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Abstract: Nanobiocatalysts, i.e., enzymes immobilized on nanostructured supports, received con-
siderable attention because they are potential remedies to overcome shortcomings of traditional
biocatalysts, such as low efficiency of mass transfer, instability during catalytic reactions, and possible
deactivation. In this short review, we will analyze major aspects of immobilization of cellulase—an
enzyme for cellulosic biomass waste processing—on nanostructured supports. Such supports provide
high surface areas, increased enzyme loading, and a beneficial environment to enhance cellulase
performance and its stability, leading to nanobiocatalysts for obtaining biofuels and value-added
chemicals. Here, we will discuss such nanostructured supports as carbon nanotubes, polymer
nanoparticles (NPs), nanohydrogels, nanofibers, silica NPs, hierarchical porous materials, magnetic
NPs and their nanohybrids, based on publications of the last five years. The use of magnetic NPs
is especially favorable due to easy separation and the nanobiocatalyst recovery for a repeated use.
This review will discuss methods for cellulase immobilization, morphology of nanostructured sup-
ports, multienzyme systems as well as factors influencing the enzyme activity to achieve the highest
conversion of cellulosic biowaste into fermentable sugars. We believe this review will allow for an
enhanced understanding of such nanobiocatalysts and processes, allowing for the best solutions to
major problems of sustainable biorefinery.

Keywords: cellulase; immobilization; nanostructured supports; biomass

1. Introduction

Scarcity of conventional fuels due to socioeconomic factors and reluctance of the
communities to use them due to environmental aspects of their processing and applications
increased the interest of industry in biomass or biomass waste processing to biofuels
and value-added chemicals. There are many processing stages to convert lignocellulosic
biomass to a direct source of biofuel, but the most important step is the decomposition
of cellulose to fermentable (intermediate) sugars, which can be a feasible substrate for
biofuel [1]. Environmentally favorable avenue for biomass processing is the use of enzymes
which decompose cellulose to glucose [2–5]. However, low thermal and storage stability of
enzymes as well as the presence of impurities, enzyme leakage, and a reusability problem
are major shortcomings of employing free enzymes. These shortcomings can be minimized
or even eliminated by immobilization of enzymes on various supports [6,7]. The role
of support materials is to preserve the enzyme secondary structure as well as to create
the favorable interactions with the enzyme [8]. The choice of a suitable carrier is also
determined by the enzyme and process types [9,10].

In the last decade enzymes immobilized on nanostructured supports called
nanobiocatalysts received considerable attention. Nanostructured supports are materials
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containing nanometer size features (normally, between 1 and 100 nm), such as nanoparticles
(NPs) of different sizes and shapes including nanorods and nanofibers, materials with pores
in a nanometer range, stimuli responsive nano-carriers, etc. [11–16]. This growing inter-
est is explained by a possibility of nanobiocatalysts to overcome deficiencies of enzymes
immobilized on traditional supports. Nanostructured supports minimize diffusion, thus
significantly improving mass transfer. Additionally, these nanomaterials possess a high
surface area for the enzyme immobilization, increasing the enzyme loading and improving
their positioning on the surface. The latter often results in higher enzymatic activity [17,18].

In this review, we will discuss major features of immobilization of cellulase on nanos-
tructured supports. Cellulases are enzymes that degrade cellulose—the most abundant
natural polymer which forms plant cell walls. Cellulases are a cocktail of three enzymes:
endoglucanases, exoglucanases, and β-glucosidases which are utilized to degrade different
chemical bonds in cellulose [19]. For simplicity, here we will use the term “cellulase” (sin-
gular) which means the above cocktail, unless it is specified otherwise. It is worth noting
that lignocellulosic biomass contains cellulose and hemicellulose (polysaccharides) as well
as lignin (an aromatic polymer) [20]. The presence of lignin often inhibits the cellulose
hydrolysis so special efforts are undertaken to overcome this problem. Besides stabilization
and the possibility of catalyst reuse, the cellulase immobilization on nanostructured sup-
ports may reduce the cellulase surface charge, thus diminishing its non-specific binding to
lignin and increasing the interactions with cellulose [21]. Often biomass waste first requires
delignification with another enzymatic catalyst before cellulase can efficiently hydrolyze
cellulose [22] or co-immobilization of several enzymes on the same support is implemented,
which is a more prominent trend [23–28].

Because of the growing number of publications on cellulase immobilized on nanostruc-
tured supports, in this review we will discuss the above developments using the literature
mainly published from the beginning of 2017 through August of 2022. It is important
to mention preceding recent reviews on the topics related to cellulase immobilization on
nanostructured supports [9,25,29–43] as they created the groundwork for our analysis.

We are also focusing on a combination of several crucial factors determining the
performance of nanobiocatalysts, such as methods of cellulase immobilization, types of
nanostructured supports, multienzyme nanobiocatalysts, etc. The structure of the review is
presented in Scheme 1.
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2. Methods of Cellulase Immobilization

Typical methods of cellulase immobilization on nanostructured supports are analogous
to those employed for other enzymes on various supports. They include adsorption on the
support surface, encapsulation into the support, a covalent attachment, and cross-linking.
In recent years, the covalent attachment became prevalent as it provides higher stability
of immobilization and does not affect the enzyme structure if a tether used allows for
protection of the enzyme secondary structure. On the other hand, encapsulation and cross-
linking can be also beneficial for the biocatalyst performance if the enzyme conformation is
preserved. Below we will discuss the above methods in more details using recent examples.

2.1. Adsorption

The major advantage of physical adsorption is its simplicity. It was used for immo-
bilization of cellulase on metal-organic frameworks (MOFs) with high porosity [44,45],
Fe3O4/acid activated montmorillonite composites of different structure [46], multiwall
carbon nanotubes (MWCNTs) [47], etc. Thus, a high surface area is an important factor
for successful adsorption as well as an opposite total charge of cellulase and the support,
favorable pore size of the support to accommodate enzymes, etc. [48].

A pretreatment with ionic liquids (ILs) is known to facilitate hydrolysis of lignocel-
lulosic biomass however ILs can degrade the enzyme [49,50]. Moreover, IL tolerance is
an important parameter for in situ enzymatic saccharification of biomass to bioethanol
in the presence of ILs, a promising industrial endeavor. Zhou et al. [44] studied IL toler-
ance of nanobiocatalysts based on several MOFs (with different metals) and physically
adsorbed cellulase. Among four MOFs studied, ZIF-8 (MOFs which consist of Zn2+ and
2-methylimidazole ligands [51]) showed the highest enzyme adsorption capacity and re-
markable tolerance to ILs. However, the most successful avenue for the protection of
immobilized cellulase from the negative influence of ILs or desorption was found to be the
modification of the support surface before or after cellulase adsorption. In this manner, a
surface treatment of ZIF-8 with charge modifying compounds (chitosan) or hydrophobicity
altering macromolecules (poly(ethylene glycol), PEG) allows for an increase of the enzyme
loading capacity (Figure 1) [45].
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The other authors demonstrated that modification of MOFs (UiO-66 which consists
of zirconium clusters connected by 1,4-benzodicarboxylic acid [52]) with amino groups
increases cellulase physical adsorption due to additional anchors [53]. An interesting
modification of MOFs constructed around Clostridium tyrobutyricum ∆ack::cat1, with deleted
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ack gene and overexpressed cat1 gene with further immobilization of cellulase allowed for
the production of butyric acid via simultaneous saccharification and fermentation using
rice straw as substrate [54]. Here, MOFs served both as ex-skeleton and photocatalyst to
stimulate butyric acid production.

Post-enzyme-adsorption modification was demonstrated in a few papers. Cellulase
adsorbed on MWCNTs and then protected by sodium alginate allowed for the increased
nanobiocatalyst stability [47]. The gradual decrease of activity with each cycle was ascribed
to weak, non-covalent bonds between cellulase and the support. An original method
of cellulase immobilization was carried out by Zhu et al. who adsorbed the enzyme on
Fe3O4@C NPs due to electrostatic interactions and then coated these NPs with a thin layer of
sedimented silica, which enhanced cellulase adsorption, but still preserved its function [55].
Thus, the support modification/functionalization often allows for efficient nanobiocatalysts
obtained by the cellulase adsorption. In the case of post-adsorption modification, the
deposited outer layer should be sufficiently porous or swollen to allow cellulase a contact
with the biomass waste source. Possible disadvantages of this method are the low loading
and the loss of the enzyme, leading to the contamination of the final product.

2.2. Encapsulation

Encapsulation of cellulase can be carried out in three major ways. In one approach,
cellulase molecules are trapped in the pores of porous materials, thus, the pore sizes play
an important role in encapsulation. In the second approach, cellulase is encapsulated when
the porous nanomaterial is formed. In the third approach, the enzyme is encapsulated by
polymers, often during co-precipitation.

Zr-containing MOFs (UIO-66) with different mesopores (6.46, 7.55, 10.80 nm) were
utilized to encapsulate several enzymes, including cellulase [56]. It is worth noting that
cellulase has an ellipsoidal shape with a diameter of 4–6.5 nm and a length of 18–21.5 nm,
therefore pores of suitable sizes can encapsulate the enzyme, although most probably
adsorption also contributes in the immobilization process [57]. Surprisingly, the smallest
pores allowed for the highest loading without jeopardizing the enzyme structure, as was
verified by the comparison of the activity of free and immobilized enzymes. The specific
pore structure of these MOFs (the presence of mesopores along with micropores) did not
affect the mass transfer and allowed for an enrichment effect of the substrate, probably
due to positioning of the latter at the support. An addition of 4.6 nm mesopores in
microporous Zr-MOF obtained by biomineralization with dextran as sacrificial template
allows better entrapment of cellulase within the material, improving loading capacity and
stability of immobilized cellulase [58]. Mesoporous Zn-based MOFs were also utilized for
cellulase encapsulation by simultaneous precipitation of the MOF precursors and cellulase
(Figure 2) [59]. This significantly enhanced the cellulase loading and created structural
defects during MOF formation (large pores), assisting in mass transfer and increasing
enzymic activity.
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Formation of nanogel in the presence of cellulase by direct cross-linking of poly
(N-vinylpyrrolidone-co-N-methacryloxysuccinimide) with an enhanced green fluorescent
protein allows successful encapsulation of the enzyme [60]. Self-assembly of chitosan
around cellulase by salting out from a mixed solution allowed for the formation of nanohy-
brid which was deposited on alginate beads [49]. The nanobiocatalyst showed increased
stability and efficiency in hydrolysis of sugarcane bagasse.

The most important advantage of encapsulation is robustness, although possible
shortcomings, such as accompanied adsorption and a loss of conformation integrity could
minimize its appeal. In addition, similar to the physical adsorption, cellulase encapsulation
is only favorable, if the access to the enzyme in the nanomaterial is not impeded.

2.3. Covalent Attachment

Covalent attachment is frequently favored for cellulase immobilization because it pro-
vides enhanced stability which is often combined with improved activity of the enzyme—
important advantages of this approach. Covalent immobilization, however, requires func-
tionalization of the support unless the support inherently possesses functional
groups [50,61–63]. In addition, a suitable linker is needed to preserve the enzyme conforma-
tion [9,64]. The most commonly used bifunctional linker is glutaraldehyde which interacts
with amino groups at ambient conditions and does not require any catalyst [9,24,64,65].
Despite the length of glutaraldehyde is only 0.75 nm [66], it apparently provides a sufficient
distance to prevent non-specific adsorption of the enzyme. Longer linkers, such as tetrade-
canedioic and docosanedioic dicarboxylic acids with approximate extended chain lengths
of 1.4 and 2.2 nm, respectively, were also explored [67], however, the interaction of carboxyl
group terminal linkers with amino functionalized supports (formation of a peptide bond)
is less than favorable, requiring elevated temperatures or/and a catalyst [68,69].

In the case of supports with carboxyl groups on the surface (for example graphene ox-
ide, GO), first acids are activated with carbodiimide (for example, 1-ethyl-3-
(3-dimethylaminopropyl) carbodiimide) followed by the interaction with
N-hydroxysuccinimide, thus, creating a functional group for attaching the enzyme [70].

Below we will discuss a few examples of the covalent attachment on various sup-
ports from the recent literature. Cellulase covalently immobilized on amino functionalized
Fe3O4@SiO2 core-shell NPs provided high stability at various pH and temperatures in
enzymatic saccharification of poplar wood [71]. This biocatalyst allows an enzymatic
saccharification rate of 38.4% at 72 h, showing promise for deconstruction of lignocellulosic
biomass. The same principle of cellulase immobilization using amino groups was utilized
on a very different support: a hybrid conductive nanohydrogel prepared by polyaniline
(PANI) nanorods formed on an electrospun cationic poly(ε-caprolactone) hydrogel contain-
ing cationic phosphine oxide macromolecule [72]. The hybrid nanobiocatalyst showed good
performance in hydrolysis of cellulosic materials, exhibiting no loss of activity compared to
free enzyme (Figure 3).

A proper functionalization of the support can be crucial for the efficient covalent
enzyme attachment. This avenue was explored by Gao et al. who modified GO sheets using
etherification with p-β-sulfuric acid ester ethyl sulfone aniline which creates a hydrophobic
linker for further fast cellulase immobilization (~10 min) after diazotization [73]. It is
noteworthy, however, that robustness of the fast attachment of cellulase is countered by a
complex functionalization procedure, making it a questionable achievement.

In an original work, a sortase-mediated enzyme immobilization method (called
sortagging) on microgels was developed and tested for five different enzymes includ-
ing cellulase [74]. This method allows for a site-specific enzyme immobilization due
to the covalent attachment on stimuli responsive microgel particles based on poly(N-
vinylcaprolactam)/glycidyl methacrylate.

Thus, the possible disadvantage of the covalent attachment of cellulase is a complexity
of chemical modification of the support and/or the enzyme.
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2.4. Cross-Linking

Cross-linking of enzymes into aggregates leads to enzyme immobilization without the
use of support materials, making it a robust approach. Here, the low density of aggregates
is a crucial factor to allow a contact between cellulase and cellulosic biomass. Such cross-
linking can be accomplished by a simple interaction with glutaraldehyde [75] or by more
sophisticated methods. Activity of crosslinked enzyme aggregates (CLEA) was found to
depend on the precipitant type, which could influence the CLEA density [76,77]. When
cross-linked cellulase aggregates prepared by precipitation are combined with magnetic
NPs, an extra advantage of easy magnetic manipulation of the nanobiocatalyst is added [78].

An original method of preparation of well-defined multienzyme hybrid nanoflow-
ers (ECG-NFs) was proposed by Han et al. by cross-linking all three cellulase enzymes
(cellobiohydrolase (CBH), endo-glucanase (EG), and β-glucosidase (BG)) and combining a
binary tag consisting of elastin-like polypeptide (ELP) and His-tag [79]. Here, recombinant
enzymes (EG-Linker-ELP-His (EGLEH), CBH-Linker-ELP-His (CBHLEH), and Glu-Linker-
ELP-His (GLEH) (Figure 4), were assembled by incorporating a dual sticker (ELP-His)
into the above enzymes. The nanoflowers formed catalyzed the cellulose hydrolysis into
glucose with high pH, thermal, and storage stability as well as better catalytic activity
compared to free enzymes. In this case, the open structure of enzyme aggregates is the key
for the successful catalysis.
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The possible shortcoming of this approach includes lower activity due to poor access
to active site if cross-linked aggregates are too dense.

3. Types of Nanostructured Supports

The major nanostructured supports utilized for cellulase immobilization include
nanoporous materials (MOFs [80], biochars [81–83], porous silica [84], etc.), nanohydrogels,
polymer NPs, magnetic NPs, etc. The majority of these supports was employed for years for
enzyme immobilization but in the last five years we can see innovations in the fabrication
or modification of these nanomaterials to better adjust for cellulase loading and function.

3.1. Porous Nanomaterials

Porous materials with various pore sizes including those with hierarchical porosity
have been explored for cellulase immobilization. Novel wrinkled mesoporous silica NPs
possessing radial and hierarchical open pore structures have been developed and utilized
for enzyme immobilization [27,48]. Varying (smaller, WSN, and larger, WSN-p) inter-
wrinkle distances which, in turn, depended on the conditions of the silica NP preparation,
the authors were able to successfully adsorb BG and cellulase most likely due to hydrogen
bonding without damaging the enzyme secondary structures (Figure 5) [27]. Despite
the absence of chemical bonds between enzymes and the support, the nanobiocatalysts
displayed high stability probably due to a combination of high surface area and specific
pores/folds, capturing enzymes.
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A combination of mesoporous Fenton catalyst (Fe-MCM-48) and cellulase immobilized
on the same support allows efficient depolymerization of chitosan [80]. This accomplish-
ment demonstrates an innovation in the application of very dissimilar catalysts on the same
support and in the same complex process.

A comparison of mesoporous silicas with 17.6 nm and 3.8 nm average pores demon-
strated that the larger pores whose sizes are similar to a long axis of cellulase allows for
higher enzyme loading [85]. On the other hand, 3.8 nm pores that are close in size to
a short axis of cellulase provide a higher activity due to preservation of enzyme active
sites. Thus, despite any possible preconceived notion that smaller pores could damage a
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secondary cellulase structure, authors’ thoughtful selection of pore sizes in two mesoporous
materials allowed for a deeper understanding of restrictions or lack thereof in the choice of
nanoporous supports.

3.2. Nanogels

In recent literature, there are only a few examples of nanogels, although they seem
to possess a clear advantage: a swollen state of hydrogel can allow better access to im-
mobilized cellulase, thus enhanced enzymatic activity. A nanogel based on poly(acrylic
acid) prepared by inverse-phase microemulsion polymerization was utilized for cellulase
adsorption [86]. It demonstrated high temperature tolerance, retaining 75% of activity at
80 ◦C as well as higher pH tolerance. A hybrid nanogel support where the PANI nanorods
were formed in situ within nanogel prepared by electrospinning has been discussed in the
section on the covalent attachment [72]. In this work, higher activity of the immobilized
enzyme compared to the free enzyme was observed in the same temperature range, but
the immobilized cellulase showed higher thermal and storage stability. Nanohydrogels
were formed by grafting of carboxymethyl cellulose with acrylic polymers in the presence
of GO sheets, whose role was to allow dual cross-linking via hydrogen bonding [87]. After
cellulase encapsulation, the nanobiocatalyst was applied for the enhanced hydrolysis of
lignocellulosic biomass and showed a remarkable increase in conversion of sugar beet
pulp treated with alkaline. We think that an additional advantage of nanogels can be
realized when they are pH or temperature responsive to allow for removal of the hydrolysis
products that might be retained in the nanogel.

3.3. Polymer Particles

Polymer particles can be beneficial for a surface covalent attachment of enzymes if the
polymers possess functional groups. Polymer NPs were prepared from a crosslinked copoly-
mer of styrene and maleic anhydride using precipitation polymerization without a stabilizer
followed by the covalent attachment of cellulase via anhydride groups [88]. Poly(styrene)-b-
poly(styrene-alt-maleic anhydride) modified with nitrilotriacetic acid (NTA) self-assembled
into micelles, whose modification with Ni2+ led to the attachment of His6-tagged cellulases
(obtained from a bacterial cell) to produce core-shell NPs with cellulases in the outer layer
(Figure 6) [89].
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Such hierarchical structure allowed for cellulase exposure to the reaction media and
preservation of cellulase conformation due to a soft support. A chitosan-cellulase nanohy-
brid has been prepared by self-assembly of chitosan in the presence of cellulase followed
by immobilization on alginate beads [49].

3.4. Magnetic Nanostructured Supports

Magnetically responsive nanostructured supports are usually based on magnetic NPs.
The use of magnetic NPs for the development of nanobiocatalysts has skyrocketed in
recent years due to easy magnetic separation, allowing multiple reuses of nanobiocatalysts
and making the processes more robust and economically and environmentally favorable.
Magnetic NPs (most frequently iron oxide NPs) are normally functionalized to allow the
enzyme attachment. To achieve that, such NPs are either coated with silica followed by
the attachment of functional (amino) groups [65,67,71,90–97] or with a polymer containing
reactive groups, for example, chitosan or other functional polymers [22,98–108]. The
addition of metal ions (for example, copper) to amino-functionalized magnetic NPs allows
for improved cellulase immobilization due to metal affinity [109]. For better protection
of iron oxide NPs, Poorakbar et al. used a gold shell around magnetic NPs followed by
the silica shell and functionalization with PEG and L-aspartic acid for a covalent cellulase
attachment [110]. The other avenue for a magnetic nanobiocatalyst synthesis is realized
when magnetic NPs are embedded into porous or polymer materials [111,112]. Even bare
magnetite NPs have been utilized for adsorption of cellulase [113] or after functionalization
with glutaraldehyde [114].

When Fe3O4 NPs coated with SiO2 were additionally functionalized with a copolymer
shell consisting of poly(N-isopropylacrylamide-co-glycidyl methacrylate) P(NIPAM-GMA),
more opportunities for nanobiocatalyst tuning were offered [115]. PGMA allows for a cova-
lent attachment of cellulase, while PNIPAM is a temperature responsive polymer allowing
control of swelling and deswelling with a temperature change. GO sheets modified with
four-arm PEG macromolecules containing amino terminal groups were deposited on mag-
netic Fe3O4 NPs and employed for cellulase immobilization [116]. Similar functionalization
was explored by the same group using solely magnetic NPs as support [117].

A fascinating example of the use of magnetic NPs was published by De Dios Andres
et al. [118]. The authors employed a layer-by-layer technique to fabricate magnetic mi-
cromotors, whose upper layer was positively charged (Figure 7). After immobilization
of cellulase, the micromotors were imbedded in paper chips to create diagnostic devices.
Here, cellulase is needed to partially hydrolyze cellulose in the paper chips to increase the
micromotor mobility. It is worth noting that an additional coating of micromotors with
PEG diminishes their interaction with cellulose, allowing one to preserve chip integrity
and to control the micromotor mobility. Although, no applications for these diagnostic
devices were reported in the paper, it is a first example of using magnetic micromotors in
the paper environment.
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microchannels and in structured paper chips. The movement of the micromotors was induced due
to the exposure to magnets with different magnetic forces. Reproduced with permission from [118],
Royal Society of Chemistry, 2021.
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In the other example, to minimize the amount of Fe3O4 NPs used, the authors [119]
adsorbed them on MWCNTs and utilized them as support for cellulase adsorption. Consid-
ering that MWCNTs are not a cheaper material than magnetite NPs, the whole idea of this
construct seems questionable. On the other hand, naturally occurring halloysite nanotubes
(clay materials) with attached iron oxide NPs and covalently bound cellulase (Figure 8)
present a better alternative to MWCNT based nanomaterials [120]. The major advantage
here is that the bulk of the nanobiocatalyst consists of cheap, naturally available material,
making such a catalyst more promising for commercialization. In a similar approach,
layering of magnetite NPs with double hydroxide nanosheets was utilized by Pei et al.,
leading to a magnetic support well suitable for covalent immobilization of cellulase via
glutaraldehyde [121].
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Figure 8. Representative illustration for immobilizing cellulase enzyme on to halloysite nanotubes
as a template/matrix using aminosilane as a cross-linker. Prior to this, iron oxide nanoparticles
were synthesized over halloysite nanotubes concurrent with their deposition, rendering the nanobio-
catalyst recoverable using a magnet. Reproduced with permission from [120], American Chemical
Society, 2020.

To create a beneficial support for cellulase immobilization, Papadopoulou et al. formed
magnetic iron oxide NPs in hierarchical porous carbons containing macropores (>50 nm) as
well as interconnected meso- and micropores [122]. The authors explored both covalent and
non-covalent (adsorption) attachment of cellulase and determined that the covalent immo-
bilization provides higher activity and stability upon reuse. Magnetic (Fe3O4) NPs coated
by quaternized lignosulfonate and bearing pH-responsive properties were synthesized for
immobilization and recovery of cellulase from biorefinery process waste [123]. Cellulase
was immobilized or desorbed upon pH changes due to electrostatic interactions. Schnell
et al. demonstrated a similar behavior based on electrostatic and coordination interactions
on the surface of bare iron oxide NPs with carboxylic acid groups of cellulase [113]. The
authors also discovered that the Fe2+:Fe3+ ratio influences the enzyme loading and activity.

An interesting magnetic support was proposed by Raza et al. [124]. For its fabrication,
first hollow polymer particles were made by precipitation from bio-phenylpropene. This
followed by the attachment of amino-functionalized Fe3O4 NPs with further modifica-
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tion by glutaraldehyde to form multi-layered magnetic hollow particles for a cellulase
covalent attachment.

Magnetic core-shell MOFs for cellulase immobilization have been prepared via grow-
ing UIO-66-NH2 on the surface of poly(sodium 4-styrenesulfonate) modified Fe3O4
NPs [125]. This support allowed for high loading capacity of the enzyme and demon-
strated high pH and thermal stability as well as better tolerance to formic acid and vanillin
which are conventional inhibitors of the intermediates in lignocellulosic hydrolysis.

An original approach was proposed by Tan et al. to make a nanocomposite with
oriented cellulase on chitosan/Fe3O4 NPs [126]. To accomplish that, the authors mixed
cellulase with cellulose (a sacrificial template), tightly attaching the enzyme to the latter.
Then, the mixture was embedded in chitosan, followed by the formation of magnetic NPs
on chitosan periphery and hydrolysis of cellulose. This resulted in a hollow magnetically
recoverable structure with cellulase in the stretched and most active conformation.

4. Attachment of Multiple Enzymes

Co-immobilization of two or more enzymes along with cellulase appears to be a
winning strategy for the enhancement of saccharification of lignocellulosic biomass into
bioethanol and other value-added chemicals. Several enzymes can be utilized to improve
the immobilized cellulase performance. It is well known that laccase can oxidize lignin and
phenolic compounds present in lignocellulosic biomass and thus prevents their negative
influence on the cellulase biocatalytic activity [127,128]. Following this avenue, Kumar et al.
co-immobilized laccase and cellulase on amino-functionalized magnetic NPs [129]. The
nanobiocatalyst obtained allowed for a direct production of bioethanol from rice straw. The
immobilization of laccase and cellulase on chiral mesoporous silica loaded with GO sheets
was used for an environmental application—the degradation of methoxychlor in simulated
polluted soils [130]. Here, the role of GO is to increase thermal and acid stability as well
as reusability of the nanobiocatalyst. The attachment of lysozyme along with cellulase on
magnetic NPs functionalized with amino groups allows for degradation of cell walls, thus,
more efficient hydrolysis [23]. The covalent immobilization of cellulase and α-amylase (de-
grading starch) was carried out on amino-functionalized silica coated Fe3O4 NPs [93]. This
magnetic nanobiocatalyst showed an excellent performance in extraction of anthocyanin
from black rice and could be recommended for other food industry applications due to
easy recovery and high efficiency.

A combination of covalently attached xylanase and cellulase improved cellulose
degradation [62,70,131]. Xylanase allows for xylan hydrolysis [132] and is also employed
for removal of the hemicellulose coating from cellulose microfibrils, leading to easier
cellulose hydrolysis [133]. A covalent attachment of xylanase, cellulase, and amylase-
cum-glucanotransferase on magnetic NPs yielded a multifunctional and magnetically
recoverable catalyst for efficient saccharification of biomass [133]. Amylolytic glucan-
otransferase degrades starch [134], thus providing a more comprehensive hydrolysis of
biomass waste.

A biocatalyst containing immobilized laccase, cellulase, and β-glucosidase has been
studied in saccharification of four lignocellulosic biomass sources, such as Typha angustifolia,
Arundo donax, Saccharum arundinaceum, and Ipomoea carnea [135]. The results showed
that co-immobilization of three enzymes allows for an efficient, one-pot pretreatment
for the bioethanol production. A cocktail of enzymes, such as cellulases, hemicellulases,
chitinases, esterases, amylases, etc. found in holocellulase from Aspergillus niger SH3 was
immobilized on several different NP classes and showed promise in hydrolysis of paddy
straw pretreated with alkali [136]. The significant advantage of this approach is all enzymes
are produced at the same time, do not require purification, and significantly simplify the
nanobiocatalyst fabrication.

The same avenue was utilized by Muley et al. using fermentation broth of the
Aspergillus niger culture containing cellulase, pectinase, and xylanase and covalently
immobilizing them on magnetic NPs [26]. Here, pectinase degrades pectin, which im-
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proves saccharification of pectin-rich biomass [137]. A mixture of cellulase, xylanase, and
β-1,3-glucanase (degrading glucan chitosan) were attached to silica coated iron oxide NPs
containing amino groups on periphery and used for hydrolysis of sugar cane bagasse pulp
into monomeric sugars with high activity and reusability (Figure 9) [138].
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Four different enzymes, such as laccase, cellulase, β-galactosidase, and transglutami-
nase were either cross-linked forming CLEA or crosslinked in the presence of iron oxide
NPs [139]. Magnetic CLEA allowed for easy catalyst separation, but in general, the authors
did not demonstrate a remarkable enhancement of hydrolytic processes despite a combina-
tion of enzymes. This work reveals that lignocellulosic biomass hydrolysis can be inhibited
by some other substances or factors, which the authors did not take into account.

Sometimes additional enzymes are immobilized along with cellulase to alter the final
product of biomass waste hydrolysis. For example, the covalent attachment of cellulase and
glucose oxidase on GO allowed for a direct transformation of cellulose to gluconic acid [28].
Concurrent covalent immobilization of four enzymes—cellulase, β-glucosidase, glucose
oxidase, and horseradish peroxidase—on amino-functionalized magnetic NPs created a
nanobiocatalyst for the cascade hydrolysis of cellulose to glucose [24].

A robust method for a covalent co-immobilization of enzymes has been developed by
Dedisch et al. via adhesion-promoting peptides called Matter-tags [140]. The authors used
three Matter-tags—Cecropin A (CecA), liquid chromatography peak I (LCI), and Tachystatin
A2 (TA2)—that were connected to a green fluorescent protein and two enzymes, phytase
and cellulase. It was discovered that LCI is a universal adhesion promoter, which allowed
for immobilization of both enzymes on various polymers, metals, and silicon wafer within
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~10 min at ambient temperature. The authors believe any enzymes can be immobilized in
this way, making it a universal platform for the multiple enzyme immobilization.

5. Strategies to Improve Interactions between Immobilized Cellulase and
Cellulosic Biomass

It is noteworthy that one of the problems of catalyzing the hydrolysis of cellulosic
biomass with immobilized cellulase is interactions of two solids. To counteract this short-
coming, an interesting strategy for the development of the support was utilized by modifi-
cation of a copolymer of methacrylic acid and methyl methacrylate which is pH-responsive
and allows a phase transition between soluble and insoluble forms [141]. A functionaliza-
tion of this polymer with iminodiacetic acid (IDA) and Ni2+ ions created immobilization
points for His-tagged endoglucanase EG5C-1 (cellulase) due to its affinity interaction with
Ni2+ (Figure 10). The ability of this biocatalyst to be reversibly transformed between
soluble/insoluble phases allowed for better interactions with cellulose at high pH and
separation in an insoluble form when pH is decreased after the reaction.
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To allow a switchable temperature–pH dual-responsive material, Zhu et al. synthe-
sized a random copolymer from single-strand DNA-functionalized acrylamide monomer
N-isopropylacrylamide, and N-isopropylmethylacrylamide [142]. Cellulase was physically
encapsulated in the hydrogel at pH 5.4, which could be further released at pH 7.4 when the
hydrogel becomes unstable and hydrolyzes cellulose.
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6. Conclusions

Nanobiocatalysts based on cellulase immobilized on nanostructured supports have
been utilized mainly for catalytic hydrolysis of biomass waste as well as in food processing
and environmental applications. An analysis of the latest trends presented in this review
demonstrates that there were impressive innovations in the immobilization methods and
the support structures in the last five years. One of the most striking examples includes a
site-specific enzyme immobilization on a stimuli responsive microgel via sortase-mediated
enzyme immobilization, thus, making immobilization more targeted and improving the
interaction with cellulose due to stimuli responsive support. The other example demon-
strates that an unusual structure of the support—wrinkled mesoporous silica NPs—allows
for an efficient a stable nanobiocatalysts obtained via a simple cellulase adsorption due
to the unique character and morphology of the support. Adsorbed cellulase was signifi-
cantly stabilized and activated due to modification of the support with charge changing
macromolecules or those altering the hydrophobicity-hydrophilicity balance. Support free
crosslinked enzyme nanoflowers allowed for the authors to achieve a similar goal due to
fluffy enzymatic structures with good affinity to cellulosic biomass.

We believe the co-immobilization of multiple enzymes on various supports is the
most promising avenue for the future nanobiocatalyst development. It could significantly
improve the outcome of cellulose saccharification to sugars or bioethanol due to efficient
hydrolysis of lignin, starch, etc., which accompany cellulose in biomass waste and are detri-
mental for cellulose hydrolysis. Multiple enzyme immobilization also allows one to obtain
completely different products from cellulosic biomass due to specific enzymes. Addition-
ally, the utilization of magnetically separable supports makes the biocatalyst preparation
more robust and facilitates biocatalytic processes due to magnetic nanobiocatalyst recovery.
Finally, the pathways to optimize the contact between the immobilized cellulase and cellu-
losic biomass via stimuli responsive materials appear favorable for further development of
nanobiocatalysts for cellulosic biomass processing.
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