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Abstract: Potassium–sulfur batteries (KSBs) are regarded as a promising large-scale energy storage
technology, owing to the high theoretical specific capacity and intrinsically low cost. However,
the commercialization of KSBs is hampered by the low sulfur utilization and notorious shuttle
effect. Herein, we employ a porosity engineering strategy to design nitrogen-rich carbon foam as an
efficient sulfur host. The tremendous micropores magnify the chemical interaction between sulfur
species and the polar nitrogen functionalities decorated carbon surface, which significantly improve
the sulfur utilization and conversion. Meanwhile, the abundant mesopores provide ample spaces,
accommodating the large volume changes of sulfur upon reversible potassation. Resultantly, the
constructed sulfur cathode delivers an ultrahigh initial reversible capacity of 1470 mAh g−1 (87.76%
of theoretical capacity) and a superior rate capacity of 560 mAh g−1 at 2 C. Reaching the K2S phase
in potassiation is the essential reason for obtaining the ultrahigh capacity. Nonetheless, systematic
kinetics analyses demonstrate that the K2S involved depotassiation deteriorates the charge kinetics.
The density functional theory (DFT) calculation revealed that the nitrogen-rich micropore surface
facilitated the sulfur reduction for K2S but created a higher energy barrier for the K2S decomposition,
which explained the discrepancy in kinetics modification effect produced by the porosity engineering.

Keywords: potassium–sulfur battery; porosity engineering; nitrogen-rich carbon hosts; potassiation
kinetics; density functional theory

1. Introduction

Pursuit for high energy density and low-cost electrode materials is of great significance
in developing efficient electrochemical energy conversion devices [1–4]. Alkali-metal–
sulfur batteries (LSBs, NSBs, KSBs) have attracted tremendous attention because of the high
theoretical specific capacity (1675 mAh g−1), low cost, and environmental friendliness of the
sulfur cathode [5–10]. Nevertheless, due to the scarceness and exorbitant price of Li metal,
NSBs and KSBs are more suitable for the large-scale energy storage applications [11–16].
High-temperature (HT) NSBs have been demonstrated since the 1960s and have been
successfully commercialized over the decades. However, the safety problems caused by
the high temperature (300–350 ◦C) and the limited theoretical capacity (557 mAh g−1) limit
its further development [2,17]. Consequently, it is urgent to develop room- temperature
(RT) NSBs and KSBs. For the more negative redox potential of metal K (K+/K = −2.93 V
vs. SHE) than that of metal Na (Na+/Na = −2.71 V vs. SHE), a potassium-based system is
expected to deliver higher operating voltage, which is beneficial for the high energy density
of practical devices [18–21]. Recently, researchers have been increasingly pursuing batteries
with high active material loading and high energy density to meet the requirements in
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practical devices. Designing freestanding cathodes to reduce inactive binders or collectors
to increase weight capacity and energy density is an effective method [22]. For instance, a
freestanding sulfur cathode designed by Lee et al. can achieve ultrahigh sulfur areal loading
(7 mg cm−2) by optimizing the precursor composition, which facilitates the applicability in
large-scale fabrication [23].

Like the LSBs and NSBs, KSBs also face several critical problems [24–27]. First, the
KSBs share the same issues of low electrical conductivity of sulfur (5 × 10−30 S cm−1) and
the severe volume expansion (up to 300%) of LSBs and NSBs. Second, analogous to LSBs
and NSBs, long-chain potassium polysulfides (KPSs) can be dissolved in electrolytes, espe-
cially ether-based electrolytes. Soluble KPSs will shuttle to the anode side, leading to the
loss of active material, rapid capacity decay, and poor cycle stability, which is the notorious
shuttle effect. Moreover, the K2S3 phase with low solubility in ether-based electrolytes is
easily deposited and the further potassiation of K2S3 is a solid-phase reaction [28]. This
makes it easier for the fast accumulation of insoluble K2S2 and K2S on the cathode, causing
sluggish kinetics and terminating the discharge process with high overpotential [28]. All of
these issues clearly indicate that KSBs still face enormous challenges.

To address the aforementioned issues, the design of cathode materials for KSBs is
critical. Similar to LSBs and NSBs, various carbonaceous materials with excellent electrical
conductivity, precisely controlled porosity, low cost, and simple preparation have been
used to host sulfur for KSBs [29,30]. The design strategies for carbon matrix mainly focus
on chemical or physical constraints on sulfur species [24,31]. Chemical constraints of sulfur
species mainly focus on doping of heteroatoms (N [32], O [33], P [34], B [35], etc.) in carbon
matrix and the formation of covalent bonds between sulfur and carbon matrix, as in the case
of the pyrolyzed polyacrylonitrile/sulfur nanocomposite (SPAN) [36,37]. Sulfur species
are anchored to the carbon matrix by strong chemical adsorption, which can effectively
mitigate shuttle effect. As for the physical constraints of sulfur species, the main focus
is on designing diverse nanostructures of the carbon matrix, such as delicately designed
carbon nanofibers [38] (1D), carbon nanosheets [39] (2D), carbon nanospheres [40] (3D), and
regulating the porosity of carbon matrix, for example, microporous carbon and hierarchical
porous carbon [41,42]. The physical adsorption between carbon matrix and sulfur species
can be improved by nanostructure design, so that sulfur species are somewhat confined
to the cathode side. Research on KSBs cathode materials is still in its infancy stage. In
particular, the effects of porosity structure of the carbon host on the K-S redox mechanisms
and kinetics have rarely been explored in previous research.

Herein, we employ a porosity engineering strategy towards nitrogen-rich carbon
foam as a distinguished sulfur host (named P-NCF). The P-NCF with abundant poros-
ity was created by pre-pyrolysis lyophilization and post-pyrolysis CO2 activation. The
enormous micropores enhance the chemical interaction between sulfur species and carbon
host decorated with polar nitrogen functionalities, which greatly facilitate the utilization
and conversion of sulfur. Furthermore, the rich mesopores provide sufficient spaces to
accommodate the huge volume expansion of sulfur during reversible potassation. The
S@P-NCF cathode delivers excellent electrochemical performances with an ultrahigh re-
versible specific capacity of 1470 mAh g−1 (87.76% of theoretical capacity) and a superior
rate capacity of 560 mAh g−1 at 2 C. More K2S phase in the discharge product is the reason
for the ultrahigh capacity achieved by S@P-NCF. The kinetics analyses show that S@P-NCF
exhibits superior discharge kinetics but inferior charge kinetics. DFT calculation suggested
that the nitrogen-rich micropore surface boosted the formation of K2S but simultaneously
produced a higher energy barrier for the decomposition of K2S, which explains the different
modification effect towards K-S redox kinetics by porosity engineering.

2. Result and Discussion

The introduction of g-C3N4 as both a nitrogen source and sacrificial template in the
starch gelatinization enables the preparation of nitrogen-doped carbon materials with
abundant pores. Following this methodology, nitrogen-rich carbon foam (NCF) based on
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porosity engineering strategy (P-NCF) was synthesized and the schematic process is sum-
marized in Figure 1a. First, the g-C3N4 was obtained via pyrolysis of urea in static air [43].
During the subsequent high-temperature carbonization, g-C3N4 degrades automatically
and creates porous structures and nitrogen heteroatoms in the carbon matrix [44]. The
g-C3N4 was dispersed in deionized water and heated to 100 ◦C under vigorous stirring.
Subsequently, the starch solution was added into the aforementioned mixture under contin-
uous stirring, and the mixture gradually thickened. After the starch gelatinization process,
the viscous mixture is cooled to room temperature and freeze dried to obtain starch xerogel.
Subsequently, the starch xerogel was carbonized at 900 ◦C under Ar atmosphere, and then
activated at 800 ◦C under CO2 atmosphere to form the final product P-NCF. In contrast, the
sample without CO2 activation is named as NCF. The final cathode materials S@P-NCF
and S@NCF were obtained by an initial sulfur vapor-infiltrated method at 500 ◦C and a
following heat treatment at 200 ◦C to remove the surficial sulfur. The morphologies of the
carbon hosts and sulfur-impregnated composites were characterized by scanning electron
microscopy (SEM) and transmission electron microscopy (TEM). As shown in Figures 1b–g,
S1 and S2, all samples exhibit a macro-morphology, which consists of graphene-like flexible
ultrathin nanosheets. The structure stability of P-NCF/NCF as a sulfur host is verified by
the unchanged macro-morphology after sulfur loading. There are no agglomerated sulfur
particles in Figures 1e–g and S2, indicating the complete penetration of sulfur into the poros-
ity of carbon hosts. As further evidence, the energy-dispersive X-ray spectroscopy (EDS)
mappings show a uniform distribution of sulfur signal in P-NCF (Figure 1h–j). Notably, in
the selected area electron diffraction (SAED) patterns (Figure 1g inset and Figure S2c inset),
only diffuse diffraction rings are observed, suggesting the amorphous texture of sulfur
in the composites. The nitrogen signal overlaps well with the carbon matrix, indicating a
nitrogen-rich surface chemistry of the sulfur host. The nitrogen groups enhance the polarity
of the carbon surface, which increase the affinity between the sulfur species and carbon
host [45].

The electrochemical activity of sulfur is significantly affected by the molecular struc-
ture, which is closely related to the pore structure of the carbon host [46]. Micropores are
promising reservoirs to accommodate small-molecule sulfur and avoid the formation of
long-chain KPSs [47]. The pore structures of P-NCF, S@P-NCF, NCF, and S@NCF were
analyzed by nitrogen adsorption–desorption isotherms (Figure 2a). A large quantity of
adsorption at low P/P0 and an obvious hysteresis loop at medium P/P0 indicate the ex-
istence of micropores and mesopores, respectively. The Brunauer−Emmett−Teller (BET)
surface areas of P-NCF and NCF are 1167.41 and 619.95 m2 g−1, respectively (Table S1).
According to the cumulative pore volumes in Figure 2b, P-NCF has much higher micropore
volume (0.34 cm3 g−1) than NCF (0.14 cm3 g−1). Figure 2c show the pore size distributions
of P-NCF, S@P-NCF, NCF, and S@NCF. More importantly, in addition to the microporosity
at 0.6 nm, 0.8 nm, and 1.2 nm, there is extra microporosity with a size of 0.5 nm for P-NCF,
which is absent for NCF (Figure 2c). The mesopore volume of P-NCF is also higher than
that of NCF. The larger pore volume of P-NCF and the newly created micropores with
a diameter of 0.5 nm indicate the intensive porosity generation effect of CO2 activation
process. Evidently, after sulfur loading, the BET surface area and pore volume of both
samples sharply reduced (Table S1). The dramatic decrease in adsorption at low P/P0
indicates that sulfur occupies the micropores of the carbon matrices. The apparent hys-
teresis loops at medium P/P0 indicate that some mesopores still exist in S@P-NCF and
S@NCF. The above-mentioned results show that sulfur occupied almost all micropores in
the carbon matrix. Due to the space confinement of the micropores, the sulfur encapsulated
in the micropores can only exist as small molecules of sulfur, which is expected to reduce
the production of long-chain KPSs and inhibit the shuttle effect [48,49]. Furthermore, the
abundant mesopores could accommodate huge volume expansion of sulfur during the
reversible potassiation [50]. These advantages are all attributed to the pore engineering of
the carbon hosts.
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Figure 1. (a) Schematic illustration of the synthesis process of P-NCF. (b,e) SEM and (c,d,f,g) TEM
images of (b–d) P-NCF and (e–g) S@P-NCF. The insets in (d,g) are the corresponding SAED images.
(h) Annular dark-field STEM image and (i–k) corresponding elemental mappings of S@P-NCF.

The X-ray powder diffraction (XRD) patterns of carbon hosts and composites are
presented in Figure 2d. All samples display two broadened shoulder peaks at 2θ ≈ 24◦ and
44◦, corresponding to the carbon phase. Notably, there are no diffraction peaks of sulfur in
S@P-NCF and S@NCF patterns, indicating the amorphous form of sulfur, which is in line
with the SAED. As shown in Figure 2e, the Raman spectra were fitted by four Lorentzian
peaks: disorder sp3 (A), disorder (D), amorphous (B), and graphitic (G) [51]. The area ratio
of peak D to peak G (ID/IG) can reflect the graphitization degree of carbon [52]. The ID/IG
values of P-NCF, S@P-NCF, NCF, and S@NCF are 2.26, 2.89, 2.57, and 3.08, respectively
(Figure S3). The lower ID/IG value of P-NCF indicates that CO2 is more likely to react with
the higher energy disordered carbon during the activation process, thereby increasing the
graphitization degree [53]. Increased graphitization induces higher electronic conductivity,
which is favorable for the charge transfer in sulfur redox [54]. In addition, there is a weak
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peak located at ~460 cm−1, which is attributed to the S-S stretching [55]. As shown in the
TGA data in Figure 2f, the sulfur contents in S@P-NCF and S@NCF are calculated to be
37% and 27%, respectively. The higher sulfur content of S@P-NCF is strong evidence for
the improved affinity between sulfur species and P-NCF host via porosity engineering,
which restrains the sulfur loss during high temperature sulfur peregrination procedure
(500 ◦C, much higher than routine 155 ◦C for sulfur loading). The much higher surface area
provided by the largely increased porosity can significantly amplify the chemical interaction
between the sulfur and polar nitrogen functionalities’ decorated carbon host. Apart from
inhibiting sulfur loss during high temperature, the intensified sulfur host affinity is also
favorable for the alleviation of electrochemical shuttle effect in the KSBs.

Figure 2. (a) Nitrogen adsorption–desorption isotherms, (b) cumulative pore volumes, and (c) pore
size distributions of P-NCF, S@P-NCF, NCF, and S@NCF. (d) XRD patterns and (e) Raman spectra of
P-NCF, S@P-NCF, NCF, S@NCF, and pure S. (f) TGA curves of S@P-NCF and S@NCF. High-resolution
XPS spectra of (g) S 2p, (h) C 1s for S@P-NCF, and (i) N 1s for P-NCF.

The composition and surface chemical states were further investigated by X-ray
photoelectron spectroscopy (XPS). The peaks of O, N, C, and S elements are observed in
the survey XPS spectra of S@P-NCF and S@NCF (Figure S4a). High-resolution XPS spectra
of S and C elements for S@P-NCF are illustrated in Figure 2g and h, respectively. As shown
in Figure 2g, two strong peaks located at 165.3 and 164.1 eV correspond to the S 2p1/2
and S 2p3/2. The small peak at 162.4 eV indicates a partial charge transfer between the
carbon matrix and sulfur [49], which contributes to the sulfur anchoring. In addition, two
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peaks at the high binding energies of 170.2 and 168.3 eV are ascribed to the presence of
sulfate and sulfite [56]. The peak located at 286.1 eV in the C 1s spectrum (Figure 2h) is
attributed to the C-N/C-S bond [57], demonstrating the chemical bonding-induced strong
affinity between the carbon surface and sulfur. High-resolution XPS spectra of S and C
elements for S@NCF (Figure S4b,c) are similar to those for S@P-NCF, which proves that
the analogous surface chemistry of S@NCF to S@P-NCF. In addition, high-resolution XPS
spectra of N 1s for P-NCF and NCF are shown in Figures 2i and S4d, respectively. The
atom percent of nitrogen are 3.5 at% for P-NCF and 3.06 at% for NCF. In particular, in the
N 1s XPS spectrum of P-NCF, peaks located at 401.2, 400.0, and 398.4 eV can be assigned to
graphitic-N, pyrrolic-N, and pyridinic-N, respectively [58]. The contents of the three types
of nitrogen heteroatoms in P-NCF and NCF are shown in Figure S5. Compared to NCF, the
proportion of graphitic-N is lower and the proportion of pyrrolic-N and pyridinic-N are
higher in P-NCF. It is known that pyridinic-N and pyrrolic-N exhibit relatively stronger
interactions with sulfur species [59]. Therefore, the higher proportion of pyridinic-N and
pyrrolic-N in P-NCF is one of the underlying reasons for the stronger affinity toward sulfur.

In order to examine the electrochemical properties of the S@P-NCF cathode, K-S coin
cells were assembled utilizing K metal anode, glass fiber separator, and carbonate solution
(0.8 M KPF6 in EC/DEC = 1/1 by volume) electrolyte. The cyclic voltammograms (CV)
curves of S@P-NCF were recorded at a scan rate of 0.1 mV s−1 in the voltage window
of 0.5–3.0 V (vs. K+/K) (Figure 3a). During the first discharge process, a major peak
located at 0.54 V, which corresponds to the reduction from sulfur to KPSs [56,60]. In the
following charge process, a broad peak located at 1.71 V (Anodic I) and a weak peak located
at 1.97 V (Anodic II), which are related to the depotassiation process and the stepped
oxidation reaction of KPSs to sulfur. Specially, the Anodic I peak can be attributed to the
oxidation of short-chain KPSs to long-chain KPSs, and the Anodic II peak is ascribed to
the final formation of sulfur species [60]. In addition, the CV curve of the initial discharge
process is different from the following cycles, which may be attributed to the formation
of a cathode electrolyte interphase (CEI) during the initial discharge process [61]. In the
subsequent cycles, the cathodic peak located at 0.54 V is replaced by three peaks located at
1.64 (Cathodic I), 1.24 (Cathodic II), and 0.77 V (Cathodic III). This suggests that a multistep
conversion of sulfur species occurs during the potassiation process [57]. In addition, there
is no obvious difference in the following CV curves, indicating the outstanding reversibility.
The counterpart CV curves of S@NCF are shown in Figure S6. Obviously, the voltage
hysteresis between the peak Anodic I and the peak Cathodic III of S@NCF (1.05 V) is larger
than that of S@P-NCF (0.94 V). Figure 3b displays the first three discharge/charge profiles
of S@P-NCF and S@NCF at 0.1 C (1 C = 1675 mAh g−1) within the voltage window of
0.5–3.0 V. After the first cycle, two long discharge plateaus at ~1.5 V and ~0.8 V and a long
charge plateau at ~1.6 V can be observed, which are consistent with the CV results. Most
importantly, S@P-NCF exhibits an ultrahigh initial reversible capacity (1470 mAh g−1),
much higher than S@NCF (850 mAh g−1). The above-mentioned results indicate that richer
micropores and larger polar surface area enhance the interaction between sulfur and carbon
matrix, improve the utilization and conversion of sulfur, and reduce the polarization of
S@P-NCF.

The rate capabilities of sulfur cathodes were measured at current densities from 0.2
to 2 C (Figure 3c). The S@P-NCF delivers reversible capacities of 1430, 1170, 950, 755, and
560 mAh g−1 at 0.2, 0.3, 0.5, 1, and 2 C, respectively. On the contrary, S@NCF only delivers
capacities of 680 and 400 mAh g−1 at current densities of 0.2 and 2 C, respectively, much
lower than that of S@P-NCF. However, at small current densities S@P-NCF exhibits a more
rapid capacity decay than S@NCF. Figure 3d shows the corresponding discharge/charge
profiles of S@P-NCF under various current densities, which reveal much lower polariza-
tion potentials, compared to S@NCF (Figure S7). As illustrated in Figure 3e, compared
with recently reported KSBs, the rate performance of our S@P-NCF is among the best to
date [56,57,62–71]. Figure 3f shows the cycling performances of S@P-NCF and S@NCF at
the current density of 0.2 C. The S@P-NCF exhibits a much higher specific capacity, with
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an initial reversible capacity of 1470 mAh g−1. After 100 cycles, the remaining capacity
is 832 mAh g−1 and the Coulombic efficiency is ~100%. S@NCF only delivers an initial
reversible capacity of 690 mAh g−1 and remaining capacity of 556 mAh g−1 after 100 cycles.
The higher specific capacity of S@P-NCF demonstrates that more abundant micropores and
larger polar surface area can enhance the interaction between sulfur and carbon matrix, and
thus promote the conversion of sulfur species and realize higher utilization of sulfur. In ad-
dition, during the cycling process, the rich mesopores provide ample space for the volume
expansion of sulfur species [72]. As shown in Figure 3g, long-term cycling performances
of S@P-NCF and S@NCF were performed at a current density of 2 C. After 300 cycles at a
current density of 2 C, S@P-NCF delivers a higher capacity retention of 39.0% and a lower
capacity loss of 0.13% each cycle. In contrast, S@NCF shows rapid capacity decay during
the 50–100 cycles and operates at the low value of <200 mAh g−1. The electrochemical
performance of S@P-NCF-based K-S batteries under high areal loading conditions has also
been attempted to be measured. Figure S8 shows the first five discharge/charge profiles of
S@P-NCF with sulfur areal loading of 2.0 mg cm−2 at 0.1 C. Of interest is that S@P-NCF
delivers a high initial reversible capacity (1100 mAh g−1) even at a high sulfur areal load-
ing of 2.0 mg cm−2. To further demonstrate the stable long-term cycling performance of
the electrodes, the cell impedances of S@P-NCF and S@NCF in the charged states after
the 1st and 100th cycles were analyzed by electrochemical impedance spectroscopy (EIS)
(Figures 3h and S9). The semicircle at high frequency corresponds to the charge transfer
resistance (Rct) through the electrode/electrolyte interface. The equivalent circuit model
and fitted electrode resistance data are shown in Figure 3h and Table S2, respectively.
Obviously, S@NCF shows a larger increment of Rct from 1411 Ω (1st) to 4901 Ω (100th),
compared to S@P-NCF from 383.7 to 1429 Ω. The lower Rct of S@P-NCF after the first cycle
indicates that porosity engineering and polar nitrogen functionalities provide the fast ion
transport and excellent electrical conductivity, which contribute to sulfur utilization and
conversion. In addition, the smaller Rct increment of S@P-NCF after 100 cycles indicates the
superior cycling stability and structural stability of S@P-NCF. The above electrochemical
tests show that S@P-NCF has higher specific capacity, sulfur utilization, and better long-
term cycling performance at a high current density than S@NCF. Obviously, the ultrahigh
initial reversible capacity of S@P-NCF is related to the tight binding between sulfur in
the micropores and carbon matrix, which effectively increases the utilization of sulfur. In
addition, the larger polar surface area, higher content of pyridinic-/pyrrolic-N, and more
abundant mesopores of P-NCF also make an essential contribution to the high capacity and
excellent cycling performance.

Multi-scan rates CVs and the galvanostatic intermittent titration technique (GITT)
were employed to demonstrate the kinetics of the sulfur cathodes. The CVs at different
scan rates were further examined for the in-depth kinetic analyses. Figure 4a,b display the
CV curves at the scan rates of 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 mV s−1 of S@P-NCF and S@NCF,
respectively. These CV curves exhibit a similar profile, except for a noticeable shift as the
scan rate increases. As the scan rate increases, two major peaks (labeled Peak-R and Peak-O,
respectively) for both S@P-NCF and S@NCF can be observed. The reaction mechanisms of
S@P-NCF and S@NCF can be evaluated based on an established formula of log i = b log v +
log a, where i is the peak current, v is the scan rate of the CV and b is a constant ranging
from 0.5 to 1. When the b value is approaching 0.5 or 1, the system is under the diffusion
dominated or surface capacitive-controlled process, respectively [73]. Figure 4c shows
the b values of S@P-NCF for Peak-R and Peak-O, which are fitted to be 0.905 and 0.747,
respectively. This indicates that the reduction conversion reaction of S@P-NCF is a rapid
dynamic pseudocapacitance behavior. The b values of S@NCF for Peak-R and Peak-O are
0.857 and 0.782, respectively (Figure 4d). Interestingly, for S@P-NCF, the b value of Peak-R
is higher than that of S@NCF, while the b value of Peak-O is lower than that of S@NCF.
This indicates that S@P-NCF exhibits more facile discharge kinetics, while for the charge
process, S@NCF shows better reaction kinetics. The GITT was measured to further reveal
the K-ion diffusion kinetics. Figure S10 displays the discharge/charge profiles of GITT.
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Figure 4e,f show the K-ion diffusion coefficients under different voltages calculated based
on Figure S11 during discharge and charge process, respectively. As shown in Figure 4e, in
the discharge process, S@P-NCF delivers higher K-ion diffusion coefficients than those of
S@NCF. Nonetheless, in the charge process, S@NCF has higher K-ion diffusion coefficients
(Figure 4f). This indicates that the reaction kinetics of S@P-NCF is better in the discharge
process and inferior during the charge process than that of S@NCF, which is consistent with
the results in Figure 4c,d. It is reasonable to believe that more microporous structures and
nitrogen heteroatoms in P-NCF can enhance the binding between sulfur and carbon matrix,
improve the reaction kinetics during the discharge process, and accelerate the conversion
of sulfur species to K2S, thus, achieving an ultrahigh specific capacity and large utilization
of sulfur. Nevertheless, during the charge process, the depotassiation of low-order KPSs is
more sluggish for S@P-NCF, which makes insoluble and insulating low-order KPSs easy to
accumulate to form “dead polysulfide”, and thus lose electroactivity, leading to capacity
decay and pessimistic capacity retention [28].

Figure 3. (a) CV curves of S@P-NCF cathode at a scan rate of 0.1 mV s−1. (b) Galvanostatic
charge/discharge profiles of S@P-NCF and S@NCF in the first three cycles at 0.1 C. (c) Rate perfor-
mance of S@P-NCF and S@NCF at various current densities. (d) Galvanostatic discharge/charge
profiles of S@P-NCF at various current densities. (e) A comparison of the rate performance of S@P-
NCF with recently reported cathodes for KSBs. (f) Cycling performance of S@P-NCF and S@NCF
at 0.2 C. (g) Long-term cycle stability of S@P-NCF and S@NCF at 2 C over 300 cycles. (h) Nyquist
plots and corresponding fitted lines of S@P-NCF and S@NCF after the initial cycle; the inset is the
equivalent circuit model.
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Figure 4. CV curves of (a) S@P-NCF and (b) S@NCF at different scan rates from 0.1 to 1 mV s−1. The
linear relation of peak currents and scan rates of (c) S@P-NCF and (d) S@NCF. The K-ion diffusion
coefficient as a function of the states of the (e) discharge process and (f) charge process.

HRTEM was performed to investigate the origin of the ultrahigh capacity for S@P-NCF.
From the state of potassiation to 0.5 V for S@P-NCF, the HRTEM images clearly show that
some nanosized crystals embed in the carbon matrix (Figure 5a,b), which are ascribed
to the K2S phase. For S@NCF, a lot of K2S2 nanocrystals can be observed in the HRTEM
images (Figure 5c,d). The SAED images (Figure S12) also demonstrate the difference. As
shown in Figure S12a, the diffraction rings are ascribed to the (220), (222), (400) planes
of K2S phase for S@PNCF. For S@NCF there are clear diffraction spots attributed to K2S2
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in the SAED image (Figure S12b). Different discharge products determine the number of
electrons involved in the reaction process. S@P-NCF reaching K2S in the discharge product
displays much higher capacity. In contrast, for S@NCF, kinetics being more sluggish during
the discharge process leads to an earlier end of the discharge process with a large amount
of K2S2 in the discharge product. Therefore, porosity engineering can enhance the kinetics
during the discharge process and accomplish a deeper discharge, thereby enabling higher
capacity for the cathode.

Figure 5. HRTEM images of (a,b) S@P-NCF and (c,d) S@NCF discharged to 0.5 V versus K+/K.
(e) Schematic illustration of microporous carbon model and non-porous carbon models. (f) Compari-
son of the binding energies of various K2Sx molecules bound to microporous and non-porous carbon
models, respectively. (g) Energy profiles for the reduction in KPSs on microporous and non-porous
carbon models; the insets are the corresponding adsorption configurations of KPSs on microporous
carbon model. (h) The decomposition energy profiles of K2S on microporous and non-porous carbon
models; the insets are decomposition path of K2S on microporous carbon model.

In order to gain atomistic insight into the mechanism of the interaction between KPSs
and micropores, DFT simulations were performed to determine the role of micropores in the
adsorption and conversion of KPSs. As shown in Figure 5e, carbon defects on the nitrogen-
doped graphene layer are used to simulate the micropores, and the pore-free graphene
model is used as a comparison. The optimized configurations of various KPSs adsorbed on
microporous carbon and graphene are displayed in Figure S13. As shown in Figure 5f, the
binding energy of KPSs on microporous carbon is significantly more negative compared
to the non-porous model. In general, the strength of adsorption increases as the binding
energy becomes more negative. This indicates that the microporous carbon is more effective
in adsorbing KPSs. As shown in Figure 5g, the Gibbs free energies for all reaction steps from
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sulfur to K2S during the discharge process were calculated. Overall, the reaction from sulfur
to K2S is spontaneously exothermic on microporous carbon but endothermic on non-porous
model. This suggests that the discharge process is more thermodynamically favorable
with the influence of the micropores. On the contrary, because the discharge process on
graphene is endothermic, this means that the reaction from K2S to sulfur is spontaneously
exothermic on the non-porous model. This suggests that the charge process on graphene
is thermodynamically favorable without the influence of micropores. Moreover, the K2S
decomposition barriers on microporous and non-porous carbon models were investigated
(Figure 5h). Obviously, both the dissociation energy and the decomposition barrier of K2S
are higher on microporous carbon. This indicates that the micropore plays an inhibitory
role in the decomposition of K2S and is unfavorable to the oxidation of K2S during the
charge process. DFT simulation results show that micropores have a strong adsorption
to KPSs, which is favorable to the discharge process. Nonetheless, on the other side, the
decomposition of K2S becomes difficult, which is detrimental to the charge kinetics.

3. Conclusions

In this report, we employ a porosity engineering strategy to a nitrogen-rich carbon
foam to construct a sulfur host for high-performance room temperature K-S batteries. The
abundant microporosity greatly enlarges the polar surface area of the carbon host, thereby
reinforcing the affinity of sulfur species on the electrode, both at the pristine state and
during electrochemical cycling. Meanwhile, the mesoporosity create ample room to buffer
the large volume change of sulfur upon repeated potassiation. Ultra-high capacity of
1470 mAh g−1 at 0.1 C was obtained with 560 mAh g−1 remaining at high rate of 2 C, which
is superior to most state-of-the-art KSB performances to date. Both electrochemical analysis
(GITT and multi-rate CVs) and DFT calculation demonstrate that the microporosity with
nitrogen functionalities contribute to the sulfur reduction for the end member of K2S, which
nonetheless deteriorates the oxidation (charge) kinetics by increasing the energy barrier of
K2S decomposition.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12223968/s1, Figure S1: (a) SEM and (b,c) TEM images
of the NCF (inset: the corresponding SAED image); Figure S2: (a) SEM and (b,c) TEM images
of the S@NCF (inset: the corresponding SAED image); Figure S3: ID/IG values of P-NCF, S@P-
NCF, NCF, and S@NCF calculated from the Raman spectra; Figure S4: (a) XPS survey spectra
of S@P-NCF and S@NCF. High-resolution XPS spectra of (b) S 2p and (c) C 1s for S@NCF, and
(d) N 1s for NCF; Figure S5: Distribution of three nitrogen species (pyridinic-N, pyrrolic-N, and
graphitic-N) in the P-NCF and NCF; Figure S6: CV of the S@NCF at a scan rate of 0.1 mV s−1;
Figure S7: Galvanostatic discharge/charge profiles of S@NCF at various current densities; Figure S8:
Galvanostatic discharge/charge profiles of S@P-NCF with sulfur areal loading of 2.0 mg cm−2;
Figure S9: EIS Nyquist plots and corresponding fitted lines of the S@P-NCF and S@NCF at different
cycles; Figure S10: GITT profiles of the (a) discharge and (b) charge processes measured at the current
density of 0.03 C; Figure S11: Schematic diagram of the parameters in the GITT curve used to calculate
the diffusion coefficient: (a) discharge process and (b) charge process. (IR drop is the voltage change
that occurs when the charge/discharge process and the relaxation switch with each other); Figure S12:
SAED images of (a) S@P-NCF and (b) S@NCF discharged to 0.5 V versus K+/K; Figure S13: Detailed
adsorption atomic configuration for KPSs on microporous carbon and non-porous carbon; Table S1:
The surface area and pore volume of the as-prepared samples; Table S2: Electrode resistance obtained
from the equivalent circuit. References [74–81] were cited in the Supplementary Materials.
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