
Nanomaterials 2022, 12, 3788. https://doi.org/10.3390/10.3390/nano12213788 www.mdpi.com/journal/nanomaterials

Supplementary material 

The pH Influence on the Water-Splitting Electrocatalytic  
Activity of Graphite Electrodes Modified with Symmetrically 
Substituted Metalloporphyrins 
Bogdan-Ovidiu Taranu 1,* and Eugenia Fagadar-Cosma 2,* 

1 National Institute for Research and Development in Electrochemistry and Condensed Matter, 
Dr. A. Paunescu Podeanu Street No. 144, 300569 Timisoara, Romania 

2 Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Ave. 24, 300223 Timisoara, Romania 
* Correspondence: b.taranu84@gmail.com (B.-O.T.); efagadar@yahoo.com or

efagadarcosma@acad-icht.tm.edu.ro (E.F.-C.)

Scheme 

Scheme S1. The chemical structures of: (a) Zn(II) 5,10,15,20-tetrakis(4-pyridyl)-porphyrin and 
(b) Co(II) 5,10,15,20-tetrakis(3-hydroxyphenyl)-porphyrin. 

Equations 
Equations (S1) – (S5) [1-3] were employed in the present study as follows: Equation 

(S1) was used to express the electrochemical potential values measured vs. the 
Ag/AgCl(sat. KCl) reference electrode against the Reversible Hydrogen Electrode (RHE); 
the O2 and H2 overpotential values were calculated with Equations (S2) and (S3), and the 
Tafel slope was determined with Equation (S4). Eୖୌ୉ =  E୅୥/୅୥େ୪ሺୱୟ୲.  ୏େ୪ሻ ൅ 0.059 × pH ൅ 0.197     (S1) η୓ଶ = Eୖୌ୉ െ 1.23 (S2) ηୌଶ = |Eୖୌ୉| (S3) η = b × logሺiሻ ൅ a          (S4) 

Where: ERHE is the reversible hydrogen electrode potential [V], EAg/AgCl(sat. KCl) is the 
potential vs. the Ag/AgCl (sat. KCl) reference electrode [V], ηO2 is the oxygen evolution 
overpotential and ηH2 is the hydrogen evolution overpotential [V], η is either the oxygen 
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or the hydrogen evolution overpotential [V], i is the current density [mA/cm2] and b is the 
Tafel slope. 

Equation (S5) is the Randles-Sevcik equation that can be employed to calculate the 
electroactive surface area (EASA) of an electrode, as well as the diffusion coefficient of the 
electroactive species. I୮ =  ሺ2.69 × 10ହሻ × nଷ/ଶ × A × Dଵ/ଶ × C × vଵ/ଶ      (S5) 

Where: Ip = the peak current [A]; n = the number of electrons involved in the redox 
process at T = 298 K; A = the surface area of the working electrode [cm2]; D = the diffusion 
coefficient of the electroactive species [cm2/s]; C = the bulk concentration of the electroac-
tive species [M] and v = the scan rate [V/s]. 

For the ferrocyanide/ferricyanide redox system used in the present study, n = 1 and 
the theoretical value of the diffusion coefficient reported in the literature is 6.7 x 10-6 cm2/s 
[4,5]. 

Figures 

 
Figure S1. Anodic polarization curves recorded in 0.1 M KCl solution on the graphite electrodes 
modified with ZnP, applied from: (a) DMSO, (b) DMF, (c) PhCN, (d) THF and (e) DCM. The samples 
are labelled according to Table 1 from the main text. G0 is the unmodified graphite electrode. 
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Figure S2. Anodic polarization curves recorded in 0.1 M KOH solution on the graphite electrodes 
modified with ZnP, applied from: (a) DMSO, (b) DMF, (c) PhCN, (d) THF and (e) DCM. The samples 
are labelled according to Table 1 from the main text. G0 is the unmodified graphite electrode. 

 
Figure S3. Anodic polarization curves recorded in 0.1 M KCl solution on the graphite electrodes 
modified with CoP, drop-casted from: (a) DMSO, (b) DMF, (c) CH3CN, (d) PhCN, (e) EtOH and (f) 
THF. The samples are labelled according to Table 1 from the main text. G0 is the unmodified graphite 
electrode. 
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Figure S4. Anodic polarization curves recorded in 0.1 M H2SO4 solution on the graphite electrodes 
modified with CoP, drop-casted from: (a) DMSO, (b) DMF, (c) CH3CN, (d) PhCN, (e) EtOH and (f) 
THF. The samples are labelled according to Table 1 from the main text. G0 is the unmodified graphite 
electrode. 

 

 
Figure S5. Cathodic polarization curves obtained in 0.1 M KCl solution on the graphite electrodes 
modified with ZnP, applied from: (a) DMSO, (b) DMF, (c) PhCN, (d) THF and (e) DCM. The samples 
are labelled according to Table 1 from the main text. G0 is the unmodified graphite electrode. 
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Figure S6. Cathodic polarization curves obtained in 0.1 M KOH solution on the graphite electrodes 
modified with ZnP, applied from: (a) DMSO, (b) DMF, (c) PhCN, (d) THF and (e) DCM. The samples 
are labelled according to Table 1 from the main text. G0 is the unmodified graphite electrode. 

 

 

 
Figure S7. Cathodic polarization curves obtained in 0.1 M KCl solution on the graphite electrodes 
modified with CoP, drop-casted from: (a) DMSO, (b) DMF, (c) CH3CN, (d) PhCN, (e) EtOH and (f) 
THF. The samples are labelled according to Table 1 from the main text. G0 is the unmodified graphite 
electrode. 
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Figure S8. Cathodic polarization curves obtained in 0.1 M H2SO4 solution on the graphite electrodes 
modified with CoP, drop-casted from: (a) DMSO, (b) DMF, (c) CH3CN, (d) PhCN, (e) EtOH and (f) 
THF. The samples are labelled according to Table 1 from the main text. G0 is the unmodified graphite 
electrode. 

Table 

Table S1. The OER and HER activities of GCoP-DMSO-1, of GZnP-DMF-1 and of several reported electrodes. 

Catalyst Substrate Electrolyte Overpotential [V] Tafel slope 
[V/dec] 

Catalysed re-
action Ref. 

Zn-TPP [a] graphene 0.5 M H2SO4 ~ 0.48  
at –3 mA/cm2 - HER [6] 

Zn-TAPP [b] graphene 0.5 M H2SO4 ~ 0.48  
at –3 mA/cm2 - HER [6] 

Zn-TPyP [c] graphene 0.5 M H2SO4 ~ 0.56  
at –3 mA/cm2 - HER [6] 

ZnTAPP-NA [d] GCE [e] 1 M KOH 0.546 
at –10 mA/cm2 0.121 HER [7] 

ZnTAPP-NA GCE 1 M KOH - 0.313 OER [7] 

CoTAPP-NA [f] GCE 1 M KOH 0.47  
at –10 mA/cm2 0.11 HER [7] 

CoTAPP-NA GCE 1 M KOH 0.416 
at 10 mA/cm2 0.068 OER [7] 

CoTcPP/ZrP [g] GCRDE [h] 0.1 M KOH 0.467 
at 10 mA/cm2 0.076 OER [8] 

(Co–P)0.5(Fe–P)0.5@CNT [i] GCRDE 0.1 M KOH 0.42 
at 10 mA/cm2 - OER [9] 

3,4,5-OMe-CoP/CNT [j] GCE 1 M KOH 0.482 
at 10 mA/cm2 0.081 OER [10] 

2,4,6-OMe-CoP/CNT [k] GCE 1 M KOH 0.5 
at 10 mA/cm2 0.09 OER [10] 

1/CNTs [l] RDE [m] 1 M KOH 0.407 
at 10 mA/cm2 0.06 OER [11] 

2/CNTs [n] RDE 1 M KOH 0.48 
at 10 mA/cm2 0.072 OER [11] 

1/MWCNT [o] GCE 0.1 M PBS 0.79 - OER [12] 
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at 10 mA/cm2 

1/MWCNT GCE 1 M KOH 0.48 
at 10 mA/cm2 - OER [12] 

1/MWCNT/Py-Py [p] GCE 0.1 M PBS 0.65 
at 10 mA/cm2 - OER [12] 

1/MWCNT/Py-Py GCE 1 M KOH 0.44 
at 10 mA/cm2 - OER [12] 

CoTPP-SD [q] CFP [r] 1 M KOH 0.475 
at –10 mA/cm2 - HER [13] 

CoTPP-SD CFP 1 M KOH 0.67 
at 10 mA/cm2 - OER [13] 

CoCOP [s] CFP 1 M KOH 0.31 
at –10 mA/cm2 0.161 HER [13] 

CoCOP CFP 1 M KOH 0.35 
at 10 mA/cm2 0.151 OER [13] 

CoTCPP [t] FTO/Ag 0.5 M H2SO4 0.666 
at –10 mA/cm2 0.264 HER [14] 

CoTCPP polymer [u] FTO/Ag 0.5 M H2SO4 0.475 
at –10 mA/cm2 0.197 HER [14] 

PIZA-1-400 [v] FTO 1 M KOH 0.43 
at 10 mA/cm2 0.052 OER [15] 

CeO2@PIZA-1-400 [w] FTO 1 M KOH 0.37 
at 10 mA/cm2 0.048 OER [15] 

CoTMPyP/ERGO [x] GCE 0.1 M KOH  0.347 
at –1 mA/cm2 0.099 HER [16] 

CoTMPyP/ERGO GCE 1 M KOH 0.315 
at –1 mA/cm2 0.096 HER [16] 

Co-MPPy-1 [y] RDE  1 M NaOH 0.42 
at 10 mA/cm2 0.058 OER [17] 

Co-2DP [z] Ti foil 1 M KOH 0.367 
at –1 mA/cm2 0.126 HER [18] 

rGO/(Ni2+–THPP/Co2+–THPP)8 [aa] RDE 1 M KOH 0.33 
at 10 mA/cm2 0.05 OER [19] 

CoP-2ph-CMP-800 [ab] GCE 1 M KOH 0.36 
at –10 mA/cm2 0.121 HER [20] 

CoP-3ph-CMP-800 [ac] GCE 1 M KOH 0.38 
at –10 mA/cm2 - HER [20] 

CoP-4ph-CMP-800 [ad] GCE 1 M KOH 0.44 
at –10 mA/cm2 - HER [20] 

CoP-2ph-CMP-800 GCE 1 M KOH 0.37 
at 10 mA/cm2 0.086 OER [20] 

CoP-3ph-CMP-800 GCE 1 M KOH 0.41 
at 10 mA/cm2 - OER [20] 

CoP-4ph-CMP-800 GCE 1 M KOH 0.43 
at 10 mA/cm2 - OER [20] 

(CoP)n-MWCNTs [ae] GCE 1 M KOH 0.29 
at 1 mA/cm2 0.055 OER [21] 

CoP-TIPS/MWCNTs [af] GCE 1 M KOH 0.44 
at 1 mA/cm2 - OER [21] 

[ERGO@CoTMPyP]7/ 
PDDA/4-ABA/GC [ag] GCE 0.1 M KOH 0.474 

at –1 mA/cm2 0.116 HER [22] 

GZnP-DMF-1 graphite 1 M KOH 0.52  
at –10 mA/cm2 0.15 HER This 

work 

GCoP-DMSO-1 graphite 0.5 M H2SO4 0.51  
at 10 mA/cm2 0.27 OER This 

work 
[a] Zn-TPP = 5,10,15,20-tetraphenyl-21H,23H-porphine 
[b] Zn-TAPP = 5,10,15,20-tetrakis(4-aminophenyl)-21H,23H-porphine 
[c] Zn-TPyP = 5,10,15,20-tetrakis(4-pyridyl)-21H,23H-porphine 
[d] ZnTAPP-NA = Zn(II) 5,10,15,20-tetra(4-aminophenyl)-21H,23H-porphyrin - ferrocene-1,1’-dicarbaldehyde 
[e] GCE = glassy carbon electrode 
[f] CoTAPP-NA = Co(II) 5,10,15,20-tetra(4-aminophenyl)-21H,23H-porphyrin - ferrocene-1,1’-dicarbaldehyde 
[g] CoTcPP/ZrP = Co(II) meso-tetra(4-carboxyphenyl)porphyrin/zirconium phosphate 
[h] GCRDE = glassy carbon rotating disk electrode 
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[i] (Co–P)0.5(Fe–P)0.5@CNT = hybrid formed by loading Co(II) tetrakis(pentafluorophenyl)porphyrin and Fe(III) chloride 
tetrakis(pentafluorophenyl)porphyrin on carbon nanotubes 
[j] 3,4,5-OMe-CoP/CNT = Co(II) 5,10,15,20-tetra(3,4,5-trimethoxyphenyl)porphyrin / carbon nanotubes 
[k] 2,4,6-OMe-CoP/CNT = Co(II) 5,10,15,20-tetra(2,4,6-trimethoxyphenyl)porphyrin / carbon nanotubes 
[l] 1/CNTs = Co(II) tetra(phenyl)porphyrin / carbon nanotubes 
[m] RDE = rotating ring-disk electrode 

[n] 2/CNTs = Co(II) tetra(pentafluorophenyl)porphyrin / carbon nanotubes 
[o] 1/MWCNT = Co(II) tetraphenylporphyrin immobilized on multi-walled carbon nanotubes 
[p] 1/MWCNT/Py-Py = nanocomposite with pyrene-pyridine hybrid used as an axial ligand to bridge Co(II) tetraphenylporphyrin 
immobilized on multi-walled carbon nanotubes 
[q] CoTPP-SD = Co(II) 5,10,15,20-tetrakis(4-aminophenyl)porphyrin – salicylaldehyde 
[r] CFP = carbon fibre paper 
[s] CoCOP = Co(II) 5,10,15,20-tetrakis(4-aminophenyl)porphyrin-based covalent organic polymer 
[t] CoTCPP = Co(II) meso‐tetra(4‐carboxyphenyl)porphyrin 
[u] CoTCPP polymer = crystalline Co(II) meso‐tetra(4‐carboxyphenyl)porphyrin-based polymeric system 
[v] PIZA-1-400 = Co(II) 5,10,15,20-(4-carboxyphenyl)porphyrin network thin film calcined at 400 °C 
[w] CeO2@PIZA-1-400 = Co(II) 5,10,15,20-(4-carboxyphenyl)porphyrin network thin film with encapsulated CeO2 and calcined at 
400 °C 
[x] CoTMPyP/ERGO = tetrakis(N-methylpyridyl)porphyrinato cobalt / electrochemically reduced graphene oxide 
[y] Co-MPPy-1 = Co(II)-porphyrin / pyrene comprised conjugated microporous polymer 
[z] Co-2DP = multilayer 2D polymer based on Co(II) 5,10,15,20-tetrakis(4-aminophenyl)-21H,23H-porphyrin and 2,5-dihydroxy-
terephthalaldehyde 
[aa] rGO/(Ni2+–THPP/Co2+–THPP)8 = multilayer structure based on Ni(II) and Co(II) 5,10,15,20-tetrakis(4-hydroxyphenyl)porphy-
rins assembled on reduced graphene oxide sheets 
[ab] CoP-2ph-CMP-800, [ac] CoP-3ph-CMP-800 and [ad] CoP-4ph-CMP-800 = conjugated mesoporous polymer based on Co-porphy-
rins and pyrolyzed at 800 oC 
[ae] (CoP)n-MWCNTs = multilayer covalent Co(II) 5,10,15,20-tetraethynyl-porphyrin framework on multi-walled carbon nanotubes 
[af] CoP-TIPS/MWCNTs = Co(II) 5,10,15,20-tetrakis(triisopropylsilylethynyl)porphyrin mixed with multi-walled carbon nanotubes 
[ag] [ERGO@CoTMPyP]7/PDDA/4-ABA/GC = multilayer films containing tetrakis(N-methylpyridyl)porphyrinato cobalt, on 
treated glassy carbon electrode 
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