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Abstract: Transition metal oxide aerogels are a fascinating class of compounds that have received
considerable attention in the last decade owing to their unique and exceptional properties, including
high porosity, large surface area, and ultralow density. In this study, α-Ni(OH)2 aerogels and
annealed NiO/Ni aerogels were used to design and fabricate a two-electrode supercapacitor device.
The physicochemical properties of the as-synthesized aerogels were characterized through X-ray
diffraction, scanning electron microscopy, transmission electron microscopy, the Brunauer–Emmett–
Teller theory, and X-ray photoelectron spectroscopy studies. The annealed NiO/Ni aerogels showed a
(specific capacitance of 1060 F/g) specific capacity of 422 C/g at 1 A/g current density and with good
cycling stability (up to 10,000 cycles). The supercapacitor also demonstrated an energy density of
32.4 Wh/kg and power density of 1800 W/kg at a current density of 2 A/g. The specific capacitance
of NiO/Ni aerogels was more than twice that of the α-Ni(OH)2 aerogels. The practical applications
of the aerogel were demonstrated by fabricating a two-electrode device.

Keywords: supercapacitor; metal aerogels; porosity; surface area; energy storage

1. Introduction

Electrochemical supercapacitors with high power density (PD), good reversibility,
wide thermal operation range, and good cycling stability have emerged as promising
candidates for use in hybrid electric vehicles, regenerative braking, uninterruptible power
supply (UPS), and solar power applications [1]. In general, supercapacitors have been
employed as replacements for conventional vehicle batteries, where they are connected
across a small lead–acid battery. However, despite these advantages, supercapacitors
lack energy density (ED), which restricts their practical applications. To overcome this
shortcoming, hybrid supercapacitors have been developed, which have high ED and
good cycling stability [2]. The positive and negative electrodes of a hybrid two-electrode
supercapacitor are made of a pseudocapacitive material and carbon, respectively. Such
devices exhibit outstanding properties, including high PD, very fast charging/discharging
rates, excellent cycling stability, and low manufacturing costs [3–5].

The nature of an electrode material determines its performance. Various electrode
materials, such as Ni3S2/NiV [6], BFCNi [7], Ni-NiO [8], Ni3S4 [9], NiO/Ni [10], and Ni-
Co [11], have been explored for supercapacitor applications. The reported energy materials
have exhibited specific capacitance with good cycling stability. However, the energy density
exhibited in some iron and carbon based materials ranges from 17.8 to 88 Wh/kg, and their
power densities vary from 652, 800, to 8000 W/kg for porous carbon [12], FeCo2S4/rGO [13],
and Fe-Co-Ss [14], respectively. Various other metal oxide- and polymer-based supercapaci-
tors include MnO2based stretchable nanowires [15], PANI/BC-based [16] supercapacitors,
and Ni metal ions inside carbon micropores [17], which also have exhibited useful practical
applications. For the better performance of a supercapacitor, the main criteria are good
porosity, uniform structure, and abundant active sites. Aerogels, as active materials, play a
key role in energy storage devices because of their ultralow densities, high surface areas,
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and excellent porosities [18]. Many researchers have attempted to combine the effects of
electric double-layer capacitors (EDLCs) [19] and pseudocapacitive [20]-based electrode
materials to enhance the performance of hybrid devices. However, EDLC-based pure
graphene aerogels exhibit a low specific capacitance of 200 F/g [21]. To meet increasing en-
ergy demands, we need to search for active materials that have a higher specific capacitance
with excellent cycling stability and low weight. In this regard, several research studies on
graphene aerogels for supercapacitor applications, either individually [21] or with metal
nanoparticles [22] or oxides [23], have been conducted in detail.

Among the different materials used for supercapacitor applications, we explored the
pseudocapacitive nature of novel metal oxide aerogels in this study. The difference between
nanoparticles and aerogels is that the latter have low mass density, high porosity, and a
very large specific surface area, which are cost-effective and the most desirable features
for energy storage applications. Among many transition metals, nickel has been shown
to exhibit unique properties, such as superior ferromagnetic nature, chemical stability,
cost-effectiveness, and abundance in the Earth’s crust [24]. NiO materials exhibit excellent
physical as well as chemical properties such as mesoporous hierarchical porous structures,
high surface area, and increased electronic conductivity. NiO nanoparticles exhibit p-type
semiconductivity with a band gap ranging from 3.6 to 4.0 eV [25]. Owing to their enhanced
activity and superior physicochemical properties, NiO particles are used as electrode
materials for supercapacitor applications, in addition to various other applications, such as
catalysts, active materials in Li-ion batteries, removal of heavy metals from wastewater,
electronic devices, and sensors [26–28]. The flaky NiO on stainless steel substrates obtained
via electrochemical synthesis has exhibited good capacitance and has been employed
in supercapacitor electrodes [29]. The practical capacitance obtainable by nickel-based
materials is around 1000 F/g, and the theoretical capacitance of NiO is estimated to be
3750 F/g, making it a good material that exhibits batterylike behavior in supercapacitors.
Thus far, several researchers have worked on nickel on silica or graphene aerogels for
various applications by depositing, incorporating, or doping nickel nanoparticles onto
silica aerogel frameworks [30,31].

In the present study, for the first time, we synthesized α-Ni(OH)2 hydrogels and
converted them into aerogels using a freeze-drying technique. The prepared α-Ni(OH)2
aerogels were annealed at 400 ◦C to form NiO/Ni aerogels with good porosity and net-
worklike continuous structures composed of nanoflakes of Ni moiety. The enhanced
performance of NiO/Ni aerogels over α-Ni(OH)2 aerogels in terms of supercapacitive
behavior was investigated in detail in this study. The significance of this study involves a
simple synthesis method, a single ingredient, and the instant formation of hydrogels. Using
activated carbon (AC) as the negative electrode and NiO/Ni as the positive electrode, a
two-electrode device was fabricated to evaluate this aerogel’s practical applications. In
terms of PD and cycling stability, the device performed very well. This study paves the
way for lightweight and easy-to-handle supercapacitors for industrial, automotive, and
aeronautic applications.

2. Experimental Study
2.1. Materials

Nickel nitrate hexahydrate (Ni(NO3)2·6H2O, 99%), sodium borohydride (NaBH4, 99%),
and sodium sulfate (Na2SO4, 99%) were obtained from Sigma Aldrich (St. Louis, MO, USA).
Ethanol and acetone were purchased from Alfa Aesar (Haverhill, MA, USA). The nitrogen
gas cylinder was purchased from a local dealer (Gyeongsan, Korea). All experiments were
performed with deionized water, and the temperature was maintained at 25 ◦C, unless
otherwise specified.

2.2. Preparation of Ni and NiO Aerogels

The protocol to prepare the transition metal aerogels was adopted from a previ-
ous synthesis procedure [18]. Ni(NO3)2·6H2O was completely dissolved in a mixture of
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25 mL ETOH + 75 mL of deionized (DI) water (total volume: 100 mL). Nitrogen gas was
bubbled through the salt solution for 25 min. Next, 100 mL of 0.5 M NaBH4 solution
was prepared by dissolving it in ethanol and placing it in a standard flask. The NaBH4
solution was added to the nickel nitrate hexahydrate solution. Immediately, the solution
turned black, indicating that α-Ni(OH)2 hydrogels had formed. The as-formed hydrogels
floated to the top of the solution because of bubbles arising from the NaBH4 solution. The
reaction was allowed to proceed for 5 min. Next, the precipitate was washed 5–6 times
with a solution of DI water and ethanol. The black hydrogel obtained was dispersed in
DI water until the precipitate was immersed. The samples were freeze-dried for two days.
This sample was designated as the Ni aerogels and stored in a desiccator for further use.
Subsequently, some of the as-formed Ni aerogels were annealed in air at 400 ◦C at a heating
rate of 10 ◦C/min for 2 h to form NiO aerogels, which were stored in a desiccator for
further use.

2.3. Characterizations

The morphological, structural, and physical properties of the as-formed aerogels were
analyzed using measurement techniques, such as X-ray diffraction (XRD; X’Pert PRO MPD,
Malvern Panalytical, Almelo, Netherlands), Fourier transform infrared (FTIR; Spectrum100,
PerkinElmer, Waltham, MA, USA) spectroscopy, X-ray photoelectron spectroscopy (XPS;
ESCALAB 250, Thermo Fisher Scientific, Altrincham, UK), high-resolution scanning elec-
tron microscopy (HR-SEM; S-4800, Hitachi, Tokyo, Japan), high-resolution transmission
electron microscopy (HR-TEM; FEI Tecnai G2 F20, acceleration voltage-200 kV, Barcelon,
Spain), and the Brunauer–Emmett–Teller (BET; 3Flex Version 3.02, Micromeritics, Atlanta,
GA, USA) theory. Using an Autolab PGSTAT302N (Metrohm, Utrecht, The Netherlands),
all electrochemical studies, including electrochemical impedance spectroscopy (EIS), cyclic
voltammetry (CV), and galvanostatic charge–discharge (GCD), were conducted. The 3M
KOH electrolyte was used for all the electrochemical measurements. The working electrode
was the modified Ni foam (size: 1 cm × 1 cm; loading: ~2 mg), whereas the reference
electrode was either a silver/silver chloride (Ag/AgCl) electrode or a saturated calomel
electrode (SCE). The Pt foil was used as the counter electrode (BASi, West Lafayette, IN,
USA) for a three-electrode arrangement. The working electrodes were made by combining
the α-Ni(OH)2 or NiO aerogel (85%), carbon black (10%), and PVDF (poly(vinylidene
fluoride)) (5%), and N-methyl pyrrolidone (NMP) as a mixing solvent to obtain a slurry.
The slurry was coated onto a Ni foam (NF) and then dried at 60 ◦C for 12 h.

2.4. Electrochemical Measurements for NiO/Ni/NF Electrode

The CV measurements were obtained in the potential window of 0 to 0.55 V vs.
Ag/AgCl (filled with saturated KCl) using scan rates of 2 to 50 mV/s. GCD measurements
were obtained at current densities from 1 to 15 A/g in the selected potential range of 0 to
0.4 V vs. Ag/AgCl. All electrochemical impedance spectroscopic (EIS) measurements were
obtained at an open-circuit voltage within a frequency range of 10 mHz to 10 kHz and an
amplitude of 5 mV.

The voltammetric specific capacitance (Cs, F/g) was calculated using the following
equation [32]:

Cs =

∮
i× dV

VS×m
(1)

where
∮

idV(in A.V) is the voltammetric charge represents the area under the curve in
voltammetry, V is the potential window (in V), S is the scan rate (in V/s), and m is the mass
loading of the active material (in g) on the Ni foam working electrode.

2.5. Fabrication of the NiO/Ni/NF//AC Asymmetric Supercapacitor

In a two-electrode cell containing 3M KOH as an electrolyte, an asymmetric superca-
pacitor (ASC) was constructed. The NiO/Ni aerogel and AC were adapted as the positive
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and negative electrodes, respectively. The charge storage between the positive and negative
electrodes was balanced using the following equation:

m+

m−
=

Cs− ∆V−
Cs+ ∆V+

(2)

where subscripts “+” and “−“ are the positive and negative electrodes, respectively.
The mass of AC obtained using the abovementioned method was mixed with carbon

black (10 wt%) and PVDF (5 wt%), emulsified with NMP solution, and then mixed with an
agate motor to form a uniform slurry. Finally, the as-prepared slurry was dried at 60 ◦C for
12 h in a vacuum oven and marked as negative electrodes in the hybrid device.

2.6. Calculation of Specific Capacitance: ED and PD

Three-electrode and two-electrode measurements were obtained using 3M KOH, and
CV studies were conducted at selected scan rates between 1 and 200 mV/s for 0 to 0.6 V
vs. Ag/AgCl (saturated with KCl). The GCD curves were obtained at the same potential
window in the current density range of 1 to 15 A/g for the three-electrode measurements
and at 0 to 1.6 V for current densities ranging from 1 to 5 A/g for the two-electrode
measurements, i.e., the NiO/Ni/NF and AC/NF electrodes, respectively.

The specific capacitance and specific capacity for the two- and three-electrode arrange-
ments were calculated using Equation (1). The ED and PD of NiO/Ni/NF were calculated
using the following equations:

E =
Cs × ∆V2

7200
(3)

P =
3600× E

∆t
(4)

where E and P are the energy (Wh/kg) and power (W/kg) densities for the two-electrode
device, respectively; ∆V is the voltage window (V); C is the specific capacitance (F/g); and
∆t is the discharge time (s).

3. Results and Discussion

The SEM images (Figure 1) of the as-prepared nickel aerogel [α-Ni(OH)2] and an-
nealed samples (NiO/Ni) showed flaky nanoporous waferlike nanoflower structures. The
α-Ni(OH)2 samples showed significantly high aggregation, as observed from the TEM
studies, and when annealed, the resultant NiO/Ni samples showed more open structures
with less aggregation. The TEM images of the samples also confirmed the presence of
nanoflakes with edge widths ranging from 1 to 2 nm with aggregated nickel nanoparti-
cles inside the flaky nanoflower structures. The SAED (selected area diffraction pattern)
pattern shown in Figure 1h also confirmed the presence of crystallite sites, and the d-
spacing indicated the presence of the (111), (220), and (222) crystal planes of NiO and the
(111) and (220) crystal planes of Ni. The SAED pattern of the as-synthesized aerogel in
Figure 1d also showed the presence of clouded rings, indicating the amorphous nature of
α-Ni(OH)2. The inset in Figure 1d shows some crystalline nature, but mostly the aerogels
were amorphous in general. Aerogels are generally known to be amorphous solids, but
noble metal aerogels have shown polycrystalline nature; moreover, the transition metal
aerogels when heated to high temperatures show less amorphous and more crystalline
features. The polycrystalline nature arises due to the aggregation of a large number of
crystallite held together by thin layers of amorphous solid. In spite of their polycrystalline
nature, the NiO/Ni aerogels exhibited continuous nano flaky structure without undergoing
any structural degradation. The EDS and elemental constitution of the NiO/Ni aerogels are
given in Figures S1 and S2a–c of Supplementary Materials. The TEM-EDS analysis shows
the presence of Ni and O, indicating the constituents of the aerogel; the Cu in the EDS is
from the grid used for TEM analysis.
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Figure 1. (a,b) FESEM images of α-Ni(OH)2 and (e,f) NiO/Ni, HRTEM images of (c) α-Ni(OH)2 and
(g) NiO/Ni, and corresponding SAED patterns of (d) α-Ni(OH)2 and (h) NiO/Ni. (Inset in figure
(d) shows the SAED pattern of α-Ni(OH)2).

The surface area and porous nature of the aerogels were investigated by conducting
nitrogen sorption tests. Figure 2a,b show the N2 adsorption–desorption isotherms of the α-
Ni(OH)2 and NiO/Ni aerogels, respectively, as well as the corresponding pore diameter and
pore volume plots. The nature of the isotherms for both samples was similar with similar
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surface area values of 54.8 m2/g and 55.6 m2/g, respectively. The volume of adsorption was
also noted to be similar, and adsorption followed a type IV isotherm with an H1 hysteresis
loop denoting the existence of both mesopores and macropores in both aerogel samples.
As shown in Figure 2b, the majority of pore sizes ranged from 10 to 50 nm, indicating the
mesoporous nature of both aerogels, with some macroporous (>50 nm) region. Porosity is
an important criterion in determining the capacity of any electrode material because small
pores present more active sites for ion accumulation. Therefore, the high surface area and
porosity values of both aerogel samples indicate good electrochemical capacity.
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Figure 2. (a) N2 adsorption–desorption isotherms and (b) corresponding pore size distribution plots
of α-Ni(OH)2 and NiO/Ni.

XRD patterns of the as-synthesized aerogels and annealed (400 ◦C) samples indicated
the presence of α-Ni(OH)2 and NiO/Ni, respectively, as shown in Figure 3a. The peaks at
2θ values of 10.8◦, 33.7◦, 34.3◦, and 59.7◦ can be indexed to the (003), (101), (012), and (110)
planes (JCPDS card no. 38-0715), respectively, indicating that α-Ni(OH)2 has a single-phase
rhombohedral crystal structure. It is known from the literature [33] that as the temperature
increases to 250 ◦C, α-Ni(OH)2 starts to transform into NiO with (111), (200), and (220)
planes. The XRD measurement of our annealed sample showed predominant peaks at 2θ
values of 36.8◦, 43.1◦, and 62.7◦, corresponding to the (111), (200), and (220) major planes
of NiO, respectively. Other minor planes were also observed for NiO at 2θ values of 75.5◦

and 78.8◦, corresponding to the (222) and (311) planes of NiO, respectively (JCPDS card
no. 47-1049). The peaks for Ni were observed at 2θ values of 44.1◦, 51.5◦, and 76.4◦ (minor
peak) corresponding to the (111), (200), and (220) planes of nickel, respectively (JCPDS card
no. 03-1051) [34,35].
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The FTIR spectra of the α-Ni(OH)2 and NiO/Ni aerogel samples are shown in
Figure 3b. The spectrum highlighted in green shows typical characteristics of α-Ni(OH)2.
The FTIR spectrum of the α-Ni(OH)2 aerogel shows a broad band at approximately
3200–3700 cm−1, indicating the stretching vibrations of hydroxyl groups having hydrogen
bonding with H2O, and the peak at 1634 cm−1 can be assigned to the water bending
mode. For the annealed samples, i.e., NiO/Ni aerogels, the peaks were observed at
3250–3700 cm−1 in the form of a broad peak indicating the stretching vibrations of the
hydroxyl groups’ stretching region; the other peaks were observed at 1644, 1332, 1184, 996,
686, and 400 cm−1. The peaks at 996 and 686 cm−1 correspond to the distinctive modes of
the Bunsenite NiO phase [35].

XPS spectra were obtained to determine the chemical composition and valence state
of each element in the as-synthesized and annealed aerogels. Figure 4 shows the XPS
profiles of α-Ni(OH)2 and NiO/Ni. Both XPS spectra show high quantities of O and Ni,
and trace amounts of C. The C 1 s peak at 284.4 eV may be due to the CO2 absorbed into
the aerogel samples exposed to air and adventitious hydrocarbons generated with the
instrument itself [36]. A general observation is that due to its structural nature, α-Ni(OH)2
is always in the hydrated form because water is intrinsic to its structure. For comparison
purposes, the XPS of α-Ni(OH)2 and NiO/Ni deconvoluted fitting is given in Figure S3 of
the Supplementary Materials. The deconvoluted spectra for Ni 2p3/2 and Ni 2p1/2 peaks
are given in Figure 4c,d.
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As shown in Figure 4, the peaks at 855.7 and 873.4 eV corresponded to the Ni 2p3/2
and Ni 2p1/2 of nickel hydroxide, respectively, and the broad peaks at 854–856 eV and
872–874 eV of the annealed samples corresponded to the Ni 2p3/2 and Ni 2p1/2 of Ni3+,
respectively, which also may carry information about the Ni2+, Ni3+, and Ni0 states when
deconvoluted [37]. This might be possible if there is some surface Ni2O3 present for the
annealed samples. Two broad satellite peaks were observed at 859–863 eV and 877–881 eV
in both the as-synthesized and annealed samples. A distinctive Ni0 peak was present in
α-Ni(OH)2 at 852.5 eV, which was merged with the Ni 2p peaks in the NiO/Ni aerogel
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samples. The presence of a minute amount of metallic nickel could have arisen from the high
temperature oxidation reaction in the presence of oxygen and trace carbon. Additionally,
the oxide layer became predominant with annealing, and this is consistent with results
reported by Du et al. [38]. Two vibrational satellite peaks appearing at 862.2 and 879.5 eV
correspond to Ni 2p3/2, which shifted negatively in the case of the annealed NiO/Ni
aerogel samples. The O 1 s peak at 531.3 eV indicates the presence of Ni-O bonds, and the
slight hump in the annealed NiO/Ni aerogel samples shows the presence of NiOOH. The
XPS results provided a plethora of valuable information about the chemical structure of
the aerogel samples and indicated the as-synthesized aerogels as possible candidates for
energy storage applications.

The electrochemical behaviors of the as-synthesized and annealed samples were
studied using CV, GCD, and EIS. The comparative electrochemical performance of the
three-electrode studies for α-Ni(OH)2 and NiO/Ni was carried out using CV at a scan rate
of 25 mV/s in the potential range of 0 to 0.55 V vs. Ag/AgCl, as shown in Figure 5a. The
large area under the CV curves indicates a higher charge storage capacity of NiO/Ni than
that of the α-Ni(OH)2 aerogel. Hence, the suitability of the NiO/Ni samples as superca-
pacitor electrodes was further studied at current densities ranging from 4 to 50 mV/s. As
expected, the annealed aerogel samples exhibited a clear redox behavior at different scan
rates, indicating their pseudocapacitive nature. The redox reactions expected in the active
materials on the electrode surface are as follows:

α−Ni(OH)2 + OH−
Charge

Discharge
γ−NiOOH + H2O + e− (5)

NiO + OH−
Charge

Discharge
γ−NiOOH + e− (6)
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The redox reactions occurring in the α-Ni(OH)2 and NiO/Ni aerogel samples are
expressed in Equations (5) and (6), respectively. The transformation of the “α” form of
Ni(OH)2 to the “γ” form takes place with a reversible exchange of 1.7 e per Ni atom with
a theoretical capacity of 390 mAh/g [39], whereas the theoretical capacity of NiO [40] is
approximately 718 mAh/g. The cyclic voltammograms clearly show that the potential
difference between the redox peaks is consistent with the properties of a Faradaic pseu-
docapacitive material. The redox peaks in the CV are due to the conversion of Ni2+ and
Ni3+, which also involves the insertion and extraction of OH− ions. The shape of the CV
and the increase in current density in the CVs with scan rates are also indicative of the fast
redox process occurring in the electrode. An increase in the redox peaks was observed as
scan rates increased, which could be attributed to the increased polarization. Although the
morphologies of the as-synthesized and annealed samples appear to be similar, the activity
and, in turn, the capacity of the annealed samples (NiO/Ni) appear to be far higher than
that of α-Ni(OH)2 [41].

Next, GCD studies were carried out for the as-synthesized and annealed samples
in the presence of various mass-normalized current densities with a 0~0.4 V potential
range, as shown in Figure 5c. Because nickel hydroxide behaves like a battery material,
the charge–discharge curves show distinct potential plateaus analogous to battery-type
materials. The iR (potential drop due to solution resistance) drop of the NiO/Ni aerogel
electrodes is much lower than ~0.01 V at 1 A/g and increases to ~0.02 V at 15 A/g. Hence,
such low ohmic drop values signify a better electrode performance. The plateau may
be caused by the diffusion of hydroxyl ions to the surface region from the bulk phase of
the active material and the presence of different phases [42]. Therefore, these materials
undergo bulk redox reactions. The nonlinearity in the charge–discharge curves is also
indicative of the battery-type nature of the electrode material. This occurs because of
the combined contribution of the redox reaction and electrochemical adsorption at the
electrode–electrolyte interface. In the specific capacity vs. current density plot, as shown in
Figure 5d, the annealed aerogel (NiO/Ni) samples showed higher specific capacity values
than did similar materials reported in the literature. The comparison of GCD results for
α-Ni(OH)2 and NiO/Ni is given in Figure S4 of the Supplementary Materials.

The specific capacitance and specific capacity of the NiO/Ni aerogel samples based
on the galvanostatic discharge curves were calculated to be 1060, 890, 795, 680, 520, and
430 F/g and 422, 356, 316, 276, 212, and 164 C/g at current densities of 1, 2, 3, 5, 10, and
15 A/g, respectively. Figure 5d shows the variation in capacity with current densities for
the annealed NiO/Ni aerogel samples. At high current densities, the charge compensating
OH− becomes slower, resulting in the observed decrease in capacity. The lowest current
density dictates the actual specific capacity of the material. In our study, we observed
a higher capacity contribution of NiO/Ni aerogels than the α-Ni(OH)2 aerogels, but the
behavior was not similar in nanoparticle morphologies [43]. This could be due to the
participation of the finer aerogel structures toward capacity when compared to the micro-
or nanoparticle morphologies of the same metal ions.

The comparison of various aerogel- and metal oxide-based supercapacitor electrodes
and their performances are provided in Table 1. EIS studies were also performed to
further verify the suitability of the active material for energy applications. The EIS was
carried out, and the measured Rs and Rct values from the Nyquist plots NiO/Ni (1 Ω
and 1.4 Ω) show that the lower values of annealed sample are suitable for delivering high
capacities. In the NiO/Ni aerogel samples, we observed a limiting resistance RL (0.4 Ω)
at intermediate frequencies. This is a slight Warburg impedance behavior occurring at
45◦ from the horizontal axis, after which the line becomes almost vertical, indicating good
capacity values. This behavior was observed in NiO on activated carbon electrodes, with
steep slopes for the Warburg impedance, and the impedance data could be fitted with
a modified Randles circuit consisting of two resistors, two capacitors, and a Warburg
element [44]. In Figure 6, the equivalent circuit representation is shown as an inset of the
Nyquist plot of NiO/Ni in the three-electrode arrangement.
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Table 1. Comparison of various aerogel-based supercapacitor electrodes and their performances.

System Capacitance Calculation
Method

Capacitance (F/g)/
Capacity(C/g) Electrolyte Reference

NiO aerogel CV 797 (10 mV/s) 6M KOH [45]
Carbon aerogel/Ni GCD 181 (1 mA/cm2) 6M KOH [46]

Ni foam/Graphene aerogel GCD 366 (2 A/g) 6M KOH [47]
Nano Ni-doped carbon aerogel GCD 110 (1 A/g) 6M KOH [48]

rGO and Ni(OH)2 GCD 561 (2 A/g) 1M KOH [49]
NiO/Graphene aerogel GCD 587 (1 A/g) 6M KOH [50]

NiO NPs CV 549 (1 mV/s) 1M KOH [51]
NiO NPs/CC CV 132 (5 mV/s) 1M KOH [52]

NiFeP@NiCo2S4 GCD 1602/720 (10 A/g) 2M KOH [53]
Ni-ZnS CV 191/131 (10 mV/s) 2M KOH [54]

NiO/Ni/NF GCD 1060/422 (1 A/g) 3M KOH This Study
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The practical applications of the NiO/Ni supercapacitor electrode were investigated by
constructing an asymmetric device with an NiO/Ni-positive electrode and an AC-negative
electrode, the masses of which were balanced using Equation (2). Figure 7 shows the
electrochemical performance of the device. The potential window was fixed from 0 to 1.6 V
based on the CV measurements to ensure that there was no oxygen or hydrogen evolution at
the electrodes. CV profiles were obtained at various scan rates of 5, 25, 50, 75, and 100 mV/s.
The voltammograms showed typical behavior of a two-electrode device with a redox-active
material and AC. Next, to explore the electrochemical properties of the assembled device,
the GCD measurements were obtained at different current densities. Based on the GCD
measurements, the assembled device delivered a specific capacity of 169, 131, 101, 73, and
50 F/g at 1, 2, 3, 4, and 5 A/g, respectively. The GCD curves were symmetrical, indicating
the excellent rate-delivering properties of the device [6]. In addition, EIS measurements
were obtained to assess the changes in the resistances and capacitance behavior of the
material. Rs remained almost the same, and Rct increased slightly from 2 to 10 Ω. The
Warburg behavior at intermediate frequencies and diffusion-limited behavior (straight line)
at low frequencies was not significantly altered. The practical application of other similar
aerogel-based electrode materials is given in Table 2.
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Table 2. The practical application of aerogel-based electrode materials and their performance comparison.

System Capacitance (F/g) Capacity Retention
(Number of Cycles) Reference

MnO2 aerogel 139 @ 1 A/g 93% (5000) [55]
NiS/NiO 91 @ 1 A/g 93% (30,000) [56]

Graphene aerogel/CeO2 156 @ 1 A/g 91% (4000) [57]
rGO/RuO2 aerogels 310 @ 1 A/g 83% (5000) [58]

Cobalt sulfide aerogel 72 @ 1 A/g - [59]
NiO/Ni/NF 169 @ 1 A/g 92% (10,000) This Study

The device performance is highly affected by the energy and power density. The
Ragone plot in Figure 7d shows the comparative energy PD of the NiO-based asymmetric
supercapacitor device. The assembled device delivers an ED of 38 Wh/kg at a PD of
800 W/kg. The values of PD-ED obtained in this study were compared with those reported
for similar electrode materials [6–11]. The ED and PD of the device were higher than
those of the other NiO-based devices in the literature, such as BFCNi/NF [7] (BFCNi:
bamboo fiber-derived carbon, nickel-based hydroxide) that showed a PD of 799 W/kg and
an ED of 74 Wh/kg, Ni3S2/NiV-LDH/rGO/NF//AC [6] (Ni3S2/NiV-LDH/rGO: nickel
sulfide/nickel vanadium-layered double hydroxide/reduced graphene oxide composite)
that showed an ED of 59 Wh/kg and a PD of 852 W/kg, Ni-NiO/CTW//CTW HSC [8] that
achieved a PD of 643 W/kg and an ED of 2 Wh/kg, a Ni3S4/NF [9] symmetric device that
showed an ED of 9 Wh/kg with a PD of 233 W/kg, and YS NiO/Ni [10] (YS: Yolk-shelled)
that achieved an ED of 44 Wh/kg and a PD of 801 W/kg. A 1D Ni-Co oxide and sulfide
nanoarray/carbon aerogel [11] hybrid asymmetric capacitor yielded a PD of 400 W/kg at
energy densities of 55 and 48 Wh/kg.

Figure 8 shows the columbic efficiency and capacitance retention for the NiO/Ni
aerogel electrode up to 10,000 cycles. The ED and PD values obtained for our device
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are excellent in comparison to other similar materials and aerogel-based devices. The
device also showed high cycling stability up to 10,000 cycles with a capacity retention
of 92%, demonstrating the excellent and reliable efficiency of the electrode materials.
Exhibiting light-weight, flexible properties and excellent capacitance with stability, our
aerogel materials will be competitive in cutting-edge energy storage device applications in
the near future.

Nanomaterials 2022, 12, x  13 of 16 
 

 

 
Figure 8. Coulombic efficiency and capacity retention of the device (NiO/Ni//AC). 

4. Conclusions 
In summary, α-Ni(OH)2 and NiO/Ni aerogels were synthesized using a one-step sol-

gel reduction method. The α-Ni(OH)2 and annealed NiO/Ni aerogels exhibited and re-
tained a flaky nanoflower morphology, with good porosity and uniformity. This is the 
first study on the conversion of α-Ni(OH)2 aerogels to NiO/Ni aerogels through annealing 
at 400 °C in an autoclave. The specific capacity of the annealed NiO/Ni aerogel was more 
than twice that of the α-Ni(OH)2 aerogel precursor. The specific capacity of the NiO/Ni/NF 
aerogels for the three-electrode and two-electrode systems were 1060 F/g and 169 F/g at a 
current density of 1 A/g, respectively. The ED and PD of the device were found to be 
excellent at 38 Wh/kg and 800 W/kg with a better cycling stability up to 10,000 cycles. This 
indicates the outstanding electrochemical performance of the active electrode material for 
practical two-electrode applications. The present synthesis strategy of the electrode mate-
rials and aerogel morphology will enable ultralightweight supercapacitors to meet the in-
creasing energy demands in various applications. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1: Figure S1: 
TEM-EDS of the NiO/Ni aerogel indicating the presence of Ni and O. The Cu peak arises from the 
grid for TEM analysis; Figure S2: (a) Elemental images from TEM-EDS proving the presence of (b) 
Ni, (c) O of NiO/Ni aerogel indicating the presence of the two elements. The Cu peak arises from 
the grid used for TEM analysis; Figure S3: O1s XPS spectra of α-Ni(OH)2 and NiO/Ni and their 
deconvolution are also included; Figure S4. GCD of α-Ni(OH)2-and NiO/Ni-modified nickel foam 
electrodes at 1 A/g current density given for comparison between the two electrodes. 

Author Contributions: Conceptualization, R.R.; methodology, R.R.; software, R.R.; validation, R.R.; 
formal analysis, R.R. and G.D.; investigation, R.R.; resources, J.-J.S.; data curation, R.R.; writing—
original draft preparation and visualization, R.R.; writing—review and editing, W.K.K.; supervi-
sion, J.-J.S. and W.K.K.; project administration, W.K.K.; funding acquisition, W.K.K. All authors 
have read and agreed to the published version of the manuscript. 

Funding: This work was supported by the Priority Research Centers Program through the National 
Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number 
2014R1A6A1031189) and the 2021 Yeungnam University Research Grant. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

  

Figure 8. Coulombic efficiency and capacity retention of the device (NiO/Ni//AC).

4. Conclusions

In summary, α-Ni(OH)2 and NiO/Ni aerogels were synthesized using a one-step
sol-gel reduction method. The α-Ni(OH)2 and annealed NiO/Ni aerogels exhibited and
retained a flaky nanoflower morphology, with good porosity and uniformity. This is the
first study on the conversion of α-Ni(OH)2 aerogels to NiO/Ni aerogels through annealing
at 400 ◦C in an autoclave. The specific capacity of the annealed NiO/Ni aerogel was more
than twice that of the α-Ni(OH)2 aerogel precursor. The specific capacity of the NiO/Ni/NF
aerogels for the three-electrode and two-electrode systems were 1060 F/g and 169 F/g at
a current density of 1 A/g, respectively. The ED and PD of the device were found to be
excellent at 38 Wh/kg and 800 W/kg with a better cycling stability up to 10,000 cycles.
This indicates the outstanding electrochemical performance of the active electrode material
for practical two-electrode applications. The present synthesis strategy of the electrode
materials and aerogel morphology will enable ultralightweight supercapacitors to meet the
increasing energy demands in various applications.
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