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Abstract: Reusing or recycling waste into new useful materials is essential for environmental protec-
tion. Herein, we used discarded polystyrene (PS) and fly-ash (FA) particles and a fabricated fly-ash
incorporated polystyrene fiber (FA/PS fiber) composite. The electrospinning process produced
continuous PS fibers with a good distribution of FA particles. The prepared nanofibers were charac-
terized by state-of-the-art techniques. The performances of the composite nanofibers were tested for
fire-retardant applications. We observed that the incorporation of FA particles into the PS fibers led to
an improvement in the performance of the composite as compared to the pristine PS fibers. This study
showed an important strategy in using waste materials to produce functional nanofibers through an
economical procedure. We believe that the strategy presented in this paper can be extended to other
waste materials for obtaining nanofiber membranes for various environmental applications.

Keywords: electrospinning; polystyrene; fly-ash; waste materials; fire-retardant

1. Introduction

In recent years, environmental pollution due to several types of waste materials com-
ing from various industrial activities has caused serious problems for the Earth’s entire
living population. Every year, tons of new industrial compounds are produced, which are
sometimes released into ecosystems. Plastic waste has especially caused enormous envi-
ronmental pollution because of its non-degradability under natural conditions [1]. Among
the highly used plastic materials, polystyrene (PS), one of the promising thermoplastic
polymers, is known for its high insulation properties [2]. It has been extensively explored
in a variety of applications such as household applications, packaging, consumer electronic
products, building and construction, and oil–water separation [3–8]. The outstanding
features of PS, such as being odorless, colorless, low density, having thermal stability, and
its inherent hydrophobic property, make it a promising candidate for various commer-
cial products [9]. Due to the presence of phenyl groups and carbon–carbon (C–C) bonds,
polystyrene is highly rigid and resistant to decomposition [10]. Therefore, it is difficult to
recycle and reuse PS. Additionally, the recycling process is costly, and there is a very low
economic return [11].

Fly ash (FA), a by-product of thermal power plants, is partly used in concrete and ce-
ment manufacturing, whereas a large quantity of it is disposed of in landfills [12]. The huge
production of FA is extremely worrying because it may cause air and water pollution if it is
not disposed of properly [13]. It is primarily composed of several metal oxides such as silica
(SiO2), alumina (Al2O3), calcium oxide (CaO), magnesium oxide (MgO), iron oxide (Fe2O3),
titania (TiO2), etc. [13,14]. Recently, several investigations have been performed to exploit
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FA for other applications such as water purification, filtration, adsorption, etc. [13–16].
Since FA possesses excellent adsorption properties, it has been used as an adsorbent for the
removal of organic pollutants and heavy metal ions from water [13,17–19].

Over the past decade, there has been a growing emphasis on the utilization of waste
materials for environmental and energy applications. Great approaches have been made
through various strategies to use waste materials efficiently. Fabricating novel architectures
from the discarded waste materials by applying the nanotechnological approach may provide
a solution for environmental remediation [20,21]. Nanomaterials offer several amazing char-
acteristics that are superior to that of bulk materials. Currently, electrospinning is considered
as the best method for producing continuous nanofibers from various polymer solutions
for wide areas of applications such as water treatment, biomedicals, fire-retardant, energy
storage, etc. [22–26]. In this regard, several research groups have developed PS nanofibers by
an electrospinning technique and applied it for various environmental applications [27–32].

Although fire has become an important part of human civilization, it is a major haz-
ard to human life, property, and the environment. Besides the fatal heat levels, the toxic
gases or chemicals liberated during a fire also affect the respiratory system and can lead to
death. Therefore, there is an urgent need to design and develop cheap and environmentally
friendly fire-retardant materials. Electrospun nanofiber membranes can be a good choice for
designing such a fire-retardant material, as the nanofibers possess several outstanding char-
acteristics such as flexibility, good mechanical properties, high surface area, porosity, etc.
Unfortunately, most of the electrospun nanofibers in the pristine form are combustible. Al-
though the introduction of a halogen- or phosphorus-based flame retardant is the common
method of improving the flame retardancy of the materials, the limiting factor is the toxicity
of the combustion products from a halogen-based flame retardants. A phosphorous-based
flame retardant may be required in large amounts, which not only causes difficulties in
the electrospinning process, but also affects the mechanical properties of the fibers [33–35].
Therefore, there is an urgent need for modifications to obtain flame retardant derivatives.
In recent years, few studies have reported on the development of a fire-retardant nanofiber
membrane by incorporating other materials such as nanoclay, metal oxide nanoparti-
cles, graphene, carbon nanotubes (CNTs), etc., into nanofibers [36–39]. For example, Wu
et al. synthesized flame retardant nylon-6 fibers containing montmorillonite clay by an
electrospinning technique [40]. Pethsangave et al. prepared phosphorus-functionalized
polyaniline and polypyrrole-supported graphene nanocomposites, which showed excel-
lent flame-retardant properties when coated with cotton fabric and wood [41]. Recently,
Kang et al. developed thermally oxidized polyacrylonitrile/polyvinylpyrrolidone/SiO2
nanofibers as an effective flame-retardant membrane [42]. Thus, the addition of nanofillers
can be considered as an alternative approach to improve the fire-retardant performance of
electrospun nanofiber membranes [42–44].

The utilization of discarded materials as a nanofiber precursor in electrospinning not
only provides a remedy for environmental pollution, but also is cost-effective since the
discarded materials are freely available [45,46]. Based on these understandings, herein, we
used two waste materials (discarded PS and FA particles) to prepare FA-incorporated PS
fibers. The as-prepared fiber composite was characterized with various techniques and
tested for fire-retardant performance. The strategy presented in this work provides a new
approach to using discarded materials for various applications such as a fire-retardant,
food packaging, filtration, etc.

2. Experimental
2.1. Materials

The discarded polystyrene (PS) was collected from the Woosuk University area in
Samnye, Jeollabuk-do, South Korea. N,N-Dimethylformamide (DMF) was obtained from
Sigma-Aldrich. Purified FA particles were obtained from the Won Engineering Company
Ltd., Gunsan, Korea.
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2.2. Fabrication of FA NPs Incorporated PS Fibers

In the beginning, the FA particles were ball-milled by using 3 mm zirconia balls
and sieved for 12 h. A certain amount of ball-milled FA particle was dispersed into the
DMF and subjected to sonication for 6 h followed by stirring for 6 h at room temperature.
Next, 4 g of discarded PS was added to the above suspension and stirred overnight. The
concentration of PS was adjusted to 20%. After obtaining a clear solution, electrospinning
was performed at room temperature. During the electrospinning, 20 kV was applied, and
the tip-to-collector distance was maintained at 15 cm. The as-spun nanofiber mat was
vacuum dried at 40 ◦C for 12 h. For comparison, a pristine PS fiber mat was also prepared
in the aforementioned conditions without using FA. The obtained nanofiber mats were
characterized with various techniques. Figure 1 represents the synthetic protocol for the
fabrication of the FA/PS fiber composite.
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Figure 1. Schematic diagram showing the fabrication of the FA/PS fiber composite.

2.3. Characterization

The morphologies of the as-prepared nanofibers were investigated by field-emission
scanning electron microscopy (FESEM, S-7400, Hitachi, Tokyo, Japan). The average diame-
ter of the nanofibers was determined by using ImageJ software (National Institute of Health,
Bethesda, MD, USA). The conductivity of the electrospinning solutions was recorded with
the Electrical conductivity meter (CM-42X, DKK-TOA Corporation, Tokyo, Japan). For
crystallinity determination, an X-ray diffractometer (XRD) was used (Rigaku Co., Tokyo,
Japan). The Fourier transform infrared (FTIR) spectra were recorded using an ABB Bomen
MB100 Spectrometer (Bomen, Quebec, QC, Canada). Mechanical properties were studied
by using a Universal Testing Machine (AG-5000G, Shimadzu, Kyoto, Japan). The thermal
properties of the as-synthesized nanofibers were studied by thermogravimetric analysis
(TGA, Perkin-Elmer, Akron, OH, USA).

2.4. Evaluation of Fire-Resistance Property

The limited oxygen index (LOI) method was employed to study the fire-retardant
property of the as-prepared nanocomposite fibers. The LOI value of the fibers was tested
by an M606B digital oxygen index instrument.

3. Results and Discussion

The morphological investigation was performed by field emission scanning electron
microscopy (FE-SEM). Figure 2A depicts the morphology of ball-milled FA particles. FA is a
heterogenous material that consists of small spheres of irregular, porous, coke-like particles.
As in Figure 2A, the FA particles were irregular-shaped with various sizes. The chemical
composition of the FA particles was confirmed by the EDS analysis. The EDS spectra of
FA particles showed the presence of C, O, Mg, Al, Si, S, Cl, Ca, Ti, and Fe (Figure 2B). The
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XRD spectra identified mullite, calcite, and quartz as the major mineral constituents in FA
(Figure 2C) [13,47].
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The morphologies of electrospun PS fibers and the FA/PS composite are given in
Figures 3A and 3B, respectively. As in the figures, both samples showed a smooth and
continuous fiber morphology without beads. The pristine PS solution resulted in the
formation of the microfiber after electrospinning. The average diameter of the pristine PS
fibers was 2–3 µm (Figure 3C). Interestingly, the diameter of the PS fibers was reduced to
nanoscale after the addition of FA particles. The average diameter of FA/PS fibers was
about 600–700 nm (Figure 3D). The nanoscale modification of fibers not only provides a
higher surface area, but also widens its application to various fields. Many factors, such as
solution concentration, applied voltage, flow rate, tip-to-collector distance, and solution
properties (polarity, viscosity, conductivity), influence the diameters and morphology of
the electrospun nanofibers [22]. The high reduction of the diameter in the case of composite
fibers was attributed to the conductivity of the solution. The conductivity of the PS solution
was approximately 2.01 mS/m, whereas it was increased to 2.66 mS/m after the addition of
FS particles on it. The increase in the conductivity is attributed to the various metal oxide
components of FA. It is well-known that higher conductivity results in the formation of
thinner nanofibers. We have observed the same results in our previous studies also [48,49].
The FA/PS composite fibers showed a homogenous distribution of FA particles throughout
the nanofibers.

To investigate the arrangement of FA particles in PS fibers, we captured FE-SEM images
of the FA/PS composite (Figure 4). As in the figure, the FA particles were both attached
to the surface of PS fibers and embedded within the fibers. It should be noted that the FA
particles used in this study were in the nano to micro range (Figure 2A). Since the particles
were well-dispersed in the PS solution prior to the electrospinning process, the nano-sized
particles could be trapped inside the electrospun PS fibers (Figure 4B), while the larger
particles were attached to the outer side of the fibers. We also observed a flat-structured
FA flake attached to the PS fibers (Figure 4C). Although the size of the FA flake was larger
than the diameter of the PS fibers, the flake was attached to the fibers with three connection
points, indicating a strong bond with the fibers. This finding ensures the good dispersion
of FA particles in PS solution and their interaction with the polymer nanofibers.
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The flexibility and the free-standing nature of the FA/PS composite membrane were
studied with the folding test. The optical images of the as-prepared FA/PS fiber membrane
during the folding tests are given in Figure 5A–E. As in the figure, the product could be
folded repeatedly without any damage. Furthermore, the fiber morphology was inves-
tigated after being folded with an angle of 180◦ for one hundred times. There was no
change in the fiber morphology. The fibers were preserved intact and showed continuous
morphology even after the bending tests several times. The mechanical properties of the
as-prepared FA/PS composite fiber membrane were compared with that of the pristine PS
fiber membrane. As in Figure 4F, the composite resulted in improved mechanical properties
compared to the pristine form. The tensile strength of ~0.23 MPa was recorded in the
case of the PS fiber membrane, whereas the FA/PS composite fiber membrane exhibited
~0.34 MPa. The enhancement in the tensile strength is attributed to the role of FA particles
in the fiber. The proper interaction between FA and polymer matrix (filler–polymer inter-
action) is important for a strong nanofiber membrane. The addition of FA particles alters
the morphology of the nanofiber membrane. The diameter of the nanofiber was reduced
from micro to nanoscale when FA particles were added to the system. The distribution of
FA particles in the nano-scaled fibers can substantially improve the mechanical properties
of the FA/PS composite fibers due to their large interfacial area, which enables them to
transfer an applied load through the filler (or matrix) interface [50,51].
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180◦, (D) during unfolding, and (E) after unfolding. (F) is the stress–strain curve of the as-prepared
FA/PS fiber membrane compared to PS fiber membrane.

The crystal structure of as-prepared pristine PS and FA/PS fibers was evaluated by
an XRD analysis. As shown in Figure 6A, the pristine PS showed two diffraction peaks
approximately at 2θ value of 19.1 and 22◦, which represents the (110) and (220) crystal
planes, respectively [52,53]. For the FA/PS composite, the extra peaks were observed,
which confirms the presence of FA particles on it [13]. FTIR spectra of electrospun PS NFs
and FA/PS composite are presented in Figure 6B. In the IR spectra of FA, the marked peaks
at about 460, 1098, and 1450 cm−1 are attributed to the Si–O–Al, Si–O–Si, H–O–H bands,
respectively [47,54]. Pure PS showed three obvious characteristic absorption bands. The
lower absorbance intensities at 3200–2800 cm−1 were assigned as C–H symmetric and
asymmetric vibration. The wavenumber at 1600–1400 cm−1 corresponds to the bending
vibration, and the stronger intensities around 770–650 cm−1 are attributed to the mono-
substituted benzene [53]. The FA/PS composite showed almost similar peaks as pristine PS.
An extra band near 460 cm−1 in FA/PS fibers (arrow in Figure 6B) is attributed to the FA in
the composite sample [13]. The peak intensity in the FA/PS fibers is remarkably decreased
compared to the pristine FA and PS, suggesting the homogenous deposition of FA into PS
throughout the matrix [55].
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The thermal stability of the prepared samples was studied by thermogravimetric
analysis (TGA). The TGA results in Figure 6C provide quantitative information on the
incorporation of FA on PS fibers. The TGA profile showed a single-step decomposition in
both cases. The degradation occurred around 330–418 ◦C. The pristine PS fibers showed a
complete degradation around 500 ◦C; however, the FA/PS fibers showed about 6% residue,
which is due to the presence of FA in the composite membrane. Additionally, the enhanced
thermal property of the composite was verified by the DTG curves (Inset Figure 6C).

The limited oxygen index is considered as an excellent tool to quantify the flammability
of polymeric materials. The LOI values for pristine PS fibers and FA/PS composite fibers
were tested and are given in Figure 7. The PS fibers easily burn in air with black smoke.
The limited oxygen index (LOI) value of the pristine PS NFs membrane was recorded at
approximately 17%. When FA particles were added to the PS membrane, the membrane
possessed an LOI value of ~24%. Further, we carried out an open flame test to access
the flame-resistance of the as-prepared membranes (Figure 7B). For this study, the fiber
membranes were cut into 1.5 cm × 8 cm and ignited into the air. The pristine PS membrane
was ignited immediately with smoke when exposed to the fire source and burnt completely
in 3 s. On the other hand, after removing from the fire source, the FA/PS composite
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membrane shrunk and self-extinguished in about 4 s, without a complete burn. This
indicates the role of FA particles in the fire-retardant ability of the composite nanofiber
membrane. Recently, Ma et. al. [56] have confirmed that active ingredients (such as
Al3+, Fe3+, Ti4+, Mg2+, Ca2+, etc.) in FA can be released and transformed into effective
components of fire prevention. The Fe2O3 present in FA forms a dense char layer by
promoting the crosslinking of the polymer [57]. The strong interaction between FA particles
and PS nanofibers promotes the heat resistance of the composite membrane, thereby
enhancing the overall fire-retardant properties [58,59].
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4. Conclusions

The utilization of waste materials such as discarded polystyrene and fly ash particles
for designing fire-retardant materials has been introduced in this study. An FA-incorporated
PS nanofiber membrane was synthesized by simply dispersing the FA particles in the
PS solution followed by the electrospinning process. The as-obtained FA/PS composite
showed good nanofiber morphology, along with good distribution of FA particles over
the fibers. The performance of the samples was tested for fire-retardant properties, and
it was observed that the fire-retardant behavior was enhanced after the addition of FA
particles to the PS fibers. The strategy presented in this study highlights the utilization
of waste materials, thereby addressing environmental issues. The major attributes of our
study are the easy synthetic protocol at ambient conditions and finding out the possibilities
of waste-based products in fire-retardant applications. Since the FA particles were well-
embedded and attached to the surface of PS fibers, we believe that the as-obtained FA/PS
fiber composite can also be applied to various other applications such as food packaging,
photocatalysis, adsorption, filtration, etc.
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