et al. (2021) used three
high crystalline magnetic nano spinel ferrites (MFe2O4; M = Co, Cu, Mn) to modify carbon
nanotubes and compared their adsorption mechanisms. They found that the highest
adsorption capacity (63.32 mg g−1) and removal efficiency (99.3%) of CIP were obtained by
using CoFe2O4/CNTs, because Co atoms were most favorable for O adsorption according
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to their d-band states [79]. Besides, layered double hydroxides (LDHs) [80] and ionic liquids
(ILs) proved to be ideal materials to be loaded into CNTs for better removal efficiency.

Fe-doped MOF-loaded CNTs [81,82] attracted many researchers’ attention, as the
introduction of high-valence Fe3+ metal ions could improve the water stability of MOFs,
therefore enhancing their applications in the liquid phase. The CNT/GO/sodium alginate
triple-network nanocomposite hydrogel was a 3D material that was prepared by Ma et al.
(2020). It achieved high-efficiency removal of CIP, with an adsorption capacity of 200 mg g−1

at 288 K [83].

Table 2. Adsorption characteristics of antibiotics by CNT-based materials.

Antibiotic
Class

Antibiotic
Compounds Adsorbent Temperature

(K) pH Equilibrium
Time (Min)

Adsorption
Capacity

Qm (mg g−1)
Refs.

Tetracycline

Tetracycline M-MWCNT 308 4-7 240 494.91 [76]
Tetracycline Fe3O4/MWCNT-CdS 298 5 60 116.27 [78]
Tetracycline MWCNT/ZIF-8(Fe) 298 6 360 589.42 [82]
Tetracycline

hydrochloride LDH@CNT 298 8 480 756.2 [80]

Tetracycline
hydrochloride MWCNT/MIL-53(Fe) 298 7 364.37 [81]

Oxytetracycline
hydrochloride MWCNT/MIL-53(Fe) 298 7 325.59 [81]

Chlortetracycline
hydrochloride MWCNT/MIL-53(Fe) 298 7 180.68 [81]

Sulfonamide
Sulfamethoxazole MWCNT 298 3 720 [71]

Sulfamethazine Fe3O4/MWCNTs 298 7 1440 [77]

Quinolone

Fluoroquinolone O-MWCNT 298 3 1440 [73]
Ciprofloxacin CoFe2O4/CNTs 298 6–7 300 63.32 [79]
Ciprofloxacin CNTs/L-cys@GO/SA 288 5.4 3600 200 [83]
Ciprofloxacin 4.7%O-MWCNT 298 4 60 177.8 [84]

β-lactams Amoxicillin MWCNT 333 7 75 159.4 [72]

Nitroimidazole
Metronidazole SWCNT 298 7 7200 101 [75]
Dimetridazole SWCNT 298 7 7200 84 [75]

Cephalosporin Cefixime Fe3O4/MWCNT-CdS 298 5 60 105.26 [78]

3.3. Biochar-Based Materials Applied in Antibiotics Adsorption

Due to its excellent properties, e.g., high porosity, aromaticity, multiple anionic func-
tional groups, large surface area, and a wide range of sources, biochar has been considered
an effective carbonaceous sorbent for antibiotics. Table 3 lists recent advances in BC-based
materials for the sorptive removal of antibiotics.

The adsorption of TC on BC derived from auricula dregs [85] and cow manure [86],
obtained at different pyrolysis temperatures, was investigated. Results showed that the
BCs prepared at a high temperature had a greater capacity for removing TC, as they have
better pore distribution, larger SSA, and greater adsorption affinity. Stylianou et al. (2021)
assessed the adsorption capacity of three different derived biochar on seven antibiotics.
They found that the removal efficiency of these antibiotics dramatically depends on the pH
value of the medium and, therefore, on the antibiotics’ speciation, and the physicochem-
ical and structural characteristics of the adsorbents (primarily SSA, pore size, functional
groups, dosage) [87]. Zhao et al. (2022) used a concentrated sulfuric acid-based, one-step
carbonization method to synthesize BC for enrofloxacin (ENR) adsorption. The obtained
BC was highly graphitized with more active functional groups on the surface and showed
significantly superior adsorption capacity for ENR (142.3 mg g−1), which was 13.7 times
that of pyrolytically synthesized BC (10.4 mg g−1) [88]. In conclusion, antibiotics ad-
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sorption by pristine BCs mainly depends on their feedstock type, synthesis method, and
synthesis condition.

Various modification methods have been used to improve the unsatisfactory adsorp-
tion capacities of pristine BCs. Ball milling, a physical method, has received enormous
attention from researchers recently. For example, urea N-doped biochar was facilely
prepared by Wu et al. (2021) via wet ball-milling to adsorb and degrade NOR. It was
proved that ball-milling enhanced biochar for NOR adsorption (adsorption capacity of
11.48 mg g−1) by H-bonds, π-π EDA, and pore-filling [89]. At the same time, different kinds
of chemical reagents were used to change the chemical nature of BCs, such as H3PO4 [90,91],
citric acid [92], and ZnCl2 [93,94], all of which confirmed that chemical modification could
increase the functional groups, SSA, and porosity of BC. Specifically, Sheng et al. (2022)
synthesized a critical acid-modified BC (CABRC) as an efficient adsorbent for TC. Higher
surface area, more pore structures, and stronger electron donor capacity provided by gener-
ated oxygen functional groups (e.g., –COO, –COOH, and –OH) synergistically improved
the adsorption performance of the CABRC [92].

FeCl3 was widely used to synthesize magnetic BCs via the impregnation method, and
some special chemical reagents were added for better adsorption capacities and higher
chemical stability, such as humic acid for coating [95], dicyandiamide for the introduction
of N [96], MgCl2·6H2O [97], and NiSO4·6H2O [98] for the formation of ferrites. Apart
from FeCl3, K2FeO4 was also found suitable for BC magnetization, as ferrates could not
only serve as the precursor of iron oxide (loaded on the biochar surface) but also enlarge
the surface area of the resulting biochar due to their solid oxidizing capability [99,100].
In addition, Qu et al. (2021) studied a novel magnetization process. They used two-
step Microwave (MW) assisted processes to provide the obtained BC with high SSA and
favorable magnetism, whose adsorption capacity of TC was 202.62 mg g−1 [101].

Furthermore, clay mineral BC composites are known to have improved overall per-
formance [102,103]. For instance, Arif et al. (2022) investigated the removal of CIP using
biochar treated with clay minerals and subsequently activated with carbon dioxide. The
material exhibited a large adsorption capacity (50.32 mg g−1) due to enhanced active sites
and functional groups [103]. In another research, Xiang et al. (2022) improved the SSA
and pore volume of two biochar by lignin impregnation and enhanced their adsorption
capacities of tetracycline hydrochloride (TCH). The results illustrated that biochar with
porous modulation by lignin impregnation could be significantly applied to the removal of
antibiotics [104].

Table 3. Adsorption characteristics of antibiotics by BC-based materials.

Biomass Engineering
Method Antibiotic

Pyrolysis
Temp
(◦C)

Adsorption
Temp

(K)
pH Equilibrium

Time (Min)

Adsorption
Capacity

Qm (mg g−1)
Refs.

Auricula dregs Tetracycline 700 298 7 60 11.9 [85]
Cow manure Tetracycline 700 298 6 1440 11.80 [86]

Camellia
oleifera shells H3PO4 Tetracycline 600 298 6 240 451.6 [91]

Biogas residue Citric acid Tetracycline 800 298 7 600 58.25 [92]
Aerobic

granular sludge ZnCl2 Tetracycline 700 308 5 2880 93.44 [93]

Flueggea
suffruticosa ZnCl2 Tetracycline 500 303 7 50 188.7 [94]

Walnut shell FeCl3·6H2O,
dicyandiamide Tetracycline 600 298 7.2 238.9 [96]

Water hyacinth FeCl3·6H2O Tetracycline 700 318 200 202.62 [101]

Wheat Straw Lignin Tetracycline
hydrochloride 600 298 7 31.48 [104]

Flueggea
suffruticosa ZnCl2 Chlortetracycline 500 303 10 200.0 [94]
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Table 3. Cont.

Biomass Engineering
Method Antibiotic

Pyrolysis
Temp
(◦C)

Adsorption
Temp

(K)
pH Equilibrium

Time (Min)

Adsorption
Capacity

Qm (mg g−1)
Refs.

Flueggea
suffruticosa ZnCl2 Oxytetracycline 500 303 7 129.9 [94]

Coffee grounds H3PO4 Sulfadiazine 700 298 180 139.2 [90]
Wheat stalk K2FeO4 Sulfadiazine 700 298 6 540 47.85 [100]

Garlic peel
Concentrated

H2SO4
carbonization

Enrofloxacin 298 7 T1/2 =
34.13 142.3 [88]

Apple branches FeCl3, humic
acid Enrofloxacin 700 308 5 720 48.3 [95]

Apple branches FeCl3, humic
acid Moxifloxacin 700 308 8 720 61.5 [95]

Corn stalk Ball-milling,
urea Norfloxacin 600 298 5 11.48 [89]

Sludge Bentonite Norfloxacin 550 298 6 1080 89.36 [102]
Pomelo peel MgFe2O4 Levofloxacin 700 298 5 240 115 [97]

Vinasse NiFe2O4 Levofloxacin 700 298 6 1080 172 [98]

Rice husk Montmorillonite,
CO2

Ciprofloxacin 350 295 7 720 50.32 [103]

Penicillin
fermentation

dregs

Acetic acid,
K2FeO4

Penicillin 400 308 11 322.58 [99]

3.4. Hierarchical Porous Carbon-Based Materials Applied in Antibiotics Adsorption

Recently, HPC with uniform and interconnected pore structure for antibiotics ad-
sorption has received increasing research attention (Table 4), which is mostly due to the
special characteristics of HPC, including its fine and well-defined pore systems, good mass
transport through larger pores, and the substantial number of adsorption sites at smaller
pores [39].

Most HPC for antibiotics adsorption were synthesized via the template free method,
using a two-step thermal treatment involving low-temperature carbonization, which uses
biomass as carbon precursor, and high-temperature activation, which includes acid-alkaline
treatment, metal ions, steam/gas purging, or oxidizing agents [44,105–107]. Wang et al.
(2022) chose five waste biomasses to prepare hierarchically micro/mesoporous carbons
with a high BET surface area of 1687-2003 m2 g−1 and large adsorption capacity for chloram-
phenicol (CAP) (>300 mg g−1) after an equilibrium of only 40 min. They established that
micropore filling might be a leading adsorption mechanism and that the ratio of micropores
to mesopores in biochar adsorbents was a key element in attaining rapid, high-capacity ad-
sorption [44]. To simplify the manufacturing process and reduce preparation cost and time,
Chen et al. (2021) proposed a one-step method for making layered carbons with different
pore structures by adjusting the temperature and the mass ratio of activator K2CO3. The
decomposed K2O and CO2 reacted with carbon, forming more micropores and improving
pore volume. The obtained HPC had excellent adsorption capacities (534 mg g−1) at a lower
initial concentration of CAP (120 mg L−1) [108]. Other researchers used pre-engineered
organic matter as a carbon precursor. Pi et al. (2022) used glucose hydrochar as the precur-
sor to prepare bifunctional N-doped HPC, which could adsorb TC and activate PDS as the
activator, maintaining above 77.18% adsorption capacity after six cycles. The material’s
large BET surface area and microporous-mesoporous structure promoted adsorption by
offering more binding sites on its surface to form a stable interaction. At the same time,
the mesoporous was conducive to the transfer of reactants or electrons and increased the
catalytic performance of the material [45].
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Earlier researchers used halloysite nanotubes as the hard template to obtain HPC
through liquid phase impregnation and carbonization. This kind of HPC possessed extraor-
dinary adsorption capacity for TC (1297.0 mg g−1) and CAP (1067.2 mg g−1) [109,110]. In
another study, a soft-hard template method was used to fabricate an HPC that possessed
micro/meso bimodal pores, in which tetraethyl orthosilicate was used as an inorganic pre-
cursor, and the triblock copolymer F127 as a structure-directing agent. Due to the bimodal
porous structure with meso channels and connected micropores of the prepared HPC,
which enabled rapid transport of TC molecules and easier access to the adsorption sites, the
HPC exhibited great adsorption performance of TC in both the batch mode adsorption and
the column adsorption process [111]. Recently, Zhang et al. (2022) successfully prepared
N-doped HPC via simple one-step carbonization and employed it for TCH adsorption. The
sodium dodecylbenzene sulfonate was introduced as a soft template, which optimized the
pore structure of the carbon materials, increased the nitrogen content, and added surface
functional groups, leading to a high TCH adsorption capacity [112].

Table 4. Adsorption characteristics of antibiotics by HPC-based materials.

Hierarchical
Porous Carbon

Material

Carbon
Precursor

Modification
Method Antibiotic

Ad
Temp

(K)
pH Time

(Min)

Ad
Capacity

Qm
(mg g−1)

Refs.

Macro-meso-
micro hierarchical

porous carbon
Wheat straw KOH + KMnO4

activation Tetracycline 318 7 584.19 [105]

Fe-doped HPC
Eichhornia
crassipes

debris

HCl activation,
Fe + amino acetic
acid synergistic

treatment

Tetracycline 318 3–11 10 457.85 [107]

N-doped
bifunctional HPC

Glucose
hydrochar

KHCO3
activation,

nitrogen doping
Tetracycline 303 4.85 629.76 [45]

Macro-meso-
micro hierarchical

porous carbon

Sodium lignin
sulfonate KOH activation Tetracycline 298 3 360 1297.0 [109]

Micro/meso
bimodal porous

carbon

Soluble
phenolic resin Tetracycline 298 7 701.31 [111]

N-doped HPC Soft-templated
ZIF-8 for Nitrogen doping Tetracycline

hydrochloride 298 4.5 900 80.92 [112]

Hierarchical mi-
cro/mesoporous

carbon
Soybean KOH activation Chloramphenicol 298 5 40 892.9 [44]

Hierarchical mi-
cro/mesoporous

carbon
Corncob KOH activation Chloramphenicol 318 9 40 662.3 [44]

Oxygen-enriched
HPC

Sodium
lignosulfonate

K2CO3
activation Chloramphenicol 303 4.86 720 534.0 [108]

Macro-meso-
micro hierarchical

porous carbon

Sodium lignin
sulfonate KOH activation Chloramphenicol 298 3–11 360 1067.2 [109]

Hierarchical mi-
cro/mesoporous

carbon

Sodium
carboxymethyl

cellulose
KOH activation Chloramphenicol 298 2–6 60 769.95 [110]

Hierarchical mi-
cro/mesoporous

carbon

High-salted
Spirulina
residue

KHCO3
activation Sulfathiazole 298 7 240 218.4 [106]
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4. Photocatalytic Degradation of Antibiotics by Carbon-Based Materials

In addition to adsorption, photocatalysis is a green and efficient technology used to
remove antibiotics. Antibiotics can be effectively degraded into a non-toxic small molecular
species by a reactive species (e.g.,·OH, O2

−) produced by photocatalysts under sunlight,
visible light, or ultraviolet (UV) light.

The predominant mechanisms of photocatalyst degrading antibiotics can be sum-
marized into three main steps: photon absorption, excitation, and reaction. First, the
photocatalyst adsorbs photons equal or superior in energy to its band gap; then, the elec-
trons in the valance band (VB) are activated and jump into the conduction band (CB) where
a hole (h+

VB) is produced; finally, the highly reactive positive holes and electrons are sepa-
rated and migrate to the surface of the photocatalyst, reacting with compounds such as O2,
OH− and H2O groups, and then generating oxidizing species which can degrade antibiotics
(Figure 3) [14,113]. Generally, h+

VB can also directly react with antibiotics, leading to an
efficient removal [113]. As for the influencing factors in antibiotic photodegradation, there
are three aspects: light source (wavelength), photocatalyst (size, shape, morphology, and
dosage), and environment (solution pH, concentration of antibiotics, and coexisting ions
and organics) [11].
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Semiconducting materials, such as TiO2, WO3, ZnO, Fe2O3, CdS, MoS2, and graphitic
carbon nitride (g-C3N4), are widely used photocatalysts for water remediation. However,
most of them suffer from limitations including large band gaps, instability in an aqueous
medium, and high electron-hole recombination rates [114]. To solve these problems, re-
searchers started to combine them with carbonaceous materials to form composites for
three main advantages of carbonaceous materials: (1) high surface area, which implies an
improved adsorption ability; (2) property of decreasing electron-hole recombination rates,
which is because they can effectively scavenge photo excited electrons from the conduction
band of semiconducting photocatalysts; (3) as the carrier, co-catalyst, and photosensitizer,
abilities to broaden the light absorption range and elevate the photocatalytic activity of the
composite [115,116].

4.1. Graphene-Based Materials Applied in Photocatalytic Degradation of Antibiotics

Due to its large SSA for uniform dispersion, narrow band-gap energies, high electrical
conductivity, and low production cost for mass production, graphene has been thoroughly
investigated as a favorable photocatalyst for photodegrading antibiotic pollutants in the
aqueous environment. Nevertheless, the self-aggregate process between graphene sheets
makes it easy to lose catalytic activity. Therefore, efforts were made to study graphene-
based photocatalysts combined with other photocatalysts to achieve a better catalytic
performance of antibiotics (Table 5) [53].

Metal oxides are most commonly applied in the photocatalytic degradation of antibi-
otics. Graphene [117], Go [118], and rGO [119] have all been used to couple with TiO2 to
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increase TiO2′s visible light adsorption during photocatalytic degradation. Bi-based com-
posite is another prominent photocatalyst. Bismuth tungsten oxide (Bi2WO6) [120], bismuth
vanadate (BiVO4) [121,122], and Br-deficient bismuth oxybromide (BixOyBrz) [123,124] are
the three most common Bi-based oxides used for construction of hierarchical heterojunction
with graphene and its derivatives. Jiang et al. (2022) facilely synthesized (Bi)BiOBr/rGO
by employing an in situ reduction strategy, which exhibited >98% degradation efficiency
of TC within 20 min. The improved photocatalytic ability was because rGO was able to
speed up the electron transfer, further restraining the recombination of the electron-hole
pairs and promoting the photodegradation process [123]. Meanwhile, other metal oxide
photocatalysts, such as magnetic metal oxides (cobalt ferrite [125], Fe2O3 [126]), delafossite
oxides (AgFeO2 [127]) and pyrochlore (La2Zr2O7 [128]), were combined with graphene
for their unique properties. For example, cobalt ferrite/rGO porous balls synthesized via
modified microfluidic and calcination methods are to be used for efficient OTC degradation
(84.7%) under visible light and could be quickly recovered by magnets. This photocatalytic
performance was ascribed to a narrow band gap, outstanding light-harvesting proper-
ties, low carrier recombination, and high electron-hole separation capacity [125]. Layered
double hydroxide was also identified as a promising photocatalyst, and Ce-doped NiAl
LDH/rGO composite was fabricated via a one-step hydrothermal method by Gao et al.
(2021) and achieved superior degradation of 94% for CIP within 60 min in visible light.
The presence of rGO offered larger SSA, suppressed the agglomeration of NiAl0.85Ce0.15
nanosheets, and accelerated separation of photo-generated charges, leading to an excellent
photocatalytic performance [129].

Compared to binary and single photocatalysts, ternary photocatalysts exhibited en-
hanced photoelectric performance and photocatalytic activity. With a large surface area
and excellent conductivity, Graphene has shown great potential as the mediator in ternary
Z–scheme heterojunctions. Hence, many combinations of two different semiconductors,
whose energy bands could couple with each other, forming effective interfacial charge
transfer channels, were studied to be anchored on graphene, with graphitic carbon ni-
tride (g-C3N4) used most frequently [130–134]. A remarkable work by Wang et al. (2021)
described Z-scheme phosphate-doped BiVO4/graphene quantum dots/P-doped g-C3N4
composites with enhanced photocatalytic activity for the degradation of NOR (86.3% within
120 min). The principal reason for such a noteworthy performance was the role of graphene
quantum dots as the electron mediator for inhibiting the recombination of photogenerated
electron-holes, boosting interfacial charge transfer between phosphate-doped BiVO4 and
P-doped g-C3N4, and expanding the range of visible light response [133]. In addition to
Z-scheme systems, many other ternary photocatalysts were studied for their advanced
properties and facile synthesis. For example, Kumar et al. (2022) prepared ZnO/CdO/rGO
nanocomposites by refluxing, which realized 99.28% removal of CIP under UV light for
75 min. The fantastic photocatalytic activity of the material was due to the combination
of ZnO and CdO, which expanded the band gap energy, and the presence of rGO, which
improved adsorption capacity and generated more reactive oxygen species (ROS) by en-
hancing electron-hole pair separation [135]. Moreover, BiVO4/FeVO4@rGO [136] with
novel 3D/2D/2D heterojunction structure and bifunctional CeO2/CdS/rGO [137] for pho-
todegradation and photoreduction were synthesized by a green and cost-effective one-step
hydrothermal method.
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Table 5. Degradation characteristics of antibiotics by graphene-based photocatalysts.

Photocatalysts Antibiotic Dosage
(g/L)

Detection
Wavelength

(nm)
Light Source Degradation

Efficiency Ref.

(Bi)BiOBr/rGO Tetracycline 1.0 Visible light >98% within 20 min [123]
rGO/Bi4O5Br2 Tetracycline 0.5 356 Visible light 95.2% within 60 min [124]
α-Fe2O3/rGO Tetracycline 5.0 Visible light 99% within 140 min [126]

La2Zr2O7/rGO Tetracycline 1.0 357 Visible light 82.1% within 40 min [128]
Graphene/TiO2/g–C3N4 Tetracycline 357 Visible light 83.5% within 80 min [130]

g-C3N4/MnO2/GO Tetracycline 0.5 Visible light 91.4% within 60 min [131]

15%AgBr/5GO/Bi2WO6 Tetracycline 0.4 357 Visible light 73.3% within 15 min,
up to 84% [132]

Ag2O/Bi2WO6/rGO Tetracycline 1.0 Visible light 95.3% within 40 min [134]
BiVO4/FeVO4@rGO Tetracycline 0.6 356 Visible light 91.5% within 100 min [136]

QDs-BiVO4/rGH Tetracycline
hydrochloride 0.5 357 Visible light 73.2% within 120 min [122]

CF/rGO Oxytetracycline 354 Visible light 84.7% [125]
GO/TiO2 Amoxicillin 0.6 230 UV light 99.84% within 60 min [118]

rGO/Bi2WO6 Norfloxacin 0.5 Visible light 87.49% within 180 min [120]
BiVO4/GQDs/PCN Norfloxacin 1.0 273 Visible light 86.3% within 120 min [133]

W-BiVO4-x/rGO Ciprofloxacin 1.0 Visible light 93.6% within 60 min [121]
NiAlCe LDH/rGO Ciprofloxacin 0.25 271 Visible light 94% within 180 min [129]

ZnO/CdO/rGO Ciprofloxacin 0.5 270 UV light 99.28% within 75 min [135]
CeO2/CdS/rGO Ciprofloxacin 0.5 Sunlight 90% within 120 min [137]

AgFeO2/GO3 Lomefloxacin 0.583 250–450 Visible light 88% within 75 min [127]

4.2. Carbon Nanotube-Based Materials Applied in Photocatalytic Degradation of Antibiotics

CNTs with multiple graphite layers not only have the electron-trapping ability to
attract electron pairs that semiconductors emit and increase the efficiency of photocat-
alytic reactions but also exhibit photosensitization, which can release electrons into the
semiconductor’s conduction band, raising the electron-hole density, resulting in efficient
charge separation. Thus, CNTs should play essential roles in photocatalytic composites for
antibiotics degradation [138]. Table 6 lists recent studies of CNT-based photocatalysts for
antibiotics removal.

It was reported that CNTs-based binary photocatalysts have the potential to change
nanocrystal structure and superior photocatalytic efficiency. Many photocatalysts, such
as TiO2 [139], MOFs [140], Bi-based oxides [141,142], and lanthanum vanadate [143], were
combined with CNTs for antibiotics photocatalytic degradation. Very recently, Gao et al.
(2022) used MWCNTs to induce and optimize the {312}/{004} facet ratio change of Bi5O7I
photocatalysts, and therefore accelerated the transformation of photogenerated charge
carriers. As a result, the composites exhibited high photocatalytic oxidation efficiency
(88.2%) for representative ofloxacin (OFL) [142]. Another noteworthy work presented by
Khazaee et al. (2021) in which CuBi bimetallic alloy nanosheets-supported functionalized
MWCNTs were synthesized via a facile one-pot process, and achieved the highest degra-
dation rates of CIP and OFL at only 90 min reaction time. The synergistic effects of the
SPR effect of Cu, the boosting of hot electron flux at the Schottky junction caused by the
intimate contact between the alloy and nanotubes, and the higher oxidative activity led
to a high photocatalytic oxidation rate of the nanocomposite [144]. Moreover, Zuo et al.
(2022) constructed mesoporous carbon nanotube networks loaded with trace atomic Fe
sites by calcining melamine–cyanuric acid complex and glucose absorbed with Fe3+ at high
temperatures, which exhibited high photodegradation rates of 93.2%, 99.4% and 94.3% for
TCH, CTC and OTC. The single atomic Fe with a Fe-N-C structure improved visible light
absorption, and the N-doped CNT networks promoted electron and mass transfer as well
as enhanced the fast transfer of degradation products along the inner and outer walls of
the tubes [145].
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Currently, more researchers are paying attention to the design of ternary photocat-
alysts based on CNTs, enhancing the removal efficiency of various antibiotics, which
mainly are quinolones [138,146], sulfonamides [146], β-lactams [147,148] and tetracy-
clines [138,149,150]. Zuo et al. (2022) demonstrated the preparation of Z-scheme Ag–
AgBr/Bi2O2CO3/CNT heterojunctions, which had an outstanding complete removal of
TC within 40 min. CNTs increased visible light absorption, and their electrical conduction
promoted the fast transfer of electrons, the increase in carrier density, the decrease in
interface transfer resistance, and the corresponding increase in photocurrent, all of which
were responsible for the significantly improved photocatalytic performance [138].

Table 6. Degradation characteristics of antibiotics by CNT-based photocatalysts.

Photocatalysts Antibiotic Dosage
(g/L)

Detection
Wavelength

(nm)
Light Source Degradation

Efficiency Ref.

Ag–AgBr/Bi2O2CO3/CNT Tetracycline 0.4 Visible light 100% within 40 min [138]
MWCNT/TiO2 Tetracycline 0.2 360 UV light 100% within 100 min [139]

HPWx@Fe2O3-CNTs Tetracycline 0.25 356 Visible light 100% within 40 min [149]

Fe-CNTs Tetracycline
hydrochloride 0.05 358 Visible light 93.2% within 100 min [145]

MWCNT/BiVO4 Oxytetracycline 0.25 360 Visible light 88.7% within 60 min [141]
Fe-CNTs Oxytetracycline 0.05 355 Visible light 94.3% within 100 min [145]
Fe-CNTs Chlortetracycline 0.05 370 Visible light 99.4% within 80 min [145]

NiFe2O4/MWCNTs/BiOI Doxycycline 1.25 351 UV light 92.18% within 300 min [150]
CNT@MIL-101(Fe) Ciprofloxacin 0.5 Visible light 90% within 45 min [140]

CuBi/MWCNTs Ciprofloxacin Visible light 93% within 90 min [144]
MWCNTs-{312}/{004}Bi5O7I Ofloxacin 1.0 Visible light 88.2% [142]

CuBi/MWCNTs Ofloxacin Visible light 91% within 90 min [144]
Bi2MoO6/Bi2WO6/MWCNTs Ofloxacin 2.0 Visible light 91.3% within [146]

CNTs/LaVO4 Sulfamethazine 0.3 255 Visible light Up to 95% within 90
min [143]

Bi2MoO6/Bi2WO6/MWCNTs Sulfadimidine 2.0 Visible light 88.8% [146]
SWCNT/ZnO/Fe3O4 Cefixime 0.46 280 UV-A light 94.19% [147]
Bi2WO6/CNT/TiO2 Cephalexin 0.75 262 Sunlight 98.7% within 70 min [148]

4.3. Biochar-Based Materials Applied in Photocatalytic Degradation of Antibiotics

Under light irradiation, biochar can generate various reactive oxygen species (ROS)
through biochar carbon matrix (BCM) and dissolved organic matter (DOM) to enhance the
indirect photodegradation of pollutants and oxidize various molecules. Yang et al. (2021)
revealed that BCs could photodegrade the SMX and CAP through direct and indirect path-
ways. Specifically speaking, in the low-concentration BC solutions, the oxygen reduction
performances of BCs and ·OH radicals generated by DOMs can indirectly photodegrade
SMX and CAP by promoting the oxidation process and electron transfer [151]. Furthermore,
modification methods were applied to improve the light response performance of BC, such
as ball milling was proven to improve the capacities of adsorption and ROS generation by
increasing the SSA, pore volume, oxygen-containing functional groups, and the carbon
defects of BC [152].

Moreover, BC is a good carrier for photocatalysts as it can bring some advantages: (1)
facilitate the photodegradation process due to the high adsorption capacity, (2) expand the
light absorption range, and (3) provide an efficient electron-transfer channel and acceptor
to enhance the separation of photogenerated electron-hole pairs. So, the combination
of BC and semiconductors such as metallic oxides, metallic sulfides, and graphitic car-
bon nitride were intensively explored for antibiotics removal. For example, (modified)
TiO2/BC [153–155], Bi2WO6/Fe3O4/BC [156], PbMoO4/BC [157], CdS/BPC [158], and
g-C3N4/BC [159,160] all have high photocatalytic efficiency and long-term use durability
because of their high surface area, adequate active sites, and compact interface. Recently,
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layered double hydroxides/oxides [161,162] and spinel ferrites received great attention as
emerging categories of photocatalysts to be combined with BC. Li et al. (2022) prepared
ZnO/ZnFe-LDH loaded on BC via a facile hydrothermal method. The BC matrix offered a
homogeneous distribution of LDH, narrowed band gap, expanded visible-light adsorption,
and enhanced separation of electron-hole pairs, leading to significant photocatalytic degra-
dation of TC (87.7%) [163]. Zinc ferrite (ZnFe2O4) with narrow band-gap energy of 1.9 eV
was combined with B, N co-doped BC by Peng et al. (2021) to generate a large surface area
and numerous vacant sites for TCH adsorption and electron capture, and form the tight
interface for efficient transfer and mobility of charge carriers [164].

Additionally, it has been shown that a system based on transition metal phosphides is a
wise choice for photocatalytic applications. Wang et al. (2022) constructed a photocatalytic
system composed of NixP/biocarbon composite as the reactive center and erythrosine
B as a sensitizer for SMX removal. The NixP mixed crystal phases presented excellent
photocatalytic activity due to its faster electron transfer ability [165]. Table 7 lists the
BC-based photocatalysts mentioned above for antibiotics degradation.

Table 7. Degradation characteristics of antibiotics by BC-based photocatalysts.

Biomass
Pyrolysis

Temp
(◦C)

Photocatalysts Antibiotic Dosage
(g/L)

Light
Source

Degradation
Efficiency Refs.

Poplar
sawdust 500 PbMoO4/BC Tetracycline 3.0 Visible

light 61.0% within 120 min [157]

Potato stems
and leaves 600 CdS/BPC Tetracycline 0.1 Visible

light 84.6% within 120 min [158]

Enteromorpha 700 g-C3N4/BC Tetracycline 0.2 Visible
light 88% within 60 min [159]

Caragana
korshinskii 650 K-g-C3N4/BC Tetracycline 1.0 Visible

light 90.94% within 180 min [160]

Rice husks 400 ZnO/ZnFe-
LDH/BC Tetracycline 0.2 Visible

light 87.7% within 240 min [163]

Sugarcane
bagasse 600 ZnFe/BN-BC Tetracycline

hydrochloride 0.33 Sunlight 98.19% within 120 min [164]

Rice straw 700 Pure BC Sulfamethoxazole 0.5 Visible
light 96.28% within 720 min [151]

Reed straw 500 Zn-TiO2/pBC Sulfamethoxazole 1.25 Visible
light 81.21% within 180 min [153]

Baker’s yeast 900 NixP/BC Sulfamethoxazole 0.4 Visible
light 98.71% within 120 min [165]

Primary
paper mill

sludge
800 Mag-TiO2/KBC Sulfadiazine 0.1 Sunlight t1/2= 5.6 ± 0.4 h [155]

Rice straw 700 Pure BC Chloramphenicol 0.5 Visible
light 95.23% within 720 min [151]

Caragana
korshinskii 650 K-g-C3N4/BC Chloramphenicol 1.0 Visible

light 82.42% within 180 min [160]

Poplar
woodchips 300 Ball-milled BC Enrofloxacin 0.2 Visible

light
Up to 82.5% within

150 min [152]

Corn stalk 500 TiO2/KBC Enrofloxacin 2.5 UV light 85.25% within 60 min [154]

Reed straw 500 Bi2WO6/Fe3O4/BC Ofloxacin 0.4 Visible
light 83.1% within 60 min [156]

Reed straw 500 Bi2WO6/Fe3O4/BC Ciprofloxacin 0.4 Visible
light 91.5% within 60 min [156]

Caragana
korshinskii 650 K-g-C3N4/BC Norfloxacin 1.0 Visible

light 83.62% within 180 min [160]

husks and
paper sludge 500 Zn-Co-LDH/BC Gemifloxacin 0.75 UV light 92.7% within 100 min [161]

Palm seeds 600 MnFe-LDO/BC Metronidazole 0.5 UV light 98% within 60 min [162]
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4.4. Hierarchical Porous Carbon-Based Materials Applied in Photocatalytic Degradation of
Antibiotics

Carbon materials with a hierarchical architecture are promising photocatalysts as their
special interconnected porous structures can enhance the transport of substrates/products
and the exposure of active sites so that in subsequent reactions, the charge carrier transfer
distance would be shortened, which will promote the separation and migration of photo-
excited electron-hole carriers. However, few pieces of research have been conducted on
HPC-based photocatalysts for antibiotics removal.

Zhou et al. (2021) reported a novel catalyst of N-doped magnetic three-dimensional
hierarchical porous carbon microspheres@TiO2 (N-doped MCMs@TiO2), which demon-
strated impressive photodegradation ability for TC (up to 99.87% within 120 min) under
UV irradiation. According to the test results, the catalyst exhibited an extended continu-
ous pore size distribution and a meso/macropore dominant hierarchical structure, which
gave TiO2 a better supporting matrix and increased the number of catalytic sites. The
N-doped carbon structure significantly narrowed the band gap of TiO2, increased the
adsorption of visible light, and favored the electrons transferring. Above are the reasons
for the improved photocatalytic performance of the material [166]. In another study, Wang
et al. (2021) prepared metal-organic complex-derived 3D HPC-supported g-C3N4/TiO2
as photocatalysts for chlortetracycline hydrochloride (CTC-HCl) removal. It showed high
CTC-HCl photocatalytic efficiency up to 97.8% after 60 min in the static system, which was
ascribed to two structural properties: (1) the 3D porous structure with a high SSA could
offer multidimensional adsorption-enrichment sites, (2) the heterojunction could promote
the separation and migration of the photogenerated electrons and holes [167].

5. Conclusions and Outlooks

Along with human activities and industrial development, water pollution issues are
becoming increasingly severe, threatening the ecological environment and human health.
Due to the overuse of antibiotics in aquaculture and human/animal treatment in recent
years, antibiotics are one of the major emerging pollutants in the aquatic environment. From
one-dimensional carbon nanotubes, two-dimensional graphene, and three-dimensional
biochar to hierarchical porous carbon, carbonaceous materials have been widely used as
adsorbents and photocatalysts for eliminating antibiotics. This review discusses recent
advances in carbon-based materials for antibiotic adsorption and photodegradation. The
main adsorption mechanisms involved in the adsorptive removal process of antibiotics are
π-π interactions, electrostatic interaction, and hydrogen bonding. Except for environmental
parameters, the adsorption performance of carbon-based materials primarily depends on
their pore size, uniformity, and functional groups. Carbonaceous materials have been
modified via chemical or physical methods and loaded with functional nanoparticles or
compounds to form carbon-based composites for improved adsorption properties. On the
other hand, carbon-based materials have been applied in antibiotic photodegradation as
photocatalyst carriers, co-catalysts, and photosensitizers. The predominant steps for antibi-
otic photocatalytic degradation are photon absorption, excitation, and reaction, depending
on three main species, O2

−, h+, and OH radicals. The carbon-based photocatalysts usually
show better adsorption performance, a higher ability to scavenge photo-excited electrons,
and broadened light absorption range.

Even though many studies were conducted on the adsorptive and photocatalytic
removal of antibiotics by carbon-based materials, many research gaps and uncertainties
remain. The main challenges to overcome in future research are as follows.

1. Hastening the formation of antibiotic-resistance genes and antibiotic-resistant bacteria
is the main pathway for antibiotics to harm the ecosystem. However, using carbon-
based materials to disrupt antibiotic resistant genes and alter bacterial resistance has
been rarely reported. Further research should be conducted to determine the impact
of carbon-based materials on antibiotic resistance.
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2. Some carbon-based materials have intrinsic toxicity, and others can produce toxic
by-products when removing antibiotics, such as the leaching of metal ions. So, they
may have a negative impact on the water environment. The long-term fate and
environmental risks of carbon-based materials in the aqueous environment are still
unclear, and further studies of their toxicity and biological responses are needed.

3. Despite intense research, antibiotics’ adsorption and photodegradation mechanisms
remain vaguely interpreted, as conclusions based on partial characterization analysis
and traditional models are not accurate or comprehensive. Issues like the synergistic
effect of the components in the carbon-based nanocomposites, the effect of the antibi-
otic species on the removal properties, and the applicability of the relevant models
need to be further investigated.

4. Currently, most studies on the removal of antibiotics by carbon-based materials
are limited to batch experiments at the laboratory scale rather than the pilot scale,
resulting in a gap between research and application. The experiments were usually
conducted in mixed antibiotics or antibiotics-metals systems instead of a complex
system with coexisted multi-pollutants. From an application point of view, it is vital to
test the effectiveness of carbon-based materials for antibiotic removal in a system that
resembles a natural water environment, and to investigate other pollutants’ influence
on the removal process. More attention should be paid to interactive mechanisms
among antibiotics, interfering substances, and carbon-based materials. Furthermore,
for large-scale engineering applications, in addition to the removal properties of
the materials, their mass production feasibility and economic efficiency should be
considered, such as raw materials, production cost, production cycle, and yield.
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