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Abstract: The exponential increase in global energy demand in daily life prompts us to search for
a bioresource for energy production and storage. Therefore, in developing countries with large
populations, there is a need for alternative energy resources to compensate for the energy deficit in
an environmentally friendly way and to be independent in their energy demands. The objective of
this review article is to compile and evaluate the progress in the development of quantum dots (QDs)
for energy generation and storage. Therefore, this article discusses the energy scenario by presenting
the basic concepts and advances of various solar cells, providing an overview of energy storage
systems (supercapacitors and batteries), and highlighting the research progress to date and future
opportunities. This exploratory study will examine the systematic and sequential advances in all
three generations of solar cells, namely perovskite solar cells, dye-sensitized solar cells, Si cells, and
thin-film solar cells. The discussion will focus on the development of novel QDs that are economical,
efficient, and stable. In addition, the current status of high-performance devices for each technology
will be discussed in detail. Finally, the prospects, opportunities for improvement, and future trends
in the development of cost-effective and efficient QDs for solar cells and storage from biological
resources will be highlighted.

Keywords: bioresource; quantum dots; energy generation; energy storage

1. Introduction

In the coming years, as fossil fuel consumption increases, so will energy demand. This
problem puts a lot of pressure on renewable energy sources. At the same time, the reduc-
tion in renewable energy sources leads to environmental pollution, reduction in natural
resources, and global warming [1–3]. Therefore, it is necessary to develop new methods
of energy generation and storage for the times when they are needed. Lithium batteries
and supercapacitors will be among the energy storage devices of the future [4–7]. In recent
decades, a new type of capacitor, supercapacitors/microcapacitors (SCs/MSCs), has been
developed. Supercapacitors are among the energy storage devices used in a variety of
applications, such as hybrid vehicles, personal electronic devices, digital telecommunica-
tion systems, energy storage in conjunction with other energy systems, such as solar cells,
backup power in computers, and in the electrical industry [8–10]. One way to optimize
the properties of energy storage systems is to develop new materials for use as electrode
materials in supercapacitors, batteries, and solar cells [11–14]. Quantum materials, such as
carbon quantum dots (CQDs) and graphene quantum dots (GQDs), play an important role
in supercapacitors, batteries, and solar cells due to their good electrical conductivity, low
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cost and availability, biocompatibility, and good chemical stability, and one of the latest
methods is to obtain QDs from bioresources. Another important feature of CQDs/GQDs for
solar cell applications is their excellent photoreaction [15–19]. Due to the synthesis of GQDs
by micro-organisms, such as bacteria [20], fungi, and yeasts [21], they are a very suitable
option for the development of the next generations of electronic and optical components,
fuel cells, solar cells, lithium batteries, and bioresources [22–24]. It is worth noting that
research on quantum dots from biological sources for energy generation and storage is
limited. Therefore, we tried to study a large part of the applications of quantum dots in
energy generation and storage, the applications of biological resources in energy genera-
tion and storage separately, and a combination of quantum dots derived from biological
resources in energy generation and storage. This review article will enable researchers
to use quantum dots from biological sources for energy-related applications in the near
future. Therefore, this review provides an overview of recent progress and prospects
for the characterization of bioresource-derived QDs for energy generation and storage.
The synthesis of QDs using bioresources, e.g., micro-organisms, such as fungi, bacteria,
and yeasts, is being extensively studied. This review shows the versatile applications of
QDs derived from biological sources for energy generation and storage, which are very
promising, such as supercapacitors/microcapacitors, batteries, and solar cells (perovskite
solar cells and organic and inorganic hybrid solar cells).

2. Bioresource-Derived QDs

Bioresources include both plant and animal materials, and each of these materials can be
converted into renewable energy through the use of bioresources. In general, bioresources
can be divided into three types: micromolecules derived from bioresources (e.g., citric acid
and glucose), components of bioresources (e.g., cellulose, hemicellulose, lignin, etc.), and
natural bioresources (e.g., straw and crab shells) [25]. Various types of bioresources can be
used as carbon sources in QDs, e.g., waste streams. In addition, products that do not fall
into the category of waste streams can also be used as carbon sources. Waste bioresources,
such as leaves or food waste, are considered the most environmentally friendly, facilitate
waste management, and are often less expensive. Although these bioresources cannot be
considered waste, they are still environmentally friendly because they do not contribute to
waste management. However, they are less environmentally friendly than those whose
waste they can dispose of. Compared to waste bioresources, this type of bioresource is
often more expensive, but can be better purified, so its synthesis can be simplified. In this
section, we will describe the advantages of using bioresources to produce quantum dots
with minimal environmental impact. In terms of their photoluminescence (PL) emission,
optical properties, excellent conductivity, and broad spectral absorption, these dots share
some similarities with chemical QDs, especially in terms of their chemical stability and
broad optical absorption spectrum. Their properties include nonblinking, resistance to
photobleaching, broad excitation wavelengths, and the ability to tune synthesis parameters,
including size, shape, composition, internal structure, and surface chemistry, to emit at
a specific wavelength [26,27]. These materials are not only more environmentally friendly,
but they are also potentially less toxic and biocompatible.

3. Synthesis of Bioresource-Derived QDs

Synthesis for obtaining QDs from bioresources with good electronic and optical prop-
erties is possible by a variety of precursors and methods. The properties, advantages,
and disadvantages of each method are listed in Table 1. In addition to these methods,
microwave hydrothermal, oxidation, solvent thermal, and reflux methods are less common
synthesis methods. Chemical oxidation is one of the least colorful methods because strong
acids are used to quantify the quantum resource, while the bioresource extraction method
without heat or chemicals is one of the most environmentally friendly methods. The lack
of control over the properties of the extracted points is one of the major drawbacks of the
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extraction method. From the analysis, microwave and hydrothermal methods are widely
used for QD synthesis [28–31].

Table 1. The properties, advantages, and disadvantages of each method.

Method Advantages Disadvantages Properties Ref.

microwave

most effective and least
time-consuming methods;

high efficiency and
homogeneous heating

poor control over size,
microwave radiation is

harmful to human beings

casein dots had high QY of
18.7% and size of 7 nm [32–36]

hydrothermal simple to operate,
controllable and nontoxic

poor control over size and
presence of impurities.

papaya carbon source
produced blue colored CDs

with a 2−6 nm size and QY of
18.98%; peach extract

produced blue nitrogen doped
with particle size of 8 nm and

a QY of 15%

[37–42]

ultrasonic synthesis
process is simple, easy to

control, and promotes
crystal structures

transformations of the dots,
poor size control, and a long

reaction time

food waste dots showed a high
degree of solubility in water,

a narrow band of PL emission
(400−470 nm), a size of 4 nm
and excellent photostability

[43–46]

chemical oxidation

very hydrophilic and
variable emission, and

effective and facile
method suitable for large

scale; process is easily
modified, and surface

state is tunable

harsh chemical may be used
and biotoxicity of the
products is increased

biowaste synthesized dots had
an average particle size of
5−6 nm and the QY < 2%

[47–49]

3.1. Hydrothermal Method

The hydrothermal method is one of the most popular methods for producing QDs
quickly, cheaply, conveniently, and in an environmentally friendly manner, producing
quantum dots at a high rate under aqueous conditions of high temperature and pressure.
There are a number of reasons why this method is so popular, including ease of use,
control, nontoxicity, and the fact that the polymer does not need to be passivated before
use. Nevertheless, this method does not allow for precise control of size, and impurities
may already be present at the time of the process [37–42].

A 2016 paper by Wang et al. reported that the authors developed a new environmen-
tally friendly method for hydrothermal carbonization of papaya to synthesize CDs.

Papaya was heated at 200 ◦C for 5 h, filtered, and dialyzed for 72 h, after which
an extraction procedure was carried out at 2–6 nm with a high quantum yield of 18.3%.
The result was a blue CD PL with a size of 2–6 nm and a quantum yield of 18.3%. The
researchers performed a series of experiments to show that the dots were suitable for
imaging HeLa cells as well as for measuring the fluorescence of E. coli bacterial strains.
However, it should be emphasized that no percentage yield was reported in the other
research cited; therefore, it is impossible to draw a conclusion as to whether or not this
reaction is effective with further magnification [38].

3.2. Microwave Synthesis

In microwave synthesis, it is possible to quantify organic substances using microwaves
to produce QDs. The yield and quality of quantum dots increase with a short heating
time, as this increases the quantum yield. It has the added advantage of being very
efficient, saving time, and distributing heat evenly. However, it is also characterized by
poor size control and microwave radiation, which can be harmful to human health on
a large scale [32–36].

Bajpai et al. used milk powder containing casein as a carbon source in their study.
A microwave oven can be used to heat a casein solution until it becomes semisolid, so that
a semisolid solution is formed by the heating process. The residue from this process is
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then diluted with distilled water and centrifuged to remove all residues. The supernatant
is collected and analyzed. The environmental friendliness and the fact that no harsh
chemicals are used in this process make it an ideal alternative for those who want to protect
the environment. Only a few steps are required to complete the process. Since this method
does not use waste biomass to make the synthesis, but instead buys the biomass to make
it in a lab, it is less environmentally friendly than the others. To determine if the casein
points described in the paper are more economical than those created from dairy waste,
both the casein points described in the paper and those created from dairy waste must be
compared. To determine whether casein points are more economically advantageous, the
casein points described in the paper must be compared. Note that these points have a high
yield of 18.7%, which means they fall in the blue range [32].

4. Limiting Factors of Using Bioresources for the Synthesis of Quantum Dots

There are a limited number of applications for QDs compared to SCQDs due to their
low quantum yield [50]. Quantum yields between 40% and 90% [51] can be achieved
with SCQDs, while QDs usually achieve quantum yields of 30%. According to Yang et al.,
microwaves were used to generate quantum dots using resorcinol, OPD, and hydrochloric
acid, and a quantum yield of 62.8% was achieved. This was because the QDs had been
doped with nitrogen, so there were many nitrogen atoms in the QDs. In addition, the dots
contained few vacancies in the carbon skeleton, and the core consisted mainly of the sp2

domain. It was found that the reaction was positively affected by the presence of HCl
as a “promoter”, resulting in bright fluorescence and a high yield of reaction products.
Consequently, if this method is applied to waste biomass instead of chemical feedstock
as a power plant raw material, it might be possible to reduce the ecological impact of its
use [52].

5. Modification of QDs with Bioresource

Bioresources can be defined as organically produced raw materials that have been
created by the activities of humans and animals and can, therefore, be used as natural,
renewable resources that are derived from the material itself. Bioresources can be laboratory
animals, plants, cells, genes, and micro-organisms used for research [53]. In addition
to agricultural waste, carbonaceous solid waste is also a bioresource. There are various
methods to dispose of agricultural wastes that are continuously generated from agricultural
activities. Various industries, including mills, can use this waste as a fuel source for
heating, power generation, and chemical processes. From these wastes, various industries,
such as mills, can generate electricity, heat, and chemicals. GQDs derived from plant
leaves do not require oxidizing or reducing agents or organic solvents, and the structures
of these bioresources contain various functional groups [54]. Bioresources are used for
various purposes and applications, as shown by agroforestry and aquaculture. The use
of important bioresources for energy production is problematic due to the ineffectiveness
of GQD. Synthesis received much attention due to their low cost, availability, and high
carbon content as potential feedstocks for the synthesis of GQDs. Functionalization of
GQDs, even when they are in pure form, occurs because of the constraints on their use.
Functionalization is achieved either by forming composites with polymers [55], inorganic
materials [56], organic molecules [57], etc., or through doping with heteroatoms [58]. The
functionalized GQDs have enormous applications, such as drug delivery, bioimaging,
batteries, sensors, etc. [59–61]. Recently, the synthesis of QDs from various bioresources has
been influenced by the development of green and sustainable chemistry [62–64]. This is
mainly because conventional synthesis methods involve lengthy synthesis processes under
extreme temperature and pressure conditions. In addition, these synthesis methods use
toxic reagents and require extensive purification procedures. In the synthesis of QDs, the
use of bioresources led to inexpensive and simple methods. Therefore, the present study
focuses on the synthesis of QDs from various bioresources, including micro-organisms,
such as bacteria, fungi, yeast, and algae [62,65–67].



Nanomaterials 2022, 12, 3905 5 of 28

5.1. Microorganisms Derived QDs

As properties, such as biocompatibility, environmental friendliness, and feasibility, are
considered in the implementation of synthesis methods, it is possible to propose the synthe-
sis of QDs via biological pathways that are environmentally friendly, inexpensive, and low
in toxicity, rather than using chemical synthesis methods for QDs. Micro-organisms are also
excellent biological nanofactories for the synthesis of QDs. The biosynthesis of QDs has
several major advantages that can be exploited, especially in energy production and storage.
Micro-organisms have tremendous diversity, which gives them an inherent potential to
mediate QDs. Bacteria, yeasts, and fungi are among the micro-organisms suggested to
synthesize QDs. This is due to various factors, such as pH and temperature, their ability
to grow under stressful environmental conditions, and their ease of cultivation [68,69].
Due to their high tolerance and self-compatibility in environments containing toxic metals,
micro-organisms have the unique ability to promote QD synthesis by utilizing energy
production and storage [70,71]. Microbial enzymes play a key role in the conversion of
precursor metal ions into nanoparticles. Various biological sources are used for the biosyn-
thesis of QDs, such as viruses [72], bacteria [73], fungi [74], agricultural and industrial
wastes [75], plant extracts [76], and algae [77]. Figure 1 shows micro-organisms such as
bacteria, fungi, yeasts, and algae that produce QD. Currently, the biological production
of QDs by micro-organisms, such as yeasts, bacteria, and fungi, has attracted particular
attention due to their ability to bioaccumulate and biotransform QDs, as shown in Table 2.
The synthesis of QDs by fungi was also given attention because they were effective secretors
of various biomolecules among the micro-organisms studied. The advantages of using
fungi also include their cost-effectiveness and ease of biomass processing. However, the
synthesis of QDs by bacteria offers advantages, since bacteria can be genetically engineered
to express specific enzymes involved in the synthesis of QDs [78,79].
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Table 2. List of micro-organisms (bacteria, yeast, and fungi) through the production of QD and
various types of microbial QDs.

QDs Optimization of Factors Microorganisms Ref.

Fu
ng

i

ZnS - Penicillium sp. [80]

CdTe - Fusarium oxysporum [81]

CQD Concentration P. chrysogenum [82]

CdS Reaction time F. oxysporum f. sp. lycopersici [83]

PbSe - Aspergillus terreus [84]

MoS2 Concentration Trichoderma viride [85]

ZnS Reaction time, temperature, pH Aspergillus sp. [86]

Ba
ct

er
ia

CdS CdSO4 concentration,
temperature, time and pH P. chlororaphis CHR05 [87]

Carboxylated graphene quantum
dots (CGQDs) Concentrations E. coli [88]

CdTe–Rocephin QD complex - E. coli [89]

CQDs - E. coli [90]

CdS pH Acidithiobacillus ferrooxidans,
A. thiooxidans and A. caldus [91]

GQDs-M - Shewanella decolorationis S12 [92]

CdSe - Pseudomonas aeruginosa [93]

MoS2 - E. coli, S. aureus [94]

CdTe - E. coli [95]

Ye
as

t

CdS - Saccharomyces cerevisiae [96]

CdSe Different concentrations of
Na2SeO3 and CdCl2 and pH Rhodotorula mucilaginosa [97]

GQDs Dose-dependent S. cerevisiae and H9c2 cell line [98]

CdSe

Effect of S. cerevisiae growth
phase, selenite concentration,

cadmium concentration, effects
of selenite and cadmium

incubating time

S. cerevisiae [99]

CQDs - Saccharomyces cerevisiae [100,101]

ZnS
Reaction time and different

concentrations of yeast biomass
and ZnSO4

S. cerevisiae MTCC 2918 [102]

5.1.1. Bacteria

Bacteria have great potential in energy-related fields because they can be produced on
a large scale, have a diverse morphology, are biomineralizable, have unique electrochemical
activity, and are inexpensive. In addition, they are considered to be the most widely
distributed living organisms and provide the largest contribution to the material cycle in
the natural environment [103–105]. Economic production, stability, water solubility, and
a stable structure are among the advantages of using bacteria for the biosynthesis of QDs
compared to conventional methods. Another advantage of using bacteria for biosynthesis
is the relatively low cytotoxicity of QDs. For the production of QDs of uniform size with
potential antibacterial properties, the use of bacteria is suitable as an environmentally
friendly, cost-effective, and simple method. The QDs prepared using bacteria showed
excellent salt stability due to the morphological changes in the QDs caused by the bacteria.
There is no doubt that QDs offer many exciting and indispensable prospects in the field of
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energy conversion. This is due to their diverse and strong physicochemical properties and
advantageous features, such as quantum confinement effects and an abundance of surface
defects. Doping with different heteroatoms cannot only enhance the electronic conductivity,
but also introduce multiple active sites, increase the number of defects, and improve the
chemical adsorption ability, which can improve the reaction activities and electrochemical
kinetics in energy storage and conversion devices [10,106,107]. The bioinspired synthesis
of ZnS QDs from Aspergillus sp. was investigated by Jacob et al. The results showed
that biogenic ZnS QDs exhibited significant antimicrobial activity comparable to that of
standard antibiotics after screening their antibacterial activity against common pathogenic
bacteria. Factors responsible for the excellent bioactivity include the ability of ZnS QDs to
disrupt the bacterial cell membrane, oxidative damage caused by ROS leading to bacterial
cell lysis, and leakage of cytoplasmic contents (Figure 2) [108]. Table 3 shows the properties
of QDs and the characterization tools for QDs biosynthesized from bacteria.
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Table 3. Characteristics of QDs and the characterization tools of QDs biosynthesized from bacteria.

QDs Organism Characterization Tools
Characteristics of QDs

Ref.
Size Shape

CdS
CdS/CdSe E. coli

UV-vis, DLS, HR-STEM,
TEM, EDX, FTIR, and

fluorescence spectroscopy

12 nm
17 nm

Spherical
Spherical [109]

Graphene E. coli AFM, HRTEM, UVvis absorption,
FT-IR, XPS 3–8 nm - [110]

ZnS Clostridiaceae sp. XRD, EDX, TEM, FTIR, PL and UV 3.34 ± 0.65 nm Spherical [111]

Zn/rifampicin/Tf Mycobacterium
smegmatis

UV/Vis-spectroscopy, TEM, FTIR,
photoluminescence, XRD, XPS

and NMR
10 nm Spherical [112]

CdTe E. coli

Raman, mass spectrometry,
absorption,

and fluorescence spectroscopy and
fluorescence microscopy

- - [113]

Ag/In/S Candida albicans TEM, XRD, UV-Vis 9.5–10 nm Spherical [114]

CdSe Providencia vermicola UV-vis, FTIR XRD, TEM, and EDX 2–4 nm Cubic [115]

ZnO E. coli X-ray, FTIR, MIC 3–7 nm Spherical [116]

CdS Pseudomonas fragi
DSL, AFM, TEM, XRD, XPS, UV-vis

and fluorescence emission
spectroscopy

2–16 nm Spherical [117]
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5.1.2. Fungi

Heterotrophic micro-organisms with a nucleus and a cell wall are called fungi. In
recent decades, fungi have attracted much attention in energy−related fields due to
their high production, diversity, and rapid reproduction [118,119]. Fungi include micro-
organisms, such as yeasts [120], and multicellular organisms, such as molds [121,122].
Since nano−dimensional particles with better monodispersity can be obtained by using
fungi, fungal-mediated synthesis is more advantageous than bacterial synthesis. Therefore,
the use of fungi is one of the most stable and effective methods for the synthesis of CdS
QDs with high biocompatibility and excellent optical properties for the generation and
storage of light. The use of fungi in the preparation of QDs also increases their fluorescence
properties. In addition, the production of QDs with fungi has increased photocatalytic
activity, which has led to greater degradation of pollutants and the degradation of biosen-
sors used in the generation and storage of energy. Fungi and QDs can demonstrate their
potential in energy-related fields, such as supercapacitors, lithium-ion batteries, and solar
cells [123,124]. A fundamental mechanistic aspect of the biosynthesis of QDs from fungi
was investigated by Jacob et al. As shown in Figure 3, the possible mechanism of biosyn-
thesis of PbSe QDs from Aspergillus tereus was revealed by them. Detoxification of metals
by biological molecules occurs through a series of events, such as the induction of high
circulation of organic acids, the induction of proteins, and the stimulation of antioxidant
enzymes, including the mechanism of fungal biosynthesis that emerged from their study.
This process includes the following steps: (i) First, in the production medium of metal
ions (Pb2+ and Se2−), the precursors (Pb(NO3)2 and Na2SeSO3) undergo redox reactions.
(ii) Detoxification is initiated by several processes: (a) reversible combination of level
functional groups (e.g., thiols, oxalic acids) with metal ions; (b) conversion of glutathione
to phytochelatins (PC) due to activation of phytochelatin synthase (PS) and also binding
with metal ions, eventually leading to their transport by ATP-binding cassette membrane
transfer proteins into the cell vacuole is due to metal stress; (c) binding of metallothioneins
to metal ions occurs in a similar manner; (d) redox reactions occur by tautomerization of
quinine; microscopic PbSe is formed by the activity of superoxide dismutase (SOD); and
(f) stimulation of other oxidoreductases to generate a redox environment. (iii) The manu-
facturing process of PbSe QDs occurs through the creation of a redox atmosphere and the
involvement of glutathione/metallothionein. (iv) Thermal shock increases the permeability
of the cell walls so that their contents are released into the environment. (v) Finally, nuclei
form the QD−capped protein culture medium due to Ostwald maturation [125,126].

5.1.3. Yeast

Yeast is a unicellular fungus that belongs to the facultative anaerobes and can live in
aerobic and anaerobic environments [118,127,128]. Yeast cell colonies are much thicker and
larger than bacteria [129–131]. In addition, yeasts are widely used in industry for energy
production and storage. CdTe QDs are among the most important QDs considered for
energy storage applications due to their unique properties, which include high quantum
efficiency, control, and narrow emission spectra. Bao et al. investigated CdTe QDs biosyn-
thesized with yeast cells with tunable fluorescence emission spectra. They showed the
size-dependent emission spectra of the as-prepared CdTe QDs at 490–560 nm, as shown in
Figure 4a. They also identified the dispersion of CdTe QDs with a diameter of 2.0–3.6 nm at
TEM, as shown in Figure 4b. In the XRD pattern at 2θ ~ 26.7 ◦C, the diffraction peak of the
biosynthesized CdTe QDs is cubic and corresponds to the (200) reflection in Figure 4c. By
FTIR spectroscopy, it is possible to identify the possible ligands coating the fabricated CdTe
QDs. Two absorption peaks corresponding to the amide I and II functional groups were
found at 1650 and 1566 cm−1, respectively, as shown in Figure 4d. The results show that
the microbially prepared CdTe QDs exhibit exceptional biocompatibility and stability, and
also have a high quantum efficiency of ~33% [132].
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5.1.4. Algae

Recently, algal-mediated synthesis of QDs for various energy generation and storage
applications has attracted attention due to its importance in the development of biocompati-
ble and highly fluorescent QDs. Since one of the environmental problems is caused by algal
biomass, the use of algae for the biosynthesis of QDs helps not only as a bioresource for
synthesis but also for environmental remediation. The results of using algae as precursors
include the remarkable properties of QDs, including excellent blue luminescence in UV
light, ionic strength, commendable stability, pH, exceptional insensitivity to photobleach-
ing, and high-water dispersion. Another result of using algae is excellent light transmission.
QDs synthesized by this method showed efficient optical absorption and fluorescence. The
bioresource of microalgae is a sustainable, renewable, and abundant source that provides
a cost-effective and easy way to synthesize CQDs for energy generation and storage [133,134].
A mesoscopic solar cell system was developed using CQDs synthesized from Gelidium
amansii powder, a species of red algae, to serve as light collectors. According to Dou et al.,
the CQDs were able to harvest light effectively. A mesoscopic TiO2 photoanode, in which
CQDs containing the dye N719 were used, served as the photocell. The counter electrode,
created from FTO glass with a Pt carrier, was used as the redox electrolyte for the solar cell.
In addition, CQDs, N719, and TiO2 with a FTO glass support were used for the counter
electrode (Figure 5a). Since the HOMO edge of the CQDs agrees well with the value of the
N719 dye, and as evidenced by the redox potential of the I*/I3* system, extraction of holes
from the N719 dye into the electrolyte occurs, leading to an improvement in the separation
of electrons and holes (Figure 5b) [135].
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5.2. Bio-Wastes Derived QDs

Animals and plants engage in a variety of activities that result in the generation of
biowaste, which can be divided into several categories. As a renewable energy resource,
biowaste is converted into GQDs without the addition of chemicals [136]. Tade et al.
converted industrial waste and biowaste into GQDs without adding chemicals. A study
on carbonaceous bioprecursors, such as amino acids and carbohydrates, was carried out
to understand their processes [137]. Based on the work of Mohan et al., it was found that
the synthesis of GQDs can be successfully carried out using sugarcane bagasse (SB) as
the feedstock for the process. This experiment was carried out at room temperature, and
the starting material was carbonized during the experiment. To perform the synthesis of
sugarcane bagasse, 2 g of bagasse was mixed with 2 g of NaNO3 and 26 mL of H2SO4. This
product was then mixed with 6 g KMnO4 and oxidized for 48 h with constant stirring. It
was then mixed again with 6 g KMnO4. After the reaction was complete, I added 500 mL
of distilled water and 5 mL of H2O2 to the mixture. The resulting sample was then diluted
to ensure that no traces of acid remained in the sample [138].
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5.2.1. Lignin

Lignin-based QDs materials are usually environmentally friendly and low cost, and are
widely used in energy storage, the environment, electronic devices, and other fields [139,140].
It should be noted that lignin is attractive for the fabrication of CQDs due to its high
graphene content and aromatic phenylpropane structure, which has the great advantage
of resembling the graphene framework of CQDs. To obtain very bright CQDs with stable
fluorescence emission and water solubility, simple hydrothermal processing of LPC can
also be used. Transmission electron microscopy (TEM) can be used to determine the
morphology of lignin-based CQDs (see Figure 6a). The TEM image also shows good
dispersion of the quasi-spherical CQDs with no obvious aggregation. One of the reasons for
the particles having a highly crystalline graphene structure is the presence of (100) graphitic
carbon layers (0.21 nm lattice spacing) in the high-resolution TEM image, the TEM image
shows stripes with a spacing of 0.21 nm [141]. The uniform distribution responsible for
the photoluminescence and confinement of CQDs can be confirmed by the distribution
of CQDs in the range of 2 to 9 nm with an average diameter of 4.18 nm (Figure 6b) [142].
Figure 6c shows the location of the strong absorption peak at approximately 265 nm in
the sp2-hybridized graphene core, which is due to the π-π* transition of the conjugated
C=C/C=O bonds [143,144]. The color change of the lignin-based CQD solution under
a UV lamp with a wavelength of 360 nm from pale yellow in natural light to light blue
fluorescence is shown in the inset photograph in Figure 6c. Additionally, in Figure 6d, the
strongest absorption of CQDs by PL excitation, which is similar to the documented PL
excitation analysis of carbon dots (Cdots), was shown in the range of 400–460 nm [144].
The CQDs showed an excitation peak approximately 449 nm, which could be due to the
graphene core, surface structure and specific diameter [145].
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5.2.2. Wood Charcoal

There are many methods of making charcoal, but the most common is to heat wood at
400 degrees Celsius in an oxygen-deficient environment, since charcoal is a pure form of
carbon. Pyrolysis is a method of converting wood into charcoal and is one of the most effec-
tive methods. As an abundant, highly flammable energy source, charcoal, a carbonaceous
substance, is readily available in large quantities and is an abundant carbon source [147].
GQDs were synthesized in a two-electrode system by electrochemical oxidation of charcoal
as described by Nirala et al. In this experiment, a solution of 0.01 M ammonium persulfate
was used as electrolyte and an electrode potential of 5 volts was used for oxidation, with
a current of 100–200 mA/cm2 during oxidation. The free rotation that occurs during the
anodic oxidation of water and giant graphene sheets allowed the giant graphene sheets
to be oxidized to GQDs. The assembly was centrifuged in a centrifuge at 10,000 rpm for
20 min. E-GQDs were also prepared by dialyzing a mixture for a period of three days
before analysis [148].

5.2.3. Coffee Grounds

It has been observed that as coffee consumption has increased, so has the production
of ground coffee, which is rich in carbohydrates, proteins, caffeine, tannins, and pectins, all
of which have been shown to be important for human health. In addition to the primary
composition of ground coffee, carbon is also a component of its primary composition.
Carbon can be used in a variety of applications, such as wastewater treatment, biomedical
waste treatment, and other industrial processes [149].

Recently, a study was published by Wang et al. using coffee grounds to synthesize
GQDs. For this purpose, 0.1 g of highly sterile and dried coffee grounds was mixed with
one ml of hydrazine hydrate. It was sonicated with 10 mL of water and 0.1 gram of coffee
grounds for 30 min. The mixture was then kept at 150–200 ◦C for approximately six–ten
hours. After filtering off the solution containing the water-soluble GQDs, small molecules
were removed from the solution by dialysis for two days. The quantum yield was reported
to be 33%. By using these GQDs for bioimaging, ion detection, and environmental analysis,
we can produce blue fluorescent GQDs that emit blue fluorescence at 470 nm [150].

6. Applications of Energy Generation and Storage Devices by Bioresource-Derived QDs
6.1. Integrated Devices for Energy Harvesting and Storage

Integrated energy harvesting and storage devices, such as SCs/MSCs, lithium-ion
batteries (LIBs), and solar cells, play an important role in daily life because they can replace
conventional fossil fuel energy (Figure 7). Nevertheless, these isolated devices cannot
provide enough energy for long-term operation and constantly changing work situations,
and have limited power and/or exclusive use. This shows that the development of good
automated systems is necessary to meet the increasing energy demand for long-term use
in different environmental scenarios. An effective way to achieve an energy system with
high density, small size, and high reliability is to develop an integrated energy package
and a combination of energy harvesting and storage [151]. One of the most important
energy-related technologies that can replace the battery or at least extend its lifetime is
energy harvesting and storage devices [152]. The use of toxic chemical reagents, high
temperatures, high time consumption, and synthetic steps are among the drawbacks of
many traditional methods of bioresource-derived QD synthesis that limit the application
of these syntheses. Therefore, recently, new bioresource-based methods, such as those
using micro-organisms (bacteria, fungi, and yeasts), lignin, and cellulose, are being used as
graphene sources for the synthesis of bioresource-derived QDs. Considering the several
advantages of bioresource-derived QDs, including good recyclability, convenient synthe-
sis, colorful PL, excellent biocompatibility, and low cost, scientists have been inspired to
develop novel materials with low environmental impact and new applications, such as
supercapacitors/microsupercapacitors, batteries, and solar cells [153–155]. In recent years,
properties, such as enhanced absorption of UV light, ease of functionalization, and im-
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proved efficiency of solar cells have been used to improve the performance of solar cells
with QDs [156]. A QD is a type of nanoparticle that can be used as a mobile material to
improve the performance of batteries by introducing it into their electrolytes to improve
their electrical properties [157].
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6.2. Supercapacitors/Microsupercapacitors

SCs/MSCs as energy storage devices have attracted more attention due to their unique
advantages, such as short charge/discharge times, small size, long lifetimes, and high-
power densities. SCs/MSCs can be divided into two types of capacitors based on different
charge storage mechanisms: quasi-capacitors and electrochemical double-layer capacitors.
In general, SCs/MSCs with GQDs, whose mechanism is charge absorption at the electrode
level as the electrode material, belong to the electrochemical double-layer type. Xue et al.
investigated the electrochemical deposition of GQDs on a gold finger electrode. The
results showed that the MSCs obtained after 5000 cycles have an operating speed of
up to 1000 V/s, a specific capacitance of 534.7 mF/cm, and a specific capacitance of
97.8% compared to their initial specific capacitance [158]. A flexible, transparent MSC
with highly bendable properties and a specific capacitance and high transmittance at
550 nm wavelength of 9.09 mF cm−2 and 92.97%, respectively, was developed by Lee et al.
using chelated graphene and GQDs. It retains approximately 100% of its initial specific
capacitance with respect to bending after 10,000 continuous cycles (long cycle stability can
be maintained) [159]. Most lignin-based supercapacitors generally exhibit slow diffusion
kinetics and lower electrochemical performance with low capacitance due to their low
conductivity, uncontrolled morphology, and poor interfacial compatibility. Ding et al.
investigated the simultaneous rapid charging and increase in specific capacitance with
GQDs and heterogeneous graphene sheets (GQD/Gr) prepared entirely from lignin. The
in situ growth of GQDs on graphene is possible due to the conversion of lignin into
GQDs and subsequent deposition on graphene, which provides good surface compatibility
with GQD/Gr heterogeneity. They found that the GQD/Gr heterojunction has a high
specific capacitance of 404.6 F g−1 and a short charge time constant (τ0) of 0.3 s, which is
2.5 times longer and 7.5 times faster than the unmodified lignin electrode with 162 and
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2.3 s, respectively. The results show that it is possible to overcome the critical barriers
for a lignin-based supercapacitor with superior electrochemical performance by creating
a discontinuous 0D/2D GQD/Gr system. It also paves the way for the conversion of high-
quality industrial lignin into highly efficient, scalable, and cost-effective electrochemical
energy devices (Figure 8) [160]. The various features and functions of GQDs in MSCs and
SCs are shown in Table 4.
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Figure 8. (a) Design of a 0D/2D GQD/Gr-converted all-lignin heterogeneous graft by a low-cost,
facile, and scalable alkaline-activated hydrothermal method for high-speed, specially enhanced
supercapacitors. (b) Schematic illustration of more electron storage and efficient emission towards
the GQD/Gr electrode through the GQD/Gr lignin electrode and alkali. Reprinted from Ref. [160].

Table 4. GQDs applied to MSCs and SCs.

Electrode Substance Cycle Stability Electrolyte Operating Voltage (V) Ref.

M
SC

s GQD//MnO2 - 0.5 M Na2SO4 1 [161]

GQD//GQD 97.8%, 5000 cycles 0.5 M Na2SO4 1 [158]

GQD//PANI 97.3%, 1500 cycles 0.5 M Na2SO4 0.9 [162]

SC
s

GQD-3DG//GQD-3DG 90%, 5000 cycles 1 M H2SO4 0.8 [163]

GEAC//GEAC 100%, 10,000 cycles Alkaline electrolyte 1 [164]

CoDC-0.5//CoDC-0.5 90%, 10,000 cycles 6 M KOH 1 [165]

6.3. Batteries

The use of LIB as a power source and in electric and hybrid vehicles as an intelligent
energy storage system is becoming increasingly popular. Due to their lightweight design,
cost-effectiveness, energy efficiency, and long life, the commercial demand for these bat-
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teries is increasing significantly. The charge-discharge process can rapidly degrade the
capacity of many LIB electrode materials, but many of them also exhibit poor rate perfor-
mance due to self-aggregation, uncontrolled volume expansion, dissolution, formation of
solid electrolyte interfaces across the electrodes, and a rapid increase in charge transfer
resistance during cycling [166–168]. Although electrode materials for LIBs are widely used,
they have a number of drawbacks. These include the fact that the electrode materials are
not coulombically efficient, electrolyte depletion, and safety concerns. Recently, the use
of QDs incorporated into LIB electrode materials has proliferated to address the issues
associated with these materials. In order to improve the efficiency of the next generation
of LIBs, changes are being made to the electrode materials in terms of surface finish and
internal structures. Compared to other types of electrode materials, QDs possess a number
of advantages, including increased conductivity, an increased number of active surfaces on
the electrodes, and improved electrode surfaces and wettability, all of which are important
aspects of electrode material performance. In addition, they could also help control the
volume expansion of electrode materials and control the voltage drop during charging
and discharging. In addition, anode materials with a large surface area, morphology, and
high dimensional stability have also been explored as anode materials because they have
a variety of properties that make them suitable for use in anode applications, such as
graphene and carbon nanotubes. By weakening the lattice disorder in these materials,
they cannot only be strengthened but can be used more effectively as anodes in LIBs by
enlarging the defects, improving the order in the lattice, and creating pores. Graphene and
carbon nanotubes (CNTs) accumulate defects over time as a result of interactions between
van der Waals forces and high surface energies. To understand the extent of the problem
of accumulated defects over time, it is particularly important to understand how these
defects accumulate over a short period of time. Due to the high conductivity of graphene
and carbon nanotubes, composites can be created that combine these highly conductive
graphene and carbon nanotubes by duplicating graphene and carbon nanotubes and then
combining them. The functional groups (-OH and COO-) on graphene quantum dots create
a negative charge on the surface of the CNTs. This prevents the CNTs from clustering
together, as molecules with the same charge repel each other. In addition, these functional-
ized CNTs improve the storage capacity of Li-ion batteries. The combined performance
of these hybrid graphenes and carbon nanotubes was greater than the performance of the
individual elements. The addition of these active sites and the reduction in mechanical
stress also led to an increase in the number of active sites. In addition, a reduction in me-
chanical stress is also caused by the volume changes associated with the charge/discharge
processes [169–171].

GQDs are used in lithium-ion batteries due to their unique structure and high con-
ductivity, low density, high hardness, and high tensile strength [172–174]. The bioresource-
derived GQDs improve the electrochemical performance in Li+ or Na+ batteries, increase
the electron transfer and Li+/Na+ diffusion rates, and decrease the volume expansion.
Electrochemical performance can be improved by mixing bioresource-derived GQDs with
an active material as an auxiliary material or by using bioresource-derived GQDs as
an anode material. VOx is considered a promising electrode material for Li-ion batteries
because it offers high capacity, low cost, and abundant resources. They have fabricated
a number of VOX nanostructures to use as LIB cathodes, and so far, we have been able to
report on their fabrication. Nevertheless, most of these materials tend to drop capacitance
rapidly and perform poorly at high speeds, while resistance increases rapidly during cy-
cling, suggesting that they are not suitable for use in extreme conditions [157,175]. A new
LTO/N-GQD/superhierarchical anode material was investigated for LIB by Khan et al.
The results showed that LTO with N-GQD not only has better electrical properties, but also
increases the specific capacitance by 23% compared to pure LTO (Li4Ti5O12); therefore, the
discharge capacity for more than 200 cycles is approximately 170 mAh·g−1 at 20 ◦C, as
shown in Figure 9 [176].
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6.4. Solar Cells

A solar cell or photovoltaic cell is a solid-state electronic element that converts
a portion of received solar energy directly into electricity. The operating mechanism
of the solar cell is that by generating a photon and absorbing it, an electron-hole pair is
created. By connecting two p-type and n-type semiconductors, electrons are transferred
from the n-type region to the p-type region, and holes are transferred from the p-type region
to the n-type region. The positive and negative ions created by the electron-hole transfer
generate an electric field that becomes stronger as more electrons and holes are transferred
until the formal levels of the two regions equalize and an electric field is created. Upon
solar irradiation and photon absorption (light packets whose energy is higher than the
energy of the semiconductor gap), the generated electron-hole pair penetrates the electron
donor-acceptor interface. Then the electron-hole pair is separated at the interface and
generates electrons and holes. The electric field drives the electrons into the n-region and
the holes into the p-region. In this way, a potential difference is created due to the negative
charge density in the n-region and the positive charge density in the p-region. Then the
charge transfer to the cathode and anode takes place. When the cathode and anode are
connected with a wire, the excess electrons in the n-region migrate through the wire to the
p-region, and a short-circuit current is generated. Figure 10a shows a schematic diagram
of a solar cell. Nowadays, silicon solar cells are used on an experimental scale, but since
the silicon wafers must have a high degree of purity, the manufacturing cost is very high,
which makes it difficult to use this type of solar cell. Different types of polymers, pigments,
and perovskite solar cells have been produced, which have reasonable energy conversion
efficiencies and lower weight and cost. A solar cell consists of three parts: photoanode,
cathode (usually metals, such as aluminum, silver, and calcium), and active layer. Generally,
indium oxide is used as a photoanode. This compound has a suitable bandgap, high trans-
parency and electrical conductivity, and has a suitable working function. Due to the limited
indium sources, expensive fabrication methods, instability in acidic environments, and
brittleness of electrodes, the attention of scientists has been drawn to the use of materials
with better performance, such as photoanodes or electrodes [177–180]. Bioresource-derived
QDs have other advantages due to their special properties, such as lightweight and low
density, high electrical conductivity (with zero bandgap and good mobility for electrons
and holes), and flexibility, which include availability, affordability, sustainability, and
an ecofriendly nature; they also have disadvantages, including scaling problems due to
uneven heating and a wide size distribution of solar cells [181–183]. Since the mass produc-
tion of bioresource-derived QDs, intensive research on bioresource-derived QDs has been
carried out in various industrial fields, especially in solar cells [184]. Bioresource-derived
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QDs solar cells are developed based on Gratzel or pigment-sensitive solar cells, but they use
low-bandgap semiconductor compounds that can be used to fabricate bioresource-derived
QDs, such as PbS, Sb2S3, CdSe, and CdS. In these devices, QDs derived from bioresources
are used instead of light-absorbing organic or metal-organic pigments. Changes in the
size of QDs derived from bioresources lead to changes in the intensity of the wavelength
of light absorbed in these cells [185]. In solar cells sensitized with bioresource-derived
QDs, the mesoporous TiO2 layer forms the main skeleton of the cell, just as it does in
cells sensitized with pigments, and the deposition of bioresource-derived QDs on the TiO2
layer leads to light sensitivity in these structures. The quantum particles can be deposited
on the TiO2 layer by various methods, such as chemical bath deposition, electrophoretic
deposition, or successive ionic layer adsorption and reaction (SILAR). Finally, the cycle
is closed with a reducing/oxidizing (redox) couple, either solid or liquid. The efficiency
of solar cells sensitized with GQDs in liquid crystal cells and solid-state cells has reached
more than 5% [186–188]. Bioresource-derived GQDs are widely used in high-performance
photovoltaic devices, including organic-inorganic hybrid solar cells [189] and perovskite
solar cells [190,191]. Figure 10b shows a schematic representation of the structure of a solar
cell sensitized with bioresource-derived QDs.
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6.4.1. Organic and Inorganic Hybrid Solar Cells

Silicon crystal cells are the first generation of solar cells. This type of solar cell, with
an efficiency of approximately 22%, dominates the world market. However, despite the
high efficiency and nontoxicity of the materials, there are limitations in the production of
inorganic cells, namely: high production costs, inflexibility, and fragility of this type of
cell. Inorganic silicon cells consist of two semiconductors (n) and an acceptor (p). When
sunlight shines on the p-n junction (junction between two semiconducting and accepting
materials), photons with energy greater than the bandgap energy of the semiconductor
create electron-hole pairs, and the pairs formed in the zero region have a high chance of
being separated by the internal field before recombination (Figure 11) [194,195]. Organic
solar cells consist of conducting polymers or other organic conductors as electron transfer
materials. The basis of their work is similar to that of the inorganic solar cell. Polymers
with different LUMO (lowest unoccupied molecular orbital) and HUMO (highest occupied
molecular orbital) levels are bonded together. In general, the process of energy generation
in an organic solar cell is divided into several stages, including the absorption of light and
formation of excitons, emission of excitons in the direction of transition, dissociation of
excitons into charge carriers, and transfer of charge carriers to the electrodes and their
collection [196]. Therefore, organic/inorganic hybrid solar cells are of increasing interest in
fabricating low-cost organic photovoltaics (OPVs) and to achieve other advantages, such as
tuning of the absorption spectrum, with inorganic components. This is because hybrid
solar cells have the potential to achieve high power conversion efficiency (PCE), but it
is currently low. To increase the power conversion efficiency, mineral materials are used
as electron acceptors in hybrid solar cells. In particular, the electronic structure is very
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important for the device’s performance [197]. Photon down-conversion is a property of
bioresource-derived GQDs that enables the absorption of photons in shorter wavelength
ranges for optical applications. Tsai et al. used and investigated GQDs as down-conversion
materials for heterogeneous silicon solar cells. The short-circuit current in different layers
of solar cells increased from 35.31 to 37.47 mA·cm2 by adding GQDs in an amount of
0.3 wt% [198]. Additionally, for hybrid solar cells, a yield of 13.22% was obtained using
GQDs [199]. A high detection rate of 8 × 1011 Jones without applying bias voltage can be
achieved by introducing GQD as an additive for photon down-conversion in PEDOT:PSS
through the hybrid device [200].
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6.4.2. Perovskite Solar Cells

The latest generation of solar cells that has attracted the attention of scientists around
the world since 2014 is perovskite solar cells. This group of solar cells consists of perovskite
compounds, which are usually organic mineral-lead hybrids or tin halide-based materials.
Perovskite materials have two very important advantages: they are cheap to produce and
easy to process. The low manufacturing price and high efficiency of this group of solar
cells will lead to a large market for these solar cells by 2017 [201–207]. Bioresource-derived
GQDs and graphene microlayers are among the advanced nanomaterials that have good
chemical stability and tunable band gaps. Moreover, bioresource-derived GQDs act as
excellent electron acceptors and donors in photoextraction [208]. To obtain efficient planar
perovskite solar cells, Zhang’s group investigated GQD-modified TiO2 films of different
sizes in 2017. They also found that GQDs can decrease the effective electron transport at
the perovskite/TiO2 interface and the contact resistance. This reduces the series resistance
and increases the combined resistance of the device, which in turn improves the fill factor
and open circuit voltage (VOC). The results show that GQDs increase all PV parameters by
19.11% to achieve the best PCE [209]. To improve the performance of planar perovskite solar
cells (PSCs) using GQDs, Yang et al. reported a powerful method, such as a planar phenyl-
C61 butyric acid methyl ester electrotron transport layer (PCBM ETL) with additional
forward PSCs, which dramatically increases the power conversion efficiency (PCE) of
PSCs while improving the optical stability of the devices. While the PCBM GQD device
maintained a maximum of 80% under continuous full-spectrum solar irradiation for 300 h,
their study showed that the PCE increased from 14.68 to 17.56 (Figure 12). The results
showed that the conductivity under GQD doping conditions is an order of magnitude
higher compared to pure PCBM [210]. Therefore, the improvement of electron transfer in
the perovskite layer, the deactivation of large parts of the grain boundaries, the reduction
in charge recombination, and the elimination of electron traps are among the advantages of
introducing GQDs into the perovskite thin films.
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7. Conclusions and Outlook

One of the biggest challenges of bioresource-functionalized QDs for energy generation
and storage is the low production yield (or unreported). While the analysis is performed
in solution, the yield can be such that it is impossible to separate the dots in solid form.
However, in addition to reporting yield or lack thereof, researchers should always provide
a reason for low yield (even if the yield is so low that it is impossible to quantify). Knowing
these challenges helps researchers who need more effort to improve the yield of solid-dot
synthesis methods. Additionally, to increase the viability of QDs derived from bioresources
in applications related to energy generation and storage, increasing yield plays a significant
role. Quality is as important and necessary as quantity. Optimization for efficient and
large-scale production methods is important for the synthesis of high-quality QDs with
small, uniform sizes, and high quantum yields. Size uniformity means that the emission
properties are uniform and have a narrower range; meanwhile, the high quantum efficiency
increases the brightness of the dots. The smaller size increases the surface area for func-
tionality and allows them to be used in a wider range of applications, especially in energy
generation and storage. These properties are much better for applications, especially in
microcapacitors/supercapacitors, batteries, and solar cells. Not fully explaining the optical
properties is another challenge that needs to be solved. Therefore, more research should
be conducted to fully understand the mechanisms behind PL in different types of QD and
how to control them, such as doping, effect size, and surface defects. Researchers should
periodically sample during QD synthesis to report on the mechanisms. Finally, the analysis
of these samples can be used to suggest the appropriate mechanism because it clarifies what
happens during the synthesis. Additionally, more research is needed to describe the effect of
changing the synthesis parameters on the physical and optical properties of QDs. To further
describe the relationship between physical and optical properties, reports on a wide range
of dot properties with synthesis conditions can be used. The synthesis of dots that have
better optical properties and that can be tailored to their specific applications is possible
through a better understanding of the link between physical properties and optical prop-
erties, as well as through a better understanding of PL mechanisms. Bioresource-derived
QDs are currently moving toward green synthesis consideration, and some syntheses are
already green-labeled. Therefore, it is expected that syntheses will use green principles
as much as possible in the future. Additionally, syntheses should be efficient in terms of
reducing reaction waste, energy, and atomic economy. This type of synthesis must include
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the selection of bioresources from the waste stream and micro-organisms to prevent waste
disposal and prevent the creation of something new to use as a carbon or heteroatom
source in the synthesis. Therefore, it is expected that syntheses will use green principles
as much as possible in the future. Additionally, syntheses should be efficient in terms of
reducing reaction waste, energy, and atomic economy. This type of synthesis must include
the selection of bioresources from the waste stream and micro-organisms to prevent waste
disposal and prevent the creation of something new to use as a carbon or heteroatom source
in the synthesis. The synthesis should use inherently benign and nonhazardous chemistry,
which facilitates the prevention of accidents and product toxicity. Bioresource-derived QDs
have become the best solution for many applications for a long period of time by ensuring
that the synthesis is forward-looking and as green as possible. Since bioresource-derived
QDs have been seen to work with microcapacitors/supercapacitors, both in batteries and
in targeted solar cells, it stands to reason that bioresource-derived QDs are excellent can-
didates in the field of energy generation and storage. Typically, bioresource-derived QDs
help maintain the cycling stability of electrode materials and shorten charge transfer paths
due to their crystal structure and improved surface properties. Considering the advantages
and limitations mentioned in the text, it is expected that more research will be conducted
to provide high energy density and stable electrodes for energy generation and storage
applications in a cost-effective and environmentally friendly design using bioresource-
derived QDs. Although QDs play a role in energy generation and storage applications,
several critical problems and obstacles have yet to be addressed to fully understand the
underlying mechanism, process, and important knowledge of bioresource-functionalized
QDs. First, it remains difficult to obtain bioresource-functionalized QDs with high quantum
yields. Therefore, future research efforts should focus on chemical and photostability and
enhancing high quantum yields. Second, applied research should simultaneously focus on
the selectivity, quality improvement, and robustness of QDs with bioresource functionality
for energy-oriented platforms. We anticipate that simpler, more revolutionary, and cost-
effective green methods, and promising energy applications will be developed in the near
future to better exploit the potential of these important quantum materials.
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