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Abstract: In this paper, a facile modifying technique of source/drain regions conductivity was
proposed for self-aligned top-gate In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) by controlling the
process parameter of the passivation layer at relatively low temperatures. The sheet resistance of
the source and drain regions of IGZO was approximately 365 Ω/�, and there was no significant
change within a month. The device parameters of mobility, threshold voltage, subthreshold swing,
and current switching ratio of the fabricated device were 15.15 cm2V−1s−1, 0.09 V, 0.15 V/dec, and
higher than 109, respectively. The threshold voltage drift under negative bias illumination stress was
−0.34 V. In addition, a lower channel width-normalized contact resistance of 9.86 Ω·cm was obtained.

Keywords: InGaZnO; self-aligned top-gate; thin-film transistors

1. Introduction

Nowadays, amorphous indium gallium zinc oxide (a-IGZO) receives significant at-
tention as an active layer of thin film transistors (TFTs) in the display industry because
of its high mobility, very low off-state current, low process temperature, and intermittent
refreshing [1–7]. The typical bottom gate structure of AOS TFTs, including back-channel-
etch and etch-stopper-layer, inevitably suffer from resistor–capacitor delay and image
lagging, which is mainly due to the parasitic capacitance formed by the overlap between
the gate (G)-source/drain (S/D) electrodes [8]. However, the source/drain and gate of the
self-aligned top gate (SATG) structure are located on the same side of the active layer and
have relatively small parasitic capacitance, so they have drawn the attention of more and
more researchers [5,9–14]. The key technical challenge of SATG TFT is how to form source–
drain regions with low resistance. Up to now, several solutions have been put forward to
rise to this challenge, such as ion implantations [9], metal reaction-induced [5,10], plasma
treatment [11], and hydrogen (H) doping in time of interlayer dielectric or passivation
deposition [12,13]. Nevertheless, some problems with these methods cannot be ignored.
Regarding the high activation temperature of ion implantations, guaranteed precise film
thickness with metal reaction-induced, plasma-induced damages effect the plasma as a
result of the uncontrollable rapid hydrogen diffusion of the high-temperature activation
process with hydrogen incorporation. Furthermore, low-resistance IGZO films can also be
prepared by coating with organic interlayer dielectric [15] or ultraviolet irradiation [16],
which may result in an undercut and worse step coverage due to the gate stack directly
formed by one-step dry etching. Based on the key technical challenges of SATG TFTs,
there are currently few reports on the indirect processing of IGZO source–drain regions to
form highly conductive regions in active oxide channels. Thus, in this study, we propose
the vertical diffusion of hydrogen by modifying the hydrogen content of the passivation
layer process to form low-resistance IGZO source–drain regions for indirectly realizing
self-aligns. This simple doping process not only optimizes the process steps for reducing
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the resistance of the source/drain regions but also improves the water and oxygen bar-
rier capabilities of the device. SATG TFTs with good electrical properties and excellent
negative bias illumination stress (NBIS) stability were successfully fabricated under a
low-temperature process.

2. Materials and Methods

First of all, a 200 nm thick buffer layer with SiO2 was deposited on 200 × 200 mm
glass by plasma-enhanced chemical vapor deposition (PECVD). Then, the IGZO with a
thickness of 40 nm was sputtered as an active layer and was patterned using a wet etchant.
Furthermore, SiO2 (SiH4/N2O = 6/94) with the thickness of 300 nm was deposited as a
gate insulating layer (GI) by PECVD at 200 ◦C. Secondly, Mo (30 nm)/ITO (5 nm) was
sputtered as a gate electrode using magnetron sputtering. Next, the gate electrode was
formed by a two-step wet etch of the Mo/ITO stack. After SiO2 (SiH4/N2O = 6/94) or Si3N4
(SiH4/NH3/N2 = 6/22/72) with a thickness of 200 nm was deposited as a passivation layer
(PA) at 200 ◦C., the n+ IGZO extension regions (the size of one side is 25 × 50 µm2) were
automatically formed through the gate. Moreover, the contact holes were exposed by dry
etching. In the end, the ITO with a thickness of 35 nm was sputtered again by sputtering
as a source–drain electrode. It is worth noting that the process temperature during device
fabrication was not higher than 200 ◦C. The channel width of the device was fixed at 50 µm,
and the channel length (L) was 4 µm, 6 µm, and 8 µm, respectively. Figure 1a,b represents
the schematic cross-section and top optical image of the SATG IGZO TFT, respectively.
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Figure 1. (a) The schematic diagram of SATG IGZO TFTs. (b) Top view of SATG IGZO TFT.

The electrical characteristics for the fabricated a-IGZO TFTs were measured using
Keithley 4200. We define the corresponding gate voltage (VGS) when the leakage current
(IDS) is 1 nA as the threshold voltage (VTH) of the TFT device. The mobility (µ) was
calculated according to the following equation: µ = 2L·IDS/W·Ci·(VGS−VTH)2, where Ci is
the gate of the capacitance per unit area. The sheet resistance was measured by the 3 m
mini type four-probe tester in the dark at 300 K. The light source used in the NBIS tests
was white light with a brightness of 10,000 lux by applying VG-Stress = −10 V of 1000 s with
source and drain electrodes grounded. The light source was emitted from the bottom of
the device.

3. Results and Discussion

To verify the effect of the passivation layer process with different hydrogen contents
on device characteristics, SATG IGZO TFTs with three passivation layers were fabricated
without a passivation layer (w/o). SiO2 and Si3N4, respectively, represent the low, medium,
and high hydrogen content in the passivation layer film.

The transfer performance with SATG IGZO TFTs with different passivation is shown
in Figure 2a. When the hydrogen concentration of the passivation layer increases, the µ
increases from 0.31 to 15.15 cm2V−1s−1, threshold voltage (VTH) from 3.91 V to 0.09 V, sub-
threshold swing (SS) from 0.10 V/dec to 0.15 V/dec, and Ion/Ioff increases from 1.17 × 108
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to 2.86 × 109. Figure 2b show the output characteristic of TFT with Si3N4 as passiva-
tion. The output characteristics show good ohmic contact at low drain voltages and low
source/drain resistance [17]. This can be attributed to not only higher electron mobility but
also lower contact resistance [10,18].
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Figure 2. (a) Variation of IDS-VGS transfer curves of SATG IGZO TFTs prepared with different
passivation layers, (b) output curve of SATG IGZO TFT with Si3N4 as a passivation layer.

It can be intuitively seen from Figure 2a that the Ion of the device gradually increases
from ~106 A to ~104 A as the hydrogen content increases. Although the IGZO/GI interface
will have a serious impact on Ion, the fabrication processes of the three devices are basically
the same, that is, the IGZO/GI interface defects should be the same, which can be reflected
from the SS value with no obvious change. Therefore, the increase of Ion is mainly due to
the decrease of the contact resistance. After the passivation layer is deposited, since the
passivation layer contains a high concentration of hydrogen, a large amount of hydrogen
will first pass through the insulating layer from the passivation layer and then vertically
diffuse to the IGZO layer [19]. In addition, because the densified gate can block the diffusion
of hydrogen, hydrogen will vertically diffuse down to the IGZO layer along the edge of
the gate, reducing the resistance and self-aligning to form the IGZO source and drain
regions. Although a small amount of hydrogen will diffuse laterally, it will only remain in
the insulating layer above the channel. As the hydrogen content in the passivation layer
increases, the hydrogen diffused into the IGZO layer must increase, so the formed IGZO
source and drain regions have better conductivity, and the TFT device has smaller parasitic
resistance. At the same time, the channel carrier concentration increases, and the VTH shifts
to the left.

To demonstrate that the contact resistance is reduced, the sheet resistance of S/D
regions in the IGZO was measured. Figure 3a show the variation of sheet resistance of the
IGZO source and drain regions with deposition temperature. The sheet resistance decreases
gradually with the increase of deposition temperature. At 150 ◦C, the sheet resistance
corresponding to the Si3N4 passivation layer is much lower than that of SiO2, but when
the temperature increases to 200 ◦C, the effects of the two passivation layers are similar
and remain basically unchanged. The sheet resistance varies around 365 Ω/�. Therefore,
its resistivity is 1.5 × 10−3 Ω·cm because its thickness is 40 nm. Table 1 summarize the
resistance and device mobility obtained by different treatments for the source and drain
regions of IGZO. In this work, the PA/GI processing approach exhibits low resistivity and
high device mobility and achieves a level comparable to other methods.



Nanomaterials 2022, 12, 4021 4 of 7

Nanomaterials 2022, 12, x FOR PEER REVIEW 4 of 7 
 

 

Metal reaction-induced 13 2.4 × 10−3 200 2021 [10] 

Plasma 5.13 2 × 10−3 350 2021 [11] 

Zeocoat 18.84 3.8 × 10−4 150 2020 [15] 

Interlayer dielectric 

layer 
14 3 × 10−3 250 2019 [13] 

ultraviolet irradiation 6.7 3 × 10−5 300 2015 [16] 

 

  

  

Figure 3. (a) Variation of sheet resistance with deposition temperature, (b) variation of sheet re-

sistance with placement time, (c) Rtot-L plot measured from the TFTs with different L at various 

gate voltage biases, (d) width-normalized contact resistance as a function of gate voltage. 

As shown in Figure 3b, with the passage of time, the two passivation layers have 

different changes to the IGZO source and drain regions. The Si3N4 passivation layer main-

tained good stability for one month, while the SiO2 passivation layer showed poor stabil-

ity. After 3 days, the sheet resistance increased to more than 156 kΩ/, increased to about 

526 kΩ/ after a week, and exceeded the test limit of the device after a month. This can be 

attributed to the low hydrogen content in the SiO2 film, which has an insufficient degree 

of influence on the IGZO film. With the increase of the standing time, the hydrogen in the 

SiO2 film diffused outward, reducing the hydrogen content in the IGZO film, and thus the 

sheet resistance increased. 

The contact resistance (RC) was calculated according to the transmission line method. 

It includes the contact resistance between the metal and semiconductor and the resistance 

of the S/D extension part inside the semiconductor. The following equation may be used 

to calculate the Rtot [15]: 

𝑅𝑡𝑜𝑡 =
𝑉𝐷𝑆

𝐼𝐷𝑆
=

𝑅𝑆

𝑊
𝐿 + 2𝑅𝐶. (1) 

RS is the channel resistance. Figure 3c show the total resistance (Rtot) corresponding 

to different L at various VGS. The transmission line method was used to extract the width-

normalized RC (RC·W) and the diffusion distance, as shown in Figure 3d [5]. For SATG 

IGZO TFT with Si3N4 passivation layer, the RC·W values were approximately 9.86 Ω·cm, 

and the lateral diffusion distance was only 0.07 μm. 

Figure 3. (a) Variation of sheet resistance with deposition temperature, (b) variation of sheet resistance
with placement time, (c) Rtot-L plot measured from the TFTs with different L at various gate voltage
biases, (d) width-normalized contact resistance as a function of gate voltage.

Table 1. This is a table. Tables should be placed in the main text near to the first time they are cited.

Treatment Methods µ (cm2V−1s−1) Resistivity (Ω·cm) Temperature (°C) References

PA/GI 15.15 1.5 × 10−3 200 This Work
Ion implantations 7 - 350 2021 [9]

Metal reaction-induced 13 2.4 × 10−3 200 2021 [10]
Plasma 5.13 2 × 10−3 350 2021 [11]
Zeocoat 18.84 3.8 × 10−4 150 2020 [15]

Interlayer dielectric layer 14 3 × 10−3 250 2019 [13]
ultraviolet irradiation 6.7 3 × 10−5 300 2015 [16]

As shown in Figure 3b, with the passage of time, the two passivation layers have
different changes to the IGZO source and drain regions. The Si3N4 passivation layer
maintained good stability for one month, while the SiO2 passivation layer showed poor
stability. After 3 days, the sheet resistance increased to more than 156 kΩ/�, increased to
about 526 kΩ/� after a week, and exceeded the test limit of the device after a month. This
can be attributed to the low hydrogen content in the SiO2 film, which has an insufficient
degree of influence on the IGZO film. With the increase of the standing time, the hydrogen
in the SiO2 film diffused outward, reducing the hydrogen content in the IGZO film, and
thus the sheet resistance increased.

The contact resistance (RC) was calculated according to the transmission line method.
It includes the contact resistance between the metal and semiconductor and the resistance
of the S/D extension part inside the semiconductor. The following equation may be used
to calculate the Rtot [15]:

Rtot =
VDS
IDS

=
RS
W

L + 2RC (1)

RS is the channel resistance. Figure 3c show the total resistance (Rtot) corresponding to
different L at various VGS. The transmission line method was used to extract the width-
normalized RC (RC·W) and the diffusion distance, as shown in Figure 3d [5]. For SATG
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IGZO TFT with Si3N4 passivation layer, the RC·W values were approximately 9.86 Ω·cm,
and the lateral diffusion distance was only 0.07 µm.

To verify the prospect of passivation in practical applications of SATG IGZO TFT, the
NBIS is shown in Figure 4. As the time of illumination and gate voltage are increased,
the VTH drifts in the negative direction. However, the threshold voltage drift (∆VTH) of
TFTs with w/o or SiO2 is reduced from −1.19 V or −1.04 V to −0.34 V compared to TFTs
with Si3N4. This shows that the Si3N4 can improve device stability. The VTH drift under
NBIS is mainly due to the formation of positively ionized oxygen vacancies under the
combined effect of illumination and negative gate voltage (VO → V+

O /V++
O ) [20]. The

∆VTH for SATG IGZO TFTs with Si3N4 as passivation is as low as −0.32 V, which may
be due to the reduction of positive charge (V+

O /V++
O ) by the formation of substitutional

hydrogen (HO + e−→ H− + VO→ HO), where HO and HO represent a hydrogen atom and
substitutional hydrogen, respectively [21]. In addition, as the hydrogen in the passivation
layer increases, the lateral diffusion of hydrogen remaining in the insulating layer also
increases. In subsequent processes, hydrogen will diffuse from the GI to the IGZO/GI
interface, passivate the VO–related point defects, and reduce the deep donor electron traps
(HO + O2− → OH− + e−) [4,20]. At the same time, hydrogen implantation from GI to the
IGZO/GI interface also increases the carrier concentration and reduces the interfacial trap
states, thereby reducing ∆VTH [22,23].
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4. Conclusions

In this paper, SATG TFTs were successfully fabricated by modifying the hydrogen
content of the passivation layer process under a low-temperature process. The influence of
the passivation layer on the electrical properties was compared, and it was proven that the
modification of the passivation layer process can effectively reduce the resistance of the
source and drain regions of IGZO. The prepared TFT had a low RC·W of 9.86 Ω·cm and
a low lateral diffusion distance of 0.07 µm. The fabricated SATG TFT exhibited excellent
electrical properties with µ of 15.15 cm2V−1s−1 and Ion/Ioff higher than 109, respectively.
Meanwhile, NBIS stability was remarkably improved from −1.19 to −0.34 V.
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