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Abstract: Based on the large specific surface area and excellent adsorption potential of graphene
quantum dots (GQDs) and zeolitic imidazolate framework-8 (ZIF-8) materials, a GQDs@ZIF-8 composite
was constructed to achieve optimal matching of the microstructure and to acquire efficient adsorption
of volatile organic compounds (VOCs). GQDs and ZIF-8 were synthesized and then compounded
by the solution co-deposition method to obtain GQDs@ZIF-8 composites. GQDs were uniformly
decorated on the surface of the ZIF-8 metal-organic framework (MOF), effectively restraining the
agglomeration, improving the thermal stability of ZIF-8 and forming abundant active sites. Thus, the
VOC removal percentage and adsorption capacity of the GQDs@ZIF-8 composites were significantly
improved. Toluene and ethyl acetate were chosen as simulated VOC pollutants to test the adsorption
performance of the composites. The results showed that, after the addition of GQDs, the adsorption
property of GQDs@ZIF-8 composites for toluene and ethyl acetate was obviously improved, with
maximum adsorption capacities of 552.31 mg/g and 1408.59 mg/g, respectively, and maximum removal
percentages of 80.25% and 93.78%, respectively, revealing extremely high adsorption performance.
Compared with raw ZIF-8, the maximum adsorption capacities of the composites for toluene and ethyl
acetate were increased by 53.82 mg/g and 104.56 mg/g, respectively. The kinetics and isotherm study
revealed that the adsorption processes were in accordance with the pseudo-first-order kinetic model and
the Freundlich isotherm model. The thermodynamic results indicated that the adsorption process of the
GQDs@ZIF-8 composites was a spontaneous, endothermic and entropy increase process. This study
provides a new way to explore MOF-based adsorption materials with high adsorption capacity which
have broad application prospects in VOC removal fields.

Keywords: graphene quantum dot; ZIF-8; composite; volatile organic compounds; adsorption;
toluene; ethyl acetate

1. Introduction

At present, volatile organic compounds (VOCs) are increasingly generated in the
field of industrial production, home decoration, coatings, etc., causing great harm to
the environment and human health [1,2]. The removal and degradation of VOCs has
become a key problem to be solved. The terminal treatment of VOCs mainly includes
adsorption, combustion and other chemical methods. Among them, adsorption methods
using activated carbon, molecular sieves and a variety of nanoporous materials are widely
adopted due to their simplicity and convenient features [3–5]. However, these methods
still have problems such as low adsorption capacity, ease of blockage and low thermal
stability [6,7]. Therefore, ascertaining how to obtain new adsorption materials with high
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VOC adsorption capacity, high thermal stability and good regeneration performance is the
focus of current research.

Metal-organic frameworks (MOFs) with high specific surface area and developed
porosity are widely used in gas separation [8], water purification [9], catalyzation [10]
and other fields. As a major MOF subfamily, zeolite imidazole framework-8 (ZIF-8) has
attracted extensive interest from researchers due to its simple synthesis and high chemical
and thermal stability [11–14]. Zhou et al. [15] prepared hybrid composites of ZIF-8 and
graphene oxide (GO) in methanol at room temperature, showing their adjustable nanoscale
morphology and porosity. Due to the synergistic effect between ZIF-8 and GO, the com-
posite had a higher absorption capacity of VOCs than ordinary ZIF-8 crystals. When the
GO content was 15 wt%, the maximum adsorption capacity of ZIF-8/GO for methylene
chloride reached 240 mg/g. Qiu et al. [16] prepared ZIF-8 and its derived nitrogen-rich,
porous carbon with different average sizes and proved that their specific surface area and
pore volume decreased with increasing particle size. For porous carbon derived from ZIF-8,
nitrogen-containing functional groups greatly improved the affinity for CO2 and VOCs.
Meng et al. [17] prepared N-functionalized porous carbon (NFPC) with a high specific
surface area from ZIF-8 and applied it to the adsorption and removal of gaseous acetone
and toluene. NFPC-1000 had the best adsorption performance for acetone and toluene,
and the equilibrium adsorption capacities were 203.4 mg/g and 297.1 mg/g, respectively.
Song et al. [18] prepared ZIF-8 with methanol, deionized water and triethylamine (Et3N)
mixed solution as the medium and modified ZIF-8 with sodium alginate (SA) and CaCl2
ZIF-8@CA, which greatly improved the adsorption property of Pb2+, and the maximum ad-
sorption capacity was 1321.21 mg/g. Wang et al. [19] used ZIF-8 and fly ash (FA) to prepare
a low-cost, small-volume and high-stability nanocomposite ZIF-8/FA, which was used to
remove heavy metal ions in water, effectively solving the problems of low FA adsorption
performance and difficult recovery of ZIF-8. In the field of aqueous solution treatment,
current research is mainly focused on the combination of ZIF-8 with organic carriers and
metal ions, while research on VOC adsorption still needs more attention to continuously
improve VOC adsorption capacity. Thus, the adsorption of ZIF-8 material on various VOC
pollutants needs to be deeply investigated to make full use of its excellent performance.

As a zero-dimensional carbon nanomaterial, graphene quantum dots (GQDs) have
special luminous properties [20], low toxicity [21] and good biocompatibility [22,23]. They
have good application value in photovoltaic cells, biological imaging and medical fields [24].
Meanwhile, their large specific surface area, good dispersion, rich active centers (edges,
functional groups, dopants, etc.) and good adjustability of chemical and physical proper-
ties [25] also lay the foundation for their application in the adsorption field. GQDs also
have the advantages of rich surface functional groups and many active sites [26]. They
can improve the adsorption capacity for specific substances by functionalizing other spe-
cific functional groups. Mahmoud et al. [27] further modified rice-hull-based GQDs with
barium hydroxide to prepare a GQDOs-Ba nanobiosorbent for the microwave-enhanced
removal of Pb2+ and La3+ from water. The increase in GQDOs-Ba dosage improved
the removal efficiency of Pb2+ and La3+ ions. Manna et al. [28] prepared a GQD-coated
biological matrix for removing azo dyes, methylene blue, etc. Compared with GQDs,
the removal capacity of the GQD-coated biological matrix was increased by 2–3 times.
Nagaraj et al. [29] covalently linked GQDs to functional ionic liquids (IL) to prepare a
highly stable IL-GQDs adsorbent for removing Cr6+ from contaminated water. An alkaline
medium was used as the eluent for the regeneration study, and the removal efficiency of
Cr6+ by IL-GQDs was still more than 80% after five cycles. Shao et al. [30] synthesized
GQDs-TiO2 nanofilms by a hydrothermal method. The highest sensitivity was 13.8, and
the response time was 18 s when detecting 50 ppm isopropanol gas at room temperature.
Alivand et al. [31] prepared GQDs by embedding them in the self-assembly process of
material of institute Lavoisier-101 (MIL-101) and obtained MIL-101@GQD composites.
Compared with conventional MIL-101, MIL-101@GQD-3 showed 300.0% and 53.3% greater
mesopore and total pore volumes, respectively, resulting in 1.7 and 2.8 times more benzene
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and toluene loading, respectively. At present, GQDs still have some shortcomings such as
low stability and easy agglomeration. In addition, low-cost production and purification
still have not been realized, which restricts the large-scale application of GQDs.

ZIF-8 has the advantages of structural adjustability and ultrahigh specific surface
area. Both acidic and alkaline functional groups exist in its structures, which can adsorb
pollutants with different properties. GQDs also have rich surface functional groups and
abundant active sites, which can be grafted with other specific functional groups to improve
the adsorption capacity for specific substances. However, GQDs easily agglomerate during
the service process, which leads to the failure of the adsorbent. In the face of this shortage,
new types of GQDs@ZIF-8 complex structures are expected to be designed. For this novel
composite, GQDs were uniformly dispersed on the surface of ZIF-8 to achieve optimal
matching of the microstructure, which takes synergetic advantage of GQDs and ZIF-8,
improving the adsorption performance of the composite and further realizing the pH-
value-regulated adsorption efficiency through the adjustment of surface functional groups.
Based on this new concept, GQDs and ZIF-8 were prepared by the direct pyrolysis method
and liquid-phase synthesis method, respectively, and then GQDs@ZIF-8 composites were
synthesized by further combination of GQDs and ZIF-8 via the solution co-deposition
method. Characterizations, including those by transmission electron microscope (TEM),
X-ray diffractometer (XRD), X-ray photoelectron spectrometer (XPS), Fourier-transform
infrared spectrometer (FT-IR), thermal gravimetric analyzer (TGA) and N2 adsorption-
desorption, were used to investigate the morphology, crystal structure, components and
pore structures of the composites. Toluene and ethyl acetate were chosen as simulated
VOC pollutants to test the adsorption performance of the composites, revealing maximum
adsorption capacities of 552.31 mg/g and 1408.59 mg/g, respectively. GQDs@ZIF-8 com-
posites with high adsorption capacity were obtained in this work, which can be used for
the highly efficient removal of VOCs.

2. Materials and Methods
2.1. Materials and Reagents

Citric acid (C6H8O7, purity ≥ 99.8%), used as the precursor material for prepar-
ing GQDs, was purchased from Tianjin Jiayu Fine Chemical Co., Ltd. (Tianjin, China).
2-Methylimidazole (C4H6N2, purity ≥ 98%) and zinc nitrate hexahydrate (Zn(NO3)2·6H2O,
purity ≥ 99%), used as the precursor materials for preparing ZIF-8, were purchased from
Beijing Boyu Gaoxin New Materials Co., Ltd. (Beijing, China) and Luoyang Haohua Chemi-
cal Reagent Co., Ltd. (Luoyang, China), respectively. Toluene (C7H8, purity ≥ 99.5%), ethyl
acetate (C4H8O2, purity ≥ 99.5%), methanol (CH4O, purity ≥ 99.7%), ethanol (C2H6O,
purity ≥ 99.7%), sodium hydroxide (NaOH, purity ≥ 99%), hydrochloric acid (HCl, 37%)
and deionized water (H2O, 99.9%) were purchased from Sinopharm Chemical Reagent Co.,
Ltd. (Shanghai, China). Dialysis bag (molecular weight cutoff: 3000 Da) was purchased
from Nanjing Dulai Biotechnology Co., Ltd. (Nanjing, China).

2.2. Preparation of GQDs

In this study, GQDs were prepared by the direct pyrolysis method, referring to a
previous procedure [32] with a small amount of modification. Citric acid was used as
the precursor, and the carbonization degree of citric acid was adjusted by controlling the
reaction time and temperature to synthesize GQDs. The typical preparation process was
as follows: 10 g citric acid was added to a flask, which was placed in an oil bath and
heated to 200 ◦C for 30 min. When all the color of the solution had turned to pale yellow,
the flask was taken out and cooled to room temperature. After that, 100 mL of NaOH
solution with a concentration of 0.5 mol/L was dropped into the flask and stirred until
the solution was evenly dispersed. Then, the pH value of the solution was adjusted to 7
using hydrochloric acid with a concentration of 2 mol/L. The obtained solution was further
dialyzed for 48 h using a dialysis bag, for which the molecular weight cutoff was 3000 Da.
Finally, the synthesized GQD solution was stored at 4 ◦C for further use.
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2.3. Preparation of ZIF-8

ZIF-8 was prepared by a liquid-phase synthesis method [33] from the coordination of
zinc ions with 2-methylimidazole. First, 1 mmol of zinc nitrate hexahydrate and 4 mmol of
2-methylimidazole were dissolved in 25 mL of methanol to prepare two types of solutions.
The obtained solutions were stirred until the color turned transparent. Then, the methanol
solution of 2-methylimidazole was poured into the methanol solution of zinc nitrate hex-
ahydrate. The mixture was evenly dispersed, was left to stand for 24 h and was further
washed via centrifugation at 10,000 rpm for 5 min. The centrifugal solvent had a 1:1 ratio
of water and methanol. After three rounds of centrifugation, the residue powder was dried
at 60 ◦C to obtain ZIF-8.

2.4. Preparation of GQDs@ZIF-8 Composites

GQDs@ZIF-8 composites were prepared from the combination of GQDs and ZIF-8 by
a solution co-deposition method. First, 10 wt% of ZIF-8 powder was dissolved in methanol
solution and dispersed with an ultrasonic cell pulverizer for 10 min. Then, 10 mg/mL of
GQD solution was dropped into the prepared ZIF-8 solution, with a GQD content of 5%.
After magnetic stirring for 30 min, the mixture was washed via centrifugation for 3 rounds,
with a centrifugation time of 20 min and a rotating speed of 10,000 rpm. Then, the obtained
samples were dried at 60 ◦C to obtain GQDs@ZIF-8 composites with a water content of zero.

2.5. Characterization of GQDs@ZIF-8 Composites

The crystal structure of the GQDs@ZIF-8 composites was measured by XRD (Shi-
madzu Limited, XRD-7000) with a scanning rate of 4◦/min. The chemical structure was
investigated by FT-IR (Shimadzu, IRSpirt) in the range of 400–4000 cm−1. The microstruc-
ture and morphologies were observed by TEM (JEOL, JEM 2100F). The components of the
composite were determined by XPS (Thermo Scientific, K-Alpha). The thermal stability
was investigated by TGA (Netzsch, TG 209F3) in the range of 25–800 ◦C at a heating rate of
5 ◦C/min. The Brunauer-Emmett-Teller (BET) N2 adsorption-desorption isotherms were
measured by a surface area and porosimetry system (Quantachrome, NOVA) at 77 K to
determine the specific surface area and pore structure of the composites.

2.6. Adsorption Test of GQDs@ZIF-8 Composites for Toluene and Ethyl Acetate

Toluene and ethyl acetate were taken as the target VOC pollutants to determine the
adsorption performance of GQDs@ZIF-8 composites. Different concentrations of toluene
solution and ethyl acetate solution were prepared. UV-1800 ultraviolet spectrophotometer
(Persee, TU-1810) was used to measure the absorbance of toluene at 261 nm and ethyl
acetate at 256 nm. The absorbance-concentration curves of toluene and ethyl acetate were
drawn to obtain the standard working curve, as shown in Figure 1. Then, the concentrations
of the solution after each adsorption experiment were calculated based on the measured
absorbance and the standard working curve.

Toluene solution with a concentration of 400 mg/L and ethyl acetate solution with a
concentration of 800 mg/L were prepared. Different quantities of GQDs@ZIF-8 composites
were put into the above solutions for the adsorption test. Moreover, the pH value of the
solution was adjusted to 3, 5, 7, 9 and 11, respectively. The adsorption performance of the
composites under different pH values was measured using an ultraviolet spectrophotome-
ter and then the concentrations of toluene and ethyl acetate solution at different times were
calculated according to the standard curve of the reference solution. The removal percent-
age R (%) and adsorption capacity Qt (mg/g) of GQDs@ZIF-8 composites for toluene and
ethyl acetate can be calculated using the following formulas:

R = (C0 − Ct)/C0 · 100% (1)

Qt = (C0 − Ct) · V/m (2)
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where C0 is the initial concentration of the adsorbate solution (mg/L), Ct is the concentration
of the adsorbate solution at time t (mg/L), V is the volume of adsorbate solution (L) and m
is the dosing mass of the adsorbent material (g).
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3. Results and Discussion
3.1. Morphology Analysis of GQDs@ZIF-8 Composites

The morphology and microstructure images of GQDs@ZIF-8 composites are shown in
Figure 2. From the TEM images of GQDs@ZIF-8 shown in Figure 2a, it can be seen that the
composite presents a regular structure with a uniform distribution and tight connection.
Figure 2b shows the TEM image of the GQDs, in which the insert picture is the particle size
distribution diagram of the GQDs, revealing that the GQD particles are evenly distributed
without obvious agglomeration. From the insert picture, it can be seen that the particle
size distribution range of the GQDs is 5–15 nm. Figure 2c shows the HRTEM image of
GQDs@ZIF-8, which reveals that GQDs@ZIF-8 exhibits an obvious core-shell structure,
indicating that GQDs are successfully assembled on the surface of ZIF-8. The average
particle size of the composite is approximately 90 nm. Figure 2d presents the HRTEM
image of a signal GQD. It can be observed that the lattice stripe spacing of a single GQD is
0.34 nm, which corresponds to the (002) crystal plane of graphite. The morphology and
microstructure analysis results prove the successful synthesis of GQDs@ZIF-8 composites.
This core-shell structure of composites can provide enormous specific surface area and
remarkably increase the active adsorption sites and, hence, improve the VOC adsorption
capacity of the GQDs@ZIF-8 composite significantly.

Nanomaterials 2022, 12, x FOR PEER REVIEW 6 of 23 
 

 

specific surface area and remarkably increase the active adsorption sites and, hence, im-
prove the VOC adsorption capacity of the GQDs@ZIF-8 composite significantly. 

 
Figure 2. Morphology and microstructure images of GQDs@ZIF-8 composites. (a) TEM image of 
GQDs@ZIF-8, (b) TEM image of GQDs with diameter distribution graph, (c) HRTEM image of 
GQDs@ZIF-8, (d) HRTEM image of a signal GQD. 

3.2. Crystalline Structure and Chemical Bond Analysis of GQDs@ZIF-8 Composites 
Figure 3 exhibits the measured XRD pattern of the composites and the standard 

XRD pattern of ZIF-8. The XRD pattern of GQDs@ZIF-8 is similar to that of pure ZIF-8, 
and the diffraction peaks of ZIF-8 and GQDs@ZIF-8 are consistent with the standard 
peaks of ZIF-8 (Figure 3b) [34]. The 2θ values of the strong diffraction peaks are 7.3°, 
10.3°, 12.7°, 14.7°, 16.4°, 18°, 24.6° and 26.7°, which correspond to the (011), (002), (112), 
(022), (013), (222), (233) and (134) planes of ZIF-8, respectively. In addition, the diffraction 
peak shape of GQDs@ZIF-8 changes due to the introduction of GQDs, and the pattern of 
the composite does not show the characteristic peak (25°) of the GQDs, which is due to 

Figure 2. Cont.



Nanomaterials 2022, 12, 4008 6 of 22

Nanomaterials 2022, 12, x FOR PEER REVIEW 6 of 23 
 

 

specific surface area and remarkably increase the active adsorption sites and, hence, im-
prove the VOC adsorption capacity of the GQDs@ZIF-8 composite significantly. 

 
Figure 2. Morphology and microstructure images of GQDs@ZIF-8 composites. (a) TEM image of 
GQDs@ZIF-8, (b) TEM image of GQDs with diameter distribution graph, (c) HRTEM image of 
GQDs@ZIF-8, (d) HRTEM image of a signal GQD. 

3.2. Crystalline Structure and Chemical Bond Analysis of GQDs@ZIF-8 Composites 
Figure 3 exhibits the measured XRD pattern of the composites and the standard 

XRD pattern of ZIF-8. The XRD pattern of GQDs@ZIF-8 is similar to that of pure ZIF-8, 
and the diffraction peaks of ZIF-8 and GQDs@ZIF-8 are consistent with the standard 
peaks of ZIF-8 (Figure 3b) [34]. The 2θ values of the strong diffraction peaks are 7.3°, 
10.3°, 12.7°, 14.7°, 16.4°, 18°, 24.6° and 26.7°, which correspond to the (011), (002), (112), 
(022), (013), (222), (233) and (134) planes of ZIF-8, respectively. In addition, the diffraction 
peak shape of GQDs@ZIF-8 changes due to the introduction of GQDs, and the pattern of 
the composite does not show the characteristic peak (25°) of the GQDs, which is due to 

Figure 2. Morphology and microstructure images of GQDs@ZIF-8 composites. (a) TEM image of
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GQDs@ZIF-8, (d) HRTEM image of a signal GQD.

3.2. Crystalline Structure and Chemical Bond Analysis of GQDs@ZIF-8 Composites

Figure 3 exhibits the measured XRD pattern of the composites and the standard XRD
pattern of ZIF-8. The XRD pattern of GQDs@ZIF-8 is similar to that of pure ZIF-8, and
the diffraction peaks of ZIF-8 and GQDs@ZIF-8 are consistent with the standard peaks of
ZIF-8 (Figure 3b) [34]. The 2θ values of the strong diffraction peaks are 7.3◦, 10.3◦, 12.7◦,
14.7◦, 16.4◦, 18◦, 24.6◦ and 26.7◦, which correspond to the (011), (002), (112), (022), (013),
(222), (233) and (134) planes of ZIF-8, respectively. In addition, the diffraction peak shape
of GQDs@ZIF-8 changes due to the introduction of GQDs, and the pattern of the composite
does not show the characteristic peak (25◦) of the GQDs, which is due to the high dispersion
and low content of GQDs in the composites. A similar phenomenon was also reported by
another study on graphene oxide/ZIF-8 composites [35].
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The results of FT-IR spectroscopy in Figure 4 also confirm the interaction between
ZIF-8 and GQDs in the GQDs@ZIF-8 composites. It is obvious that the infrared spectrum of
GQDs@ZIF-8 is similar to that of ZIF-8. Most absorption bands of ZIF-8 and GQDs@ZIF-8
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are related to the vibration of the imidazole unit. For example, the absorption peak at
1575 cm−1 is attributed to the stretching vibration of the C=N bond, the absorption peak
in the range of 1350−1500 cm−1 is related to the stretching vibration of the imidazole
ring and the strong absorption peaks at 1145 cm−1 and 994 cm−1 are attributed to the
stretching vibration of the C−N bond in the imidazolyl group [36]. The infrared spectra of
ZIF-8@GQD also reveal that it contains not only the absorption peaks of ZIF-8, but also the
characteristic peaks from the GQDs, such as the stretching vibration of the C=O bond at
1728 cm−1 and the stretching deformation vibration of the C–OH bond at 1620 cm−1 [37].
These results confirm that GQDs are decorated on the structure of ZIF-8.
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3.3. Chemical Components Analysis of GQDs@ZIF-8 Composites

XPS analysis was performed to determine the elemental composition of the GQDs@ZIF-8
composites and the chemical states of specific elements, as shown in Figure 5. The full spectrum
scans of ZIF-8 and GQDs@ZIF-8 are shown in Figure 5a, revealing that the characteristic
absorption peaks of Zn 2p3, N 1s and C 1s appear at 1022.08 eV, 399.08 eV and 285.08 eV,
respectively. The characteristic peaks demonstrate the presence of the elements necessary
for the formation of GQDs@ZIF-8 [38]. The high-resolution C 1s spectrum in Figure 5b
shows four different types of characteristic peaks of C–C, C–N, C–O and C–S, which
correspond to 284.8 eV, 285.59 eV, 288.53 eV and 291.72 eV, respectively. In particular,
due to the addition of GQDs, the C–S characteristic peaks representing GQDs appear in
the spectrum of the GQDs@ZIF-8 composites. Figure 5c shows the symmetrical peak of
N 1s at 399.8 eV corresponding to 2-methylimidazole [39,40]. Figure 5d reveals that the
Zn 2p spectrum has two strong peaks at 1022 eV and 1045.07 eV, corresponding to 2p3/2
and 2p1/2, respectively [41]. When GQDs are loaded on the surface of ZIF-8, the position of
the peak corresponding to Zn 2p shifts to the low binding energy region by 0.25 eV. This
phenomenon indicates that, due to the modification of GQDs, the Zn oxidation degree
is reduced, resulting in an increase in the electron density on Zn, which reveals that Zn
is involved in the interaction of the two components [42]. XPS analysis confirmed the
connection of the GQDs to ZIF-8.
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3.4. Specific Surface Area and Pore Structure Analysis of GQDs@ZIF-8 Composites

The N2 adsorption-desorption isotherms and pore size distribution of the composites
are shown in Figure 6. The ZIF-8 and GQDs@ZIF-8 samples showed isotherm curves of
type I, with a significant upward process at relatively low pressures, indicating that micro-
pores are the dominant structure in both ZIF-8 and GQDs@ZIF-8 composites. Meanwhile,
the isotherm curve shows a slight secondary rise at higher pressure (when P/P0 = 0.9),
indicating the existence of mesopores in the structure of the samples. The calculated specific
surface area and pore structure parameters of ZIF-8 and GQDs@ZIF-8 are shown in Table 1.
The specific surface area and average pore diameter of ZIF-8 are 1368.74 m2/g and 3.7 nm,
respectively. After the addition of GQDs, the specific surface area of the GQDs@ZIF-8 com-
posites decreases slightly to 1312.05 m2/g, with an average pore diameter of 3.9 nm, which
reveals that the addition of GQDs can regulate the structure of GQDs@ZIF-8 composites.
On the one hand, the increase in GQDs relatively reduces the number of pores per unit
mass of the composite; on the other hand, GQDs attached to the surface of ZIF-8 can block
the micropores of the composite. However, the pore size of the composites is close to that
of ZIF-8, and it can be concluded that GQDs have been successfully introduced into the
ZIF-8 structure, which is mutually confirmed by the above characterizations.
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Figure 6. N2 adsorption–desorption isotherms with the hollow dots corresponding to adsorption
process and the solid dots corresponding to desorption process (a), and pore size distribution (b) of
ZIF-8 and GQDs@ZIF-8 composites.

Table 1. Specific surface area and pore structure parameters of ZIF-8 and GQDs@ZIF-8.

Sample SBET (m2/g) Smic (m2/g) Vtot (cm3/g) Vmic (cm3/g) D (nm)

ZIF-8 1368.74 1298.83 1.267 0.296 3.7
GQDs@ZIF-8 1312.05 1228.81 1.280 0.607 3.9

Note: SBET is the specific surface area, Smic is the micropore surface area, Vtot is the total pore volume, Vmic is the
micropore volume, D is the average diameter of the pores.

3.5. Thermal Stability Analysis of GQDs@ZIF-8 Composites

The thermal stability of ZIF-8 and GQDs@ZIF-8 composites was tested by a TG
analyzer to investigate the addition effect of GQDs. As shown in Figure 7, both samples
showed high thermal stability. Before 330 ◦C, the samples only had slight weight loss,
which is due to the evaporation of water molecules or the removal of other residual guest
molecules. In sharp contrast, the weight loss rates of the two samples increased rapidly
when the temperature reached approximately 600 ◦C, indicating that the skeleton structure
of the samples was damaged and began to decompose. It is worth noting that the weight
loss of GQDs@ZIF-8 is larger than that of ZIF-8 before 638 ◦C, whereas it is smaller than that
of pure ZIF-8 after 638 ◦C. This is due to the further carbonization of ZIF-8 surface-loaded
GQDs before 638 ◦C, resulting in a larger weight loss of the composite as a whole compared
to pure ZIF-8, which is also reflected in Figure 7. After 638 ◦C, larger graphene sheets are
generated from further carbonization of GQDs, covering the surface of ZIF-8 and protecting
ZIF-8 from thermal decomposition. Thus, the residual weight of the composites is greater
than that of pure ZIF-8. The above results reveal that GQDs improve the thermal stability
of ZIF-8, which can expand the adsorption application of GQDs@ZIF-8 composites at a
higher temperature.
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3.6. Adsorption Performance of GQDs@ZIF-8 Composites for Toluene and Ethyl Acetate

Toluene and ethyl acetate solutions were prepared with concentrations of 400 mg/L
and 800 mg/L, respectively, to test the adsorption performance of ZIF-8 and GQDs@ZIF-8
composites. A pH value of 7, adsorption time of 180 min and sample mass of 20, 40, 60,
80, 100 and 120 mg, respectively, were applied. It is worth noting that the GQD content
of 5% was adopted to prepare GQDs@ZIF-8 composites, with the optimal adsorption effect.
(Figure S1 in Supplementary Materials). Then, the effects of the adsorbent mass on the
removal percentage of ZIF-8 and GQDs@ZIF-8 were investigated, as shown in Figure 8.
With the continuous increase in the adsorbent mass, the removal percentages of toluene and
ethyl acetate are significantly improved and finally tend to be stable and reach equilibrium.
ZIF-8 and GQDs@ZIF-8 show strong adsorption ability for toluene and ethyl acetate in the
early stage of adsorption. When the mass of GQDs@ZIF-8 composites increases from 20 mg
to 120 mg, the removal percentage for toluene increases from 34.13% to 80.25%, while the
removal percentage for ethyl acetate increases from 35.21% to 93.78%. Figure 8 clearly
shows that the addition of GQDs obviously improves the removal percentage of ZIF-8,
which increases from 75.13% to 80.25% when adsorbing toluene and from 87.94% to 93.78%
when adsorbing ethyl acetate. In general, the removal percentage of porous materials for
VOCs mainly depends on the specific surface area of the material. Although the specific
surface area test results in Figure 6 show that the addition of GQDs slightly reduces the
specific surface area of ZIF-8, GQDs@ZIF-8 exhibits a higher removal percentage for both
adsorbates. This special adsorption phenomenon reveals the synergistic effect between
GQDs and ZIF-8. The hydroxyl groups on the surface of GQDs and the imidazole groups in
ZIF-8 can combine to form hydrogen bonds, resulting in the formation of new pore channels
which increase the adsorption capacity of the composites for the adsorbate. In addition,
GQDs with a large number of functional groups on the surface also provide active sites
for toluene and ethyl acetate molecules, which are favorable for binding with adsorbate
molecules. At the same time, since both GQDs and toluene molecules have benzene
ring structures, the π–π bond interaction between them can also promote the adsorption
of toluene [43].
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The influence of the pH value on the removal percentage of ZIF-8 and GQDs@ZIF-8 is
shown in Figure 9. In this measurement, the sample mass of 100 mg, toluene concentration
of 400 mg/L, ethyl acetate concentration of 800 mg/L, adsorption time of 180 min and
pH value of 3, 5, 7, 9 and 11, respectively, were applied. It is obvious that both samples
have a special response to the pH value of the toluene and ethyl acetate solution. Both
acidic and basic conditions enhance the removal percentages of toluene and ethyl acetate,
which is mainly due to the protonation and deprotonation of active sites at the edge of
GQDs. As a kind of nanomaterial with a conjugated structure, GQDs contain abundant
dissociable groups such as amino groups, carboxyl groups and hydroxyl groups on the
surface, and the degree of dissociation directly depends on the pH value of the solution.
The hydroxyl groups and imidazole groups in ZIF-8 can combine to form hydrogen bonds,
which lead to the formation of new pore channels, thereby increasing the adsorption ability
of the composites. In addition, the abundant functional groups on the surface also provide
numerous active sites, which are favorable for binding with adsorbate molecules.
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To investigate the influence of the contact time on the adsorption property of
ZIF-8 and GQDs@ZIF-8 composites, the adsorption capacities of the adsorbent samples at
different adsorption times (5, 15, 30, 60, 120, 180 and 360 min, respectively) were recorded
and are shown in Figure 10. In this measurement, the sample mass of 100 mg, toluene
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concentration of 400 mg/L, ethyl acetate concentration of 800 mg/L and pH value of 7 were
applied. It can be seen that, within 60 min of contact time, both the adsorption speed and
adsorption capacity of the samples to toluene and ethyl acetate increases rapidly. When the
contact time is 60 min, the adsorption capacities of ZIF-8 and GQDs@ZIF-8 for toluene are
480.73 mg/g and 519.56 mg/g, respectively. Meanwhile, the adsorption capacities of ZIF-8
and GQDs@ZIF-8 for ethyl acetate are 1040.56 mg/g and 1104.63 mg/g, respectively. When
the contact time is longer than 120 min, the adsorption capacity of ZIF-8 and GQDs@ZIF-
8 reaches saturation and remains unchanged. The maximum adsorption capacities of
GQDs@ZIF-8 composites for toluene and ethyl acetate are 552.31 mg/g and 1408.59 mg/g,
respectively. Compared to ZIF-8, the maximum adsorption capacities for toluene and ethyl
acetate are increased by 53.82 mg/g and 104.56 mg/g, respectively. In addition, the curve
also reveals that, in the absence of other variables, the optimal adsorption times of ZIF-8
and GQDs@ZIF-8 for toluene and ethyl acetate are both 120 min.
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To investigate the cyclic adsorption properties of the GQDs@ZIF-8 composites, five
adsorption-desorption cycles were conducted, and the adsorption capacities after each
cycle were measured, as shown in Figure 11. To carry out the desorption process, the
samples that experienced adsorption were heated in a tube furnace to 150 ◦C for 1 h,
with a N2 flow of 0.2 L/min as the protection gas, then the samples were taken out to
obtain desorbed composites. The adsorption capacity of the GQDs@ZIF-8 composites for
toluene in the initial cycle is 552.31 mg/g. After five cycles, the adsorption capacity is
497.35 mg/g, with a cycle stability (Cs = Qt/Q1) of 90.1%, while the adsorption capacity
for ethyl acetate in the initial cycle is 1408.59 mg/g. After five cycles, the adsorption
capacity is 1241.86 mg/g, with a cycle stability of 88.3%. The high cycle stability of the
composites reveals the stable combination of GQDs and ZIF-8. The zeta potential analysis
result also shows that GQDs and ZIF-8 have established a stable connection through strong
electrostatic attraction effect (Table S1 in Supplementary Materials), which is consistent with
this result. During the adsorption-desorption cycle, the nano-micro hierarchical porous
structure of the composites makes it easier to adsorb and desorb dye molecules. In the
first two cycles, the loss rate of the cycle stability is slightly higher, and then tends to be
stable. This is because the desorption process was a heat treatment, which weakens the link
between GQDs and ZIF-8 and reduces the cycle stability of the composites. However, even
after five rounds of adsorption-desorption cycles, the adsorption capacity of the composites
is around 90% of the initial level. Thus, the prepared GQDs@ZIF-8 composites have both
excellent adsorption capacity and high cycle stability.
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The adsorption capacity and adsorption rate of previous adsorbents for toluene
and ethyl acetate are shown in Figure 12 [44–59]. Compared with other adsorbents, the
GQDs@ZIF-8 composites exhibit excellent performance both in adsorption capacity and in
removal percentage due to their unique nano-micro hierarchical pore structures generated
from the optimized matching of GQDs and ZIF-8. These structures not only possess a
high specific surface area, but also maintain high cycle stability, as shown in Figure 11,
which make the GQDs@ZIF-8 composite an ideal candidate for the highly efficient removal
of VOCs.
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3.7. Adsorption Kinetics Study of GQDs@ZIF-8 Composites

In order to further study the adsorption process of GQDs@ZIF-8 composites on VOC
simulants (toluene solution and ethyl acetate solution), pseudo-first-order (PFO) kinetic
models and pseudo-second-order (PSO) kinetic models were adopted to fit the experimental
data according to the adsorption capacity of ZIF-8 and GQDs@ZIF-8 at different adsorption
times. The PFO kinetic model and PSO kinetic model can be described by the following
formulas [60–62]:

ln(Qe − Qt) = ln Qe − k1t (3)
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t
Qt

=
1

k2Qe2 +
t

Qe
(4)

where Qe is the equilibrium adsorption capacity (mg/g), Qt is the adsorption capacity at
time t (mg/g), k1 is the PFO kinetic constant (min−1) and k2 is the PSO kinetic constant
(g/(mg/min)).

In addition, chi-square error (χ2) analysis [62] was adopted to evaluate the fitting
quality by investigating the calculated results and experimental results, which can be
described by the following equation:

χ2 =
n

∑
i=1

[
(Qe,exp − Qe,cal)

2

Qe,cal

]
i

(5)

where Qe,exp and Qe,cal represent the experimental and calculated values of the equilibrium
adsorption capacity, respectively.

Based on the experimental results in Figure 10, the PFO model and PSO model of
ZIF-8 and GQDs@ZIF-8 adsorption to toluene and ethyl acetate were fitted and are shown
in Figures 13 and 14. The corresponding kinetic parameters were calculated according to
the fitting results, as shown in Tables 2 and 3. In addition, the corresponding experimental
conditions were as follows: the sample mass was 100 mg, the toluene concentration was
400 mg/L, the ethyl acetate concentration was 800 mg/L, the pH value was 7 and adsorption
times were 5, 15, 30, 60, 120, 180 and 360 min, respectively.
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Table 2. Adsorption kinetic parameters of ZIF-8 and GQDs@ZIF-8 for toluene adsorption.

Adsorbate

Experimental
Adsorption

Capacity
Qe,exp (mg/g)

Pseudo-First-Order
Kinetic Equation

Pseudo-Second-Order
Kinetic Equation

k1
(min−1)

Qe,cal
(mg/g) R2 χ2 k2

(g/(mg·min))
Qe,cal

(mg/g) R2 χ2

ZIF-8 521.02 0.036 485.46 0.99 2.60 0.000079 564.97 0.94 3.42
GQDs@ZIF-8 552.31 0.038 533.57 0.98 0.66 0.000093 588.23 0.95 2.19

Table 3. Adsorption kinetic parameters of ZIF-8 and GQDs@ZIF-8 for ethyl acetate adsorption.

Adsorbate

Experimental
Adsorption

Capacity
Qe,exp (mg/g)

Pseudo-First-Order
Kinetic Equation

Pseudo-Second-Order
Kinetic Equation

k1
(min−1)

Qe,cal
(mg/g) R2 χ2 k2

(g/(mg·min))
Qe,cal

(mg/g) R2 χ2

ZIF-8 1326.17 0.040 1388.88 0.99 2.83 0.000053 1425.53 0.94 6.93
GQDs@ZIF-8 1408.59 0.041 1453.93 0.99 1.41 0.000051 1474.31 0.97 2.93

Compared with the experimental results, the PFO and PSO model fitting results
displayed good consistency with the experimental data, and the kinetic simulation also
provided the theoretical adsorption capacity (Qe,c). After comparison, it was found that
the experimental adsorption capacity of the GQDs@ZIF-8 composites is very close to
the calculated adsorption capacity. The experimental adsorption capacity for toluene is
552.31 mg/g, while the PFO and PSO model calculation results are 533.57 mg/g and
588.23 mg/g, and the χ2 values are 0.66 and 2.19, respectively. In addition, when used
for the adsorption of ethyl acetate, the experimental adsorption capacity of GQDs@ZIF-8
composites is 1408.59 mg/g, with PFO and PSO model calculation results of 1453.93 mg/g
and 1474.31 mg/g and χ2 values of 1.41 and 2.93, respectively. Thus, based on the values of
χ2 and R2 listed in Tables 2 and 3, the adsorption processes of the GQDs@ZIF-8 composites
are more consistent with the PFO model. The fitting results show that the adsorption
process of the composites to the adsorbate molecules is mainly a physical adsorption
process, including electrostatic adsorption generated by the surface functional groups and
channel-filling adsorption generated by the nano-micro hierarchical porous structures in
the GQDs@ZIF-8 composites.

3.8. Adsorption Isotherm Study of GQDs@ZIF-8 Composites

The Langmuir isotherm model and Freundlich isotherm model, which can be described
by Equations (6) and (7), respectively [60–62], were used to investigate the adsorption
isotherm processes.

Ce

Qe
=

1
kLQm

+
Ce

Qm
(6)

ln Qe = ln kF +
1
n

ln Ce (7)

where Ce is the equilibrium concentration of the adsorbate solution (mg/L), Qe is the
equilibrium adsorption capacity (mg/g), Qm is the maximum adsorption capacity (mg/g),
kL is the Langmuir constant (L/mg), kF is the Freundlich constant and 1/n is the coefficient.

ZIF-8 and GQDs@ZIF-8 composites with a mass of 50 mg were immersed in toluene
solutions with different concentrations of 50, 100, 200, 300, 400 and 500 mg/L to obtain the
adsorption capacity of toluene. The composites with the same weight were immersed in
ethyl acetate solutions with different concentrations of 100, 200, 400, 600, 800 and 1000 mg/L
to obtain the adsorption capacity of ethyl acetate. After that, the fitting plots based on
the Langmuir model and Freundlich model were drawn, as shown in Figures 15 and 16,
with the calculated equilibrium constants listed in Tables 4 and 5, respectively. It can be
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seen from the fitting results that the theoretical maximum adsorption capacities of the
composite for toluene and ethyl acetate are 628.93 mg/g and 1567.39 mg/g, respectively,
while the experimental maximum adsorption capacities are 552.31 mg/g and 1408.59 mg/g,
respectively, indicating that the experimental adsorption capacities of the composites
are lower than the theoretical value. This comparison result reveals that the adsorption
performance of the composite still has the potential to be further improved. Meanwhile,
the fitting effect of the relevant linear coefficients of the Freundlich isotherm model is better,
revealing that the adsorption of toluene and ethyl acetate molecules by the composite
belongs to multi-molecular-layer adsorption, and the value of 1/n between 0.35 and
0.45 indicates that the adsorption process is relatively easy to realize.
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Table 4. Calculated equilibrium constants of the isotherm model for toluene adsorption.

Adsorbent
Langmuir Freundlich

Qm (mg/g) KL (L/mg) R2 KF (L/mg) 1/n R2

ZIF-8 588.23 0.047 0.95 78.34 0.38 0.98
GQDs@ZIF-8 628.93 0.057 0.94 96.57 0.35 0.98

Table 5. Calculated equilibrium constants of the isotherm model for ethyl acetate adsorption.

Adsorbent
Langmuir Freundlich

Qm (mg/g) KL (L/mg) R2 KF (L/mg) 1/n R2

ZIF-8 1428.57 0.012 0.95 93.16 0.44 0.99
GQDs@ZIF-8 1567.39 0.016 0.96 123.66 0.41 0.99

3.9. Adsorption Thermodynamic Study of GQDs@ZIF-8 Composites

To carry out the adsorption thermodynamics study of the GQDs@ZIF-8 composites,
the following equations [60,61] were adopted to investigate the thermodynamic parameters
of the adsorption process:

∆G = −RT ln Kd (8)

ln Kd =
∆S
R

− ∆H
RT

(9)

Kd = Qe/Ce (10)

where ∆G is the standard Gibbs free energy change (J/mol) in the adsorption process,
∆H is the standard enthalpy change (J/mol) in the adsorption process, ∆S is the standard
entropy change (J/(mol·K)) in the adsorption process, R is the molar constant of gas, Kd is
the adsorption equilibrium constant and T is the absolute temperature (K).

The adsorption tests were conducted at different temperatures of 20, 40 and 60 ◦C.
GQDs@ZIF-8 composites with a mass of 50 mg were immersed in toluene solution with a
concentration 400 mg/L and ethyl acetate solution with a concentration of 800 mg/L. After
the measurement of adsorption properties at different temperatures, the thermodynamic
fitting results for toluene and ethyl acetate adsorption processes were as shown in Figure 17,
with the corresponding calculated thermodynamic parameters listed in Tables 6 and 7.
According to the results, all the values of ∆G < 0, which indicates that the adsorption
process is spontaneous. The ∆H values of toluene and ethyl acetate adsorption processes
are 32.65 KJ/mol and 58.45 KJ/mol, respectively, revealing that the adsorption processes are
endothermic. In addition, the ∆S values of toluene and ethyl acetate adsorption processes
are 132.23 J/(mol·K) and 223.98 J/(mol·K), respectively, revealing that the adsorption
processes of the composites are at the entropy increase stage, accompanying the increase in
the disorder degree both on the surface and inside the GQDs@ZIF-8 composites during the
adsorption process.

Table 6. Calculated thermodynamic parameters for toluene adsorption.

T (K)
Thermodynamic Parameters

∆G (KJ/mol) ∆H (KJ/mol) ∆S (J/(mol·K))

293.15 −6.09
32.65 132.23313.15 −8.74

333.15 −11.38
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Table 7. Calculated thermodynamic parameters for ethyl acetate adsorption.

T (K)
Thermodynamic Parameters

∆G (KJ/mol) ∆H (KJ/mol) ∆S (J/(mol·K))

293.15 −7.18
58.45 223.98313.15 −11.66

333.15 −16.14
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Based on the above investigation of GQDs@ZIF-8 composites, the possible adsorp-
tion mechanism of the composite is illustrated in Figure 18. The adsorption mecha-
nism of the GQD/ZIF-8 composite for toluene and ethyl acetate mainly includes meso-
porous channel filling, coordination bonding, hydrogen bonding and π–π interaction
mechanisms [43,63]. The channel-filling mechanism fundamentally affects the adsorp-
tion performance of the composites. At the initial stage, the adsorbate molecules first
diffuse rapidly on the outer surface of the GQDs@ZIF-8 composites, which is mainly
achieved through physical adsorption, including macroporous adsorption and electrostatic
adsorption on the surface of the composite. A large number of functional groups on the
surfaces of GQDs and ZIF-8 can provide abundant active adsorption sites for toluene and
ethyl acetate molecules. In the second stage, the adsorbate molecules gradually diffuse
into the micropores of the composite and then are adsorbed and deposited in the inner
wall of the micropores [64,65]. This stage is controlled by the diffusion rate, and the ad-
sorption speed decreases gradually. In addition, the π–π bond interaction mechanism
between the GQDs and toluene molecules can further enhance the adsorption effect of the
GQDs@ZIF-8 composites.
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4. Conclusions

In this work, GQDs and ZIF-8 were synthesized by the direct pyrolysis method and
liquid-phase synthesis method, respectively. Then, a novel GQDs@ZIF-8 composite was
obtained by introducing GQDs into the ZIF-8 structure using a solution co-deposition
method. The prepared GQDs@ZIF-8 composites were further characterized by TEM, XRD,
XPS, FT-IR, TG and N2 adsorption measurements to investigate the morphology, crystal
structure, element composition and thermal stability of the composites. The results revealed
that GQDs were uniformly decorated on the surface of ZIF-8 nanoparticles, effectively
restraining agglomeration and improving the thermal stability of ZIF-8. The composites
exhibit a large specific area of 1312.05 m2/g which provides abundant active sites by the
synergistic effect between GQDs and ZIF-8. The influences of the adsorbent mass, contact
time and pH value on the adsorption property of the composites were systematically
investigated. When toluene and ethyl acetate were chosen as the target pollutants, the
maximum adsorption capacity of GQDs@ZIF-8 composites reached 552.31 mg/g and
1408.59 mg/g, respectively, and the maximum removal percentages reached 80.25% and
93.78%, respectively. The kinetics and isotherm study revealed that the adsorption processes
are in accordance with the pseudo-first-order kinetic model and the Freundlich isotherm
model. The thermodynamic results indicated that the adsorption process of the GQDs@ZIF-
8 composites is a spontaneous, endothermic and entropy increase process. To sum up, since
the application of GQDs, ZIF-8 and their composites in the field of VOC adsorption has
been explored, they have been widely used in the adsorption of various organic solvents,
such as dichloromethane, acetone, toluene and ethyl acetate, etc. However, their adsorption
properties need to be further improved to meet application requirements. This study further
combined GQDs and ZIF-8, taking full advantage of the synergistic effect of microstructures,
and obtained GQDs@ZIF-8 composites with excellent adsorption performance, which not
only explored the application of GQDs@ZIF-8 composites in the adsorption field, but also
provides a new method for the highly efficiency removal of VOCs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12224008/s1, Figure S1: Effect of GQD content on the
removal percentage of toluene and ethyl acetate; Table S1: ZETA potentials of GQDs, ZIF-8 and the
GQDs@ZIF-8 composite.
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