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Abstract: In this paper, an advanced statistical physics adsorption model (double-layer model with
two energies) is successfully established. On the basis of this model, statistical thermodynamic
functions (e.g., entropy (S), Gibbs free enthalpy (G), and internal energy (Eint)), pore size distribution
(PSD), and site energy distribution (SED) functions were successfully developed and applied to in-
vestigate the adsorption mechanisms of nanopore-structured ashitaba waste-based activated carbons
(AWAC) and walnut shell-based activated carbons (WSAC) on Congo red (CR) and methylene blue
(MB) dyes in aqueous solutions. Statistical thermodynamic results indicated that the adsorption
reactions involved in this study are entropy-increasing, endothermic, and spontaneous in nature.
Furthermore, PSD and SED described the heterogeneity of these adsorbents in terms of geometry or
structure and energy and illustrated that the aforementioned adsorption processes are endothermic
physisorption. All in all, this study contributed to broadening the understanding of the adsorption
mechanisms of dye molecules onto biomass-based activated carbons.

Keywords: adsorption mechanism; statistical physics modeling; dye; activated carbon; simulation

1. Introduction

Dyes are soluble organic substances that are widely used in various industries such as
paper, printing, textiles, leather, food, and cosmetics [1]. At the same time, large amounts
of dye wastewater are generated. These dye-bearing effluents pose indirect or direct health
risks to plants, animals, and humans, and therefore water pollution caused by dyes is of
wide concern [2]. Even though the concentration of dyes in water is very low, they can
pose a very serious hazard. Because of the high solubility that dyes exhibit in the aqueous
environment, it is difficult to remove them from the water environment by conventional
methods [3]. Numerous methods such as adsorption, photolysis, chemical oxidation,
and membrane separation have been applied to treat wastewater containing dyes [4,5].
Notably, adsorption is a physicochemical process that features high dye removal efficiency,
simple design and operation, low cost, and low impact on the environment [6]. Hydrogels,
aerogels, biochars, metal-organic frameworks, activated carbons, and many other novel
adsorbents have been prepared for the removal of dyes from aqueous solutions. Among
them, biomass-based activated carbons are gaining increasing attention from researchers
due to their wide source of raw materials and competitive adsorption properties [7].

The adsorption isotherm not only helps to get the correct information about the equilib-
rium of the adsorption process but also can be used to describe the adsorption performance
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of the adsorbent at a constant temperature [8]. A great deal of work has been done by
previous researchers on modeling adsorption isotherms, the most representative of which
are the isotherm models of Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich [9].
These classical models have been widely used in the understanding of numerous ad-
sorption systems and the elucidation of adsorption mechanisms, but the vast majority of
the parameters of these models are only mathematically significant, lacking quantitative
interpretation of physicochemical parameters, and most of the work cannot go beyond
experimental findings, which are essential to fully understand the adsorption processes and
mechanisms [10]. Therefore, the main objective of this study is to propose an appropriate
statistical physics adsorption model based on the knowledge of statistical thermodynamics
and statistical physics and to understand the adsorption behavior of pollutants on the
adsorbent surface with this advanced model.

A published work [7] has performed batch adsorption experiments to quantify the
Congo red (CR) and methylene blue (MB) adsorption isotherms (298 K, 308 K, and 318 K),
and explained the adsorption mechanism by an advanced statistical physics adsorption
model (double-layer model with two energies) and characterization of these adsorbents
(nanopore-structured ashitaba waste-based activated carbons (AWAC) and walnut shell-
based activated carbons (WSAC)) before and after adsorption. This work has attracted
the attention of many researchers after its publication; specifically, as of 23 September
2022, the paper has been cited 204 times based on the Google Scholar platform, 195 times
according to the Scopus platform and 159 times according to the Web of Science platform,
and this paper has been selected as a highly cited paper or even a hot paper on the Essential
Science Indicators platform several times. However, the above-mentioned paper did not
involve the analysis of the adsorption mechanism by utilizing the statistical thermodynamic
investigations, pore size distribution (PSD), and site energy distribution (SED) theory
studies. In order to further improve the content and conclusions of the previous work
and to further explore the mechanism of adsorption of CR and MB on AWAC and WSAC
from different perspectives, on the basis of the data of the previous paper, the follow-up
investigation was continued as it could provide the readers with more new and essential
information about the adsorption mechanism from different points of view.

This manuscript was oriented to describe the adsorption mechanism of CR and MB on
nanopore-structured AWAC and WSAC by applying statistical physics theories. Specifically,
a double-layer model with two energies was first developed through the grand canonical
ensemble in statistical physics, and some working hypotheses were assumed. Then, three
thermodynamic functions (i.e., entropy (S), Gibbs free energy (G), and internal energy (Eint))
were derived, calculated, and interpreted via the application of this advanced statistical
physics adsorption model to characterize the adsorption process on a macroscopic scale. In
addition, PSD and SED were utilized to further investigate the adsorption mechanism from
the energy and geometric or structural perspective of the heterogeneity on the surfaces of
AWAC and WSAC.

2. Materials and Methods
2.1. Batch Adsorption Experiments and Fitting Experimental Data

Two new promising adsorbents (AWAC and WSAC) were prepared and their effects
on the removal of MB and CR dyes were investigated [7]. Experimental CR and MB ad-
sorption isotherms at three operation temperatures (298 K, 308 K, and 318 K) under neutral
conditions onto AWAC and WSAC were quantitatively determined, as shown in Figure 1.
In addition, these adsorption isotherms were fitted by the Langmuir model, Freundlich
model, and an advanced model (double-layer model with two energies), and the results are
depicted in Figures S1 and S2, and Figure 1, respectively. With respect to the Langmuir and
Freundlich models, the value of the coefficient of determination is low. Considering the ad-
vanced statistical physics adsorption model, the coefficient of determination is higher [11],
and its corresponding physical parameters are reasonable and simple enough to explain
the adsorption mechanism correctly. Overall, the advanced statistical physics adsorption
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model is the optimal model and was chosen to fit the adsorption data and explain the
adsorption mechanism. More details of the experiments have been reported in a previous
work [7].
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Figure 1. Experimental adsorption isotherms for four adsorption systems (MB-AWAC (A), MB-
WSAC (B), CR-AWAC (C) and CR-WSAC (D))at 298~318 K, pH = 7, and corresponding fitting curves
by using an advanced statistical physics adsorption model (double-layer model with two energies).

2.2. Theoretical Formalism: Double-Layer Model with Two Energies

In this section, we will develop and build an analytical expression for the adsorp-
tion isotherm model (double-layer model with two energies) using the statistical physics
approach of the giant canonical ensemble and make the following three assumptions:

(a) The adsorption system with determined volume, temperature, and chemical poten-
tial allows the system to be studied using the giant canonical ensemble and the results to
be interpreted canonically [12,13].

(b) The dye molecules adsorbed in an aqueous solution are considered ideal gases,
and the interactions between these dissolved molecules that will be adsorbed are so weak
that they can be neglected [14,15].

(c) The internal degrees of freedom of the adsorbent molecules can be neglected in
aqueous solutions, so only the most important degree of freedom, namely the translational
degree of freedom, is considered [16,17].
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We assume that the n dye molecules (D) are adsorbed on a receptor site (R) and form
the DnR “adsorbent-receptor site” complex, as shown in Equation (1) [18,19]:

nD + R 
 DnR (1)

If we consider that two layers of adsorbed molecules are formed on the surface of the
adsorbent, we specify the first adsorption energy (−ε1) associated with the first adsorption
layer, and the second adsorption energy (−ε2) associated with the second adsorption layer.
It is worth noting that |ε1| > |ε2| because the energy of direct contact between the dye
molecules and the adsorbent is much greater than the interaction energy between the dye
molecules [20]. In statistical physics treatment, the microstate of the adsorption process
is described by using a giant canonical partition function [18,21]. The receptor site can be
empty or occupied by one or more adsorbate molecules. Therefore, we defined Ni as the
occupied state of the receptor site. If the receptor site is not occupied, Ni = 0. If the receptor
site is occupied by n or 2n molecules, Ni is 1 or 2, respectively [16]. In this case, the partition
function for one receptor site can be written as Equation (2) [22,23].

zgc(T, µ) =
2

∑
Ni=0

e−β(−εi−µ)Ni = 1 + eβ(ε1+µ) + eβ(ε1+ε2+2µ) (2)

where (−εi) refers to the receptor site adsorption energy (J), µ shows the chemical potential
of the DnR complex formed (J), β is defined as 1/kBT where kB denotes the Boltzmann
constant (1.380649 × 10−23 J/K), and T represents the thermodynamic temperature (K).

Variable numbers of dye molecules are considered to be adsorbed on Dm receptor sites
located on a unit mass of adsorbent. The total grand canonical partition function associated
with receptor site per surface unit mass (Dm, mg/g), which is hypothesized to be identical
and independent, is then written as Equation (3) [23,24].

Zgc =
Dm

∏
i=1

zgc(T, µ) =
(
zgc(T, µ)

)Dm =
[
1 + eβ(ε1+µ) + eβ(ε1+ε2+2µ)

]Dm
(3)

This total giant canonical partition function allows us to determine the average occu-
pancy number of the receptor sites N0, which can be written as Equation (4) [25].

N0 = kBT
∂lnZgc

∂µ
=

1
β

∂lnZgc

∂µ
= DmkBT

∂lnzgc(T, µ)

∂µ
(4)

The equilibrium adsorption amount (Qe, mg/g) is expressed as a function of the
equilibrium concentration of dye in the aqueous solution (Ce, mg/L) using Equation (5) [26].

eβµ =
N
Z

=
Ce

z
(5)

where N refers to the number of dye molecules, and Z and z are the partition function and
the partition function per unit volume, respectively.

The chemical potential of the dissolved dye molecules (µm, J), using the approxima-
tion (b) and (c) can be written as Equation (6) [13,27].

µm =
µ

n
= kBTln

(
N
Z

)
= kBTln

(
N
Ztr

)
= kBTln

(
Ce

ztr

)
(6)
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where µ denotes the chemical potential of adsorbed dye molecules, and Ztr and ztr are the
partition function of translation and the partition function of translation per unit volume,
respectively. Here, ztr can be also expressed as Equation (7) [28,29].

ztr =

(
2πmkBT

h2

) 3
2

(7)

where π = 8.31415, h = 6.62607 × 10−34 J·s, m is the mass of an adsorbed dye molecule (kg).
In addition, the average occupancy number of the receptor sites N0 is also calculated

by Equation (8) [23].

N0 = Dm
eβ(ε1+µ) + 2eβ(ε1+ε2+2µ)

1 + eβ(ε1+µ) + eβ(ε1+ε2+2µ)
(8)

Additionally, the concentrations at half-saturation for the first and the second layer
(C1 and C2, mg/L) can be expressed as Equations (9) and (10) [16,23,30].

C1 = ztre−βεm1 = ztre
−∆E1

RT = Cse
−∆E1

RT (9)

C2 = ztre−β(
εm1+εm2

2 ) = ztre
−∆E2

RT = Cse
−∆E2

RT (10)

where εm1 and εm2 are the adsorbed molecules’ energies associated with the first and
second adsorption layers, respectively; R = 8.314 J/(mol·K); Cs denotes the solubility of
dye molecules in solution; and ∆E1 and ∆E2 are the molar adsorption energies at first and
second adsorption layers, respectively.

So, the equilibrium adsorption amount can be expressed as Equation (11) [31].

Qe = nN0 = nDm

(
Ce
C1

)n
+ 2
(

Ce
C2

)2n

1 +
(

Ce
C1

)n
+
(

Ce
C2

)2n (11)

where n refers to the number of molecules captured per receptor site.

2.3. Statistical Thermodynamic Functions

Based on the knowledge of statistical physics and statistical thermodynamics, ther-
modynamic properties can be evaluated to enhance the interpretation of the adsorption
mechanism. These statistical thermodynamic functions are entropy, Gibbs free enthalpy,
and internal energy, respectively.

2.3.1. Entropy

The relationship between the grand thermodynamic potential (J), the giant canonical
partition function (Zgc), and the entropy (S) is established through Equation (12) [32].

J = −kBTlnZgc =
−∂lnZgc

∂β
− TS (12)

The expression for S can be obtained by a simple variation of the above equation, as
shown in Equation (13) [33].

S
kB

= −β
∂lnZgc

∂β
+ lnZgc (13)
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With regard to the double-layer model with two energies, the preceding formula can
be further specified, and its expression is displayed in Equation (14) [34].

S
kB

= Dm

ln

[
1 +

(
Ce

C1

)n
+

(
Ce

C2

)2n
]
−

(
Ce
C1

)n
ln
(

Ce
C1

)n
+
(

Ce
C2

)2n
ln
(

Ce
C2

)2n

1 +
(

Ce
C1

)n
+
(

Ce
C2

)2n

 (14)

It is worth noting that S reflects the degree of order or disorder of the adsorbent surface
during the adsorption of dye molecules. In particular, a positive value of S indicates an
increase in the degree of disorder of the adsorption system [35].

2.3.2. Gibbs Free Energy

In statistical thermodynamics, the Gibbs free energy (G) is usually determined by the
chemical potential of the dissolved dye molecules (µm) and the equilibrium adsorption
amount (Qe), which can be expressed as Equation (15) [36]:

G = µmnN0 = µmQe (15)

where the parameter µm can be further expressed as Equation (16) [13].

µm = kBTln
(

Ce

ztr

)
= kBTln

 Ce(
2πmkBT

h2

) 3
2

 (16)

For the double-layer model with two energies, the two aforementioned formulas
related to the calculation of G can be further expressed as Equation (17) [37].

G
kBT

= ln

 Ce(
2πmkBT

h2

) 3
2

×

nDm

(
Ce
C1

)n
+ 2
(

Ce
C2

)2n

1 +
(

Ce
C1

)n
+
(

Ce
C2

)2n

 (17)

Notably, for a specific adsorption system at a given temperature, a negative value of G
indicates that the removal of adsorbate in this adsorption system is thermodynamically
spontaneous [38]. In addition, the more negative the value of G demonstrates that the
adsorption system is more spontaneous and energetically favorable [39].

2.3.3. Internal Energy

The internal energy (Eint) can also be calculated by the giant canonical partition
function (Zgc), whose formula is presented in Equation (18) [40].

Eint = −
∂lnZgc

∂β
+ µmN0 = −

∂lnZgc

∂β
+

µm

β

(
∂lnZgc

∂µ

)
(18)

As for the double-layer model with two energies, the previous formulation for calcu-
lating the Eint can be further written as Equation (19) [41].

Eint = −Dm


(

1
β

)(
Ce
C1

)n
ln
(

Ce
C1

)n
+ 2
(

Ce
C2

)2n
ln
(

Ce
C2

)2n

1 +
(

Ce
C1

)n
+
(

Ce
C2

)2n + kBTln

 Ce(
2πmkBT

h2

) 3
2

×


(

Ce
C1

)n
+ 2
(

Ce
C2

)2n

1 +
(

Ce
C1

)n
+
(

Ce
C2

)2n


 (19)

Similar to the case of G, if the value of Eint is less than zero, this indicates that the adsorp-
tion of dye molecules on the adsorbent surface at a certain temperature is spontaneous [23].
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2.4. Pore Size Distribution (PSD)

The pore size distribution (PSD) is very important basic information (i.e., the morphol-
ogy of the AWAC and WSAC adsorbent surfaces) for porous materials such as activated
carbons to determine the density of the pores as a function of pore width [42]. While the
SED in the following section describes the heterogeneity of the adsorbent surface in terms of
energy, here the PSD focuses on the geometric or structural heterogeneity of the adsorbent
surface [43]. Statistical physical formalism, Kelvin’s law, and the adsorption isotherm of a
double-layer model with two energies were utilized to obtain PSD data, and this method is
called the new Kelvin method [44]. Kelvin’s law is given by Equation (20) [45].

ln
(

Ce

Cs

)
=

−2γVm

rRT
(20)

After a simple mathematical transformation, we can also obtain Equation (21) [46]:

Ce

Cs
= e

−2γVm
rRT = e

−Kk
rRT (21)

where r represents the cylindrical pore radius of the adsorbent; Kk = 2γVm is the Kelvin
constant; and Vm refers to the molar volume of the solution, which is calculated from the
Equation (22) [47]:

Vm =
M

NAρ
(22)

where M is the molar mass of adsorbate molecules, NA shows the Avogadro constant, and
ρ is the density of the solution.

In addition, γ denotes surface tension, which is estimated using the empirical Eötvös
equation at three different temperatures, as shown in Equation (23) [48]:

γ = KcVm
− 2

3 (Tc − T) (23)

where Kc ≈ 2.1 × 10−7 J/(mol2/3·K), which is the empirical constant, and Tc is the critical
temperature [49].

Then, substituting Equations (24) and (25) into Equation (11), we obtain an equation
that relates equilibrium adsorption quantity with the pore radius [44].

Ce

C1
=

Cs

C1
e(

−Kk
rRT ) (24)

Ce

C2
=

Cs

C2
e(

−Kk
rRT ) (25)

Thus, the values of all available parameters except r and the derivative of the equilib-
rium adsorption amount (Qe) with respect to the radius (r) provide the PSD of these two
new adsorbents (AWAC and WSAC), as illustrated in Equation (26) [50,51].

PSD =
dQe

dr
=

d

n × Dm ×

(
Cs
C1

e(
−Kk
rRT )

)n

+2

(
Cs
C2

e(
−Kk
rRT )

)2n

1+

(
Cs
C1

e(
−Kk
rRT )

)n

+

(
Cs
C2

e(
−Kk
rRT )

)2n


dr

(26)

The integral of Equation (26) represents the area under the PSD curve and can also char-
acterize the magnitude of saturated adsorption capacity (Qsat) as shown in Equation (27) [43].

Qsat =
∫ +∞

0
PSD dr (27)
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2.5. Site Energy Distribution (SED)

One of the most important tools for correlating the evolution of adsorption isotherm
parameters values with the evolution of adsorption site energy distribution during ad-
sorption of adsorbate onto the heterogeneous surface of the adsorbent is the “site energy
distribution (SED)”, referred to as the “adsorption energy distribution (AED)” [52]. It
was found to be useful in providing critical information about the energy distribution of
adsorption sites and the degree of heterogeneity of the adsorbent surface [53]. Based on the
relationship between the equilibrium adsorption capacity and the energy distribution of
the adsorption sites, the general integral isothermal equation of the heterogeneous surface
theory of AWAC and WSAC adsorbents can be written as Equation (28) [54].

Qe(Ce) =

+∞∫
0

Qh(E, Ce)× F(E)dE (28)

where E refers to the difference between the solute and solvent adsorption energies at
a particular adsorption site, Qe(Ce) is the maximum adsorption amount of adsorbent at
the heterogeneous surface of the adsorbate, Qh(E, Ce) denotes the homogeneous isotherm
over local adsorption sites with adsorption energy E, and F(E) represents the frequency
distribution of site energies at localized adsorption sites with adsorption energy E.

To obtain the site energy distribution, we used the Cerofolini approximation, which
gave us the relationship between the equilibrium concentration of the adsorbent (Ce) and
the adsorption energy (E*), which is shown in Equation (29) [55].

Ce = Cs × e
−E∗
RT (29)

Incorporating Equations (11) and(29), the double-layer model with two energies
isotherm model is expressed as Qe(E*) as shown in Equation(30).

Qe(E∗) = n × Dm ×

(
Cs×e

−E∗
RT

C1

)n

+ 2
(

Cs×e
−E∗
RT

C2

)2n

1 +
(

Cs×e
−E∗
RT

C1

)n

+

(
Cs×e

−E∗
RT

C2

)2n (30)

An approximate SED function F(E*) can be obtained by bringing the values of all
parameters except E* and differentiating the isotherm Qe(E*) with respect to E* [56] (see
Equation (31)).

SED = F(E∗) =
−dQe(E∗)

dE∗ = −

d

n × Dm ×

(
Cs×e

−E∗
RT

C1

)n

+2

(
Cs×e

−E∗
RT

C2

)2n

1+

(
Cs×e

−E∗
RT

C1

)n

+

(
Cs×e

−E∗
RT

C2

)2n


dE∗ (31)

3. Results and Discussions
3.1. Statistical Thermodynamic Investigations
3.1.1. Entropy

The variation of parameter S with dye concentration at different temperatures is shown
in Figure 2. For the four adsorption systems, all S values were greater than zero for the
range of dye concentrations studied (as depicted in Figure 2), which indicates that the
adsorption reactions studied are entropy-increasing reactions and the disorder of the system
after the adsorption reaction is greater than the initial state of the adsorption reaction. We
also noticed that under the same external conditions, for a particular adsorption system,
an increase in temperature significantly boosts its S value, mainly due to the fact that the
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elevated temperature enhances the thermal motion of dye molecules the more disordered
the system is [44].

In addition, we found that with a particular concentration (as for this study, this
particular concentration is the half-saturation concentration C2) as the cut-off point, the
curves of S with a concentration on the left and right sides of that concentration showed
two completely different trends [57]. Specifically, before the half-saturation concentration,
S increases sharply with the increase in dye concentration. At low concentrations, a
considerable number of empty active adsorption sites exist on the surface of both AWAC
and WSAC adsorbents, so that dye molecules can easily find unoccupied active adsorption
sites on the adsorbent surface in a short time, with a consequent rapid increase in the
disorder of the system [58]. Particularly, after the half-saturation concentration, S decreases
slowly with increasing dye concentration. At high concentrations, the number of empty
active adsorption sites on the surface of both AWAC and WSAC adsorbents is already
quite small, so it is difficult for dye molecules to find unoccupied active adsorption sites
on the adsorbent surface and be adsorbed, with a consequent decrease in the disorder of
the system [59]. The S-value of the entire adsorption system reaches zero when all active
adsorption sites on the adsorbent surface are completely saturated [60,61].
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3.1.2. Gibbs Free Energy

Figure 3 illustrates the evolution of parameter G with dye concentration at different
temperatures. According to Figure 3, all the G values are negative, which implies that the
MB-AWAC, MB-WSAC, CR-AWAC, and CR-WSAC adsorption systems involved in this
study are thermodynamically spontaneous [62,63]. For these four adsorption systems, we
found that the absolute value of G increases with rising temperature, which on the one
hand indicates a higher spontaneity of the adsorption reaction at high temperatures [64],
and on the other hand implies a positive correlation between the dye removal capacity and
the adsorption temperature [22,65], which further indicates that these adsorption reactions
are endothermic [66]. The main reason for the increase in the absolute value of G and the
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endothermic nature is related to the increase in solubility of the MB and CR dye molecules
with increasing temperature. This would facilitate the movement of dye molecules in
order to reach previously unreachable active adsorption sites on the adsorbent surface [67].
Furthermore, by cross-sectional comparison, we noticed that the absolute value of G is
the largest for CR-AWAC, followed by CR-WSAC, MB-WSAC, and MB-AWAC at the
same temperature and concentration, which is exactly the same pattern as the adsorption
amount [68]. This indicates that for this study the adsorption reaction with a large driving
force possesses a more excellent adsorption performance [69].
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3.1.3. Internal Energy

The evolution of parameter Eint with dye concentration at different temperatures
is exhibited in Figure 4. First of all, we can clearly observe that the Eint value of all
adsorption systems is negative, which means that all systems are spontaneous and release
energy into the vicinity, reflecting the excellent bonding properties of the MB and CR dye
molecules to the AWAC and WSAC surfaces [45,67]. It is also worth mentioning that Eint is
significantly lower in the lower range of dye concentrations, indicating that CR and MB dye
molecules preferentially adsorb on highly active adsorption sites on the AWAC and CWAC
surfaces [70]. When the coverage of CR and MB dye molecules on the adsorbent surface
increases (i.e., when the dye concentration increases), CR and MB dye molecules target the
less active binding sites, resulting in a slight decrease in the Eint value [71]. Furthermore,
the absolute values of Eint show an overall increasing trend with increasing temperature,
indicating the interactions between the adsorbed dye molecules on the surfaces of AWAC
and WSAC [72].
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3.2. Pore Size Distribution (PSD) Explorations

The determined PSDs for the adsorption of two dyes (MB and CR) onto two types of
activated carbons (AWAC and WSAC) at different temperatures are depicted in Figure 5.
As shown in Figure 5, all PSDs show unimodal distribution, and all the PSDs indicate that
the AWAC and WSAC are rich in microporous (r < 2 nm) and mesoporous (2 < r < 50 nm)
structures [73]. The mean values of the cylindrical pore radius obtained from the maximum
of the peak are 0.913 nm, 1.463 nm, 1.581 nm, and 1.968 nm for MB-AWAC, MB-WSAC,
CR-AWAC, and CR-WSAC, respectively. Moreover, the area between the PSD curve and the
x-axis represents the magnitude of the saturated adsorption capacity, and we can see that
for the four adsorption systems, the saturated adsorption capacity increases with increasing
temperature, which further reflects that the four adsorption processes studied in this paper
are endothermic adsorption reactions [74]. Furthermore, the increase in temperature leads
to a shift in radius toward the low values and an increase in the width of these peaks.
These two characteristics are specific to a thermal agitation effect [15,75]. This demonstrates
that the increase in temperature promotes an increase in the free motion speed of the dye
molecules so that the dye molecules can easily reach smaller pores and can be detected at a
smaller pore radius. This variation in distribution may be due to changes in the interaction
of the adsorbed probe molecules with the pore surface rather than actual changes in the
pore such as pore expansion or contraction, although the thermal expansion of the pores
contributes to the easy activation of smaller pores [46].
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3.3. Site Energy Distribution (SED) Studies

Figure 6 represents the behavior of the site energy distribution (SED) involved in the
MB and CR adsorption processes onto AWAC and WSAC at three different temperatures.
From this figure, we can note that the heterogeneity of the AWAC and WSAC surfaces
with respect to the energy of the MB and CR dye molecules on the adsorption sites is
vividly described by eleven pseudo-Gaussian peaks and one bimodal peak. After precise
measurements, we found that the E* values corresponding to the peak values of these
eleven pseudo-Gaussian peaks exactly match the ∆E2 values obtained by previous calcula-
tions. Meanwhile, the E1

* and E2
* values corresponding to the two peak values of a bimodal

peak coincide with the ∆E1 and ∆E2 values. Furthermore, from Figure 6, we can observe
that the adsorption energy range of MB and CR dye molecules on each activated carbon
does not exceed 60 kJ/mol, for high energies, thus indicating that the adsorption processes
involved in this study are related to physical forces rather than chemical forces [76,77].
More specifically, the Van der Waals interactions (4.19~8.37 kJ/mol), hydrophobic bonding
forces (around 4 kJ/mol), hydrogen bonding connections (about 2~40 kJ/mol), dipole bond
forces (approximately 2~29 kJ/mol), π-π stacking interactions (lower than 10 kJ/mol), and
electrostatic interactions (10~50 kJ/mol) can be predicted by interacting the dye molecules
with the AWAC and WSAC [78–80]. Regarding the effect of temperature on the SED curves,
we note that an increase in temperature causes the peaks of the SED curves to shift towards
higher energy values. This is consistent with the physical effect of temperature since an
increase in temperature implies an increase in the average kinetic energy of the dissolved
dye molecules. Further, the increase in temperature also leads to a broadening of these
peaks’ widths. This is due to the activation of lower and higher energies by thermal stirring
to broaden these peaks’ widths [46,75].
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4. Conclusions

An analytical expression for the adsorption isotherm model (double-layer model
with two energies) was established by using the statistical physics method of the giant
canonical ensemble. Subsequently, based on this model and statistical physics knowledge,
expressions for statistical thermodynamics (e.g., S, G, and Eint), PSD, and SED functions
were also developed and successfully applied to reveal the adsorption mechanisms of
nanopore-structured AWAC and WSAC for MB and CR dyes in aqueous solutions. Studies
on S revealed that the studied adsorption reactions are entropy-increasing reactions, with
S reaching a maximum when the dye concentration is at half-saturation concentration
(C2) and reaching zero when the adsorption is saturated. Moreover, the G and Eint values
suggested the endothermic and spontaneous nature of the adsorption process of MB
and CR dye molecules on AWAC and WSAC. Furthermore, PSD and SED described the
heterogeneity of these adsorbents in terms of geometry or structure, and energy. Specifically,
the PSD explorations confirmed that the four adsorption systems studied in this paper
are endothermic adsorption reactions. SED studies demonstrated that the adsorption of
MB and CR dye molecules on AWAC and WSAC was accomplished by physical forces, in
which Van der Waals, hydrophobic bonding, hydrogen bonding, dipole bonding forces,
π-π stacking, and electrostatic interactions can be predicted. Additionally, due to the
thermal effect of temperature, an increase in temperature leads to a shift in radius and
energy toward the lower and higher values, respectively, and increases the width of these
peaks. Overall, these theoretical results provide newer insights into the dye adsorption
mechanisms based on the original foundations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12213831/s1, Figure S1: Experimental adsorption isotherms
for four adsorption systems (MB-AWAC (A), MB-WSAC (B), CR-AWAC (C) and CR-WSAC (D)) at
298~318 K, pH = 7, and corresponding fitting curves by Langmuir model; Figure S2: Experimental

https://www.mdpi.com/article/10.3390/nano12213831/s1
https://www.mdpi.com/article/10.3390/nano12213831/s1
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adsorption isotherms for four adsorption systems (MB-AWAC (A), MB-WSAC (B), CR-AWAC (C)
and CR-WSAC (D)) at 298~318 K, pH = 7, and corresponding fitting curves by Freundlich model.
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