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Abstract: Since the discovery of the quantum Hall effect in 1980, it has attracted intense interest
in condensed matter physics and has led to a new type of metrological standard by utilizing the
resistance quantum. Graphene, a true two-dimensional electron gas material, has demonstrated the
half-integer quantum Hall effect and composite-fermion fractional quantum Hall effect due to its
unique massless Dirac fermions and ultra-high carrier mobility. Here, we use a monolayer graphene
encapsulated with hexagonal boron nitride and few-layer graphite to fabricate micrometer-scale
graphene Hall devices. The application of a graphite gate electrode significantly screens the phonon
scattering from a conventional SiO2/Si substrate, and thus enhances the carrier mobility of graphene.
At a low temperature, the carrier mobility of graphene devices can reach 3 × 105 cm2/V·s, and at
room temperature, the carrier mobility can still exceed 1 × 105 cm2/V·s, which is very helpful for the
development of high-temperature quantum Hall effects under moderate magnetic fields. At a low
temperature of 1.6 K, a series of half-integer quantum Hall plateaus are well-observed in graphene
with a magnetic field of 1 T. More importantly, the ν = ±2 quantum Hall plateau clearly persists up to
150 K with only a few-tesla magnetic field. These findings show that graphite-gated high-mobility
graphene devices hold great potential for high-sensitivity Hall sensors and resistance metrology
standards for the new Système International d’unités.

Keywords: Graphene; hBN; heterostructure; field-effect devices; carrier mobility; quantum Hall effect

1. Introduction

The quantum Hall effect (QHE) is a perfect phenomenon that reflects the microscopic
quantum physics behavior in the mesoscopic scale. It has attracted great attention since
it was discovered in 1980 [1]. Charged particles moving rapidly along the edge channels
are not affected by impurities or disorders, forming a one-dimensional conductive channel
with quantum conductivity of e2/h. Considering that Landau levels are discrete, each
Landau level will form an edge channel, so the number of Landau levels or filling factors
that have been filled determines the quantized Hall conductance [2], and the Hall resistance
platform at this time corresponds to (h /e2)/n. Since the quantum Hall resistance is
determined by Planck constant h and the basic constant e of electron charge, it also leads
to the establishment of a new resistance measurement standard. At present, the standard
is implemented in GaAs/AlGaAs heterostructure devices [3], which usually require the
experimental magnetic field strength B ≈ 10 T and measurement under the condition of
T ≈ 1.3 K [4,5]. This experimental condition requires low-temperature liquid-helium and
a very strong magnetic system, which is very strict for realistic applications. Alternatively,
the quantum anomalous Hall effect (QAHE) [6–9], the quantum case of the anomalous Hall
effect [10–12], is a transport phenomenon where the Hall resistance is quantized to the von
Klitzing constant due to the spontaneous magnetization of a ferromagnetic material even
at zero magnetic field. Similar to the QHE under strong magnetic fields, the quantized
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Hall resistance of QAHE is also supposed to be universal, independent of the experimental
details. However, the quantization accuracy of QAHE reported so far is much worse than
that of QHE [13–15]. In addition, in the present study, all the precision measurements
of QAHE were performed at extremely low temperatures below 300 mK [16]. To make
the QAHE-based resistance standard more practical, a further increase in the operating
temperature would be required.

Recently, a more accurate and practical quantum Hall resistance standard has been
rapidly developed by utilizing the unique electronic characteristics of graphene [17–21].
Compared with traditional GaAs/AlGaAs heterostructure devices, graphene devices can
observe the QHE at higher temperatures and lower magnetic fields [22]. The reason why
graphene can show QHE in a low magnetic field is that the energy interval between the
first two Landau levels [21,23] is ∆EGraphene= 36

√
B meV/T1/2, which is much larger than

∆EGaAs= 1.7B meV/T of traditional GaAs/AlGaAs heterostructure devices [22]. Therefore,
the Hall resistance of graphene can be accurately quantified to h/

(
2e2) in such a low

magnetic field. However, to achieve such accuracy, graphene quantum Hall devices also
need to have high carrier mobility. Previous studies have shown that graphene devices with
a carrier mobility of 1.5 × 104 cm2/V·s can exhibit good QHE at T = 4 K and B = 14 T, and
they discovered the QHE in graphene occurs at a half-integer filling factor [23]. Additionally,
chemical vapor deposition (CVD) grown graphene [24] with a high carrier mobility of
6 × 105 cm2/V·s shows a fractional quantum Hall effect (FQHE) at T = 0.3 K and B = 12 T.
Room-temperature QHE [25] is early discovered at a very large magnetic field of B = 45 T.
Therefore, in order to achieve higher performance of graphene quantum Hall devices
under relaxed conditions, high carrier mobility is required. Recently, the discovery of
other two-dimensional (2D) crystals, such as hexagonal boron nitride (hBN), leads to
the emergence of a van der Waals (vdW) heterostructure using a layer-to-layer assemble
strategy. The properties of vdW heterostructures can be precisely controlled by adjusting
the type of 2D component materials, the number of layers, and the band alignment, which
is critical from both fundamental and application points of view. For instance, it has been
shown that the hBN encapsulation significantly reduces the scattering in graphene and thus
dramatically enhances the carrier mobility of graphene [26–28]. The vdW heterostructure
that combining hBN and graphene have led to the discovery of many exciting phenomena
including Hofstadter’s butterfly, Coulomb drag, and fractional quantum Hall effect, as well
as many functional devices such as tunneling field-effect transistors [29–33].

Here, we fabricate a monolayer graphene (MLG) Hall device encapsulated with hBN,
the fabrication process is shown in Supplementary Material Section 1. The device uses
few-layer graphite (FLG) as gate electrodes and one-dimensional Cr/Au edge electrodes.
By utilizing the advanced graphite gate device architecture, the hBN/MLG/hBN vdW het-
erostructure device demonstrates ultra-high carrier mobility at both room temperature and
low temperature, leading to observation of the QHE at an elevated temperature of 150 K
and a moderate magnetic field below 8 T. Our results show that for metrology, this may
provide a new idea for quantizing Hall resistance benchmark [34]; and for magnetic field
detection, graphene also has significant performance advantages in the field of Hall sensors
with ultra-high sensitivity [35].

2. Results and Discussions

Figure 1a shows the optical image of the device. Our graphene device is made of
vdW heterostructure on a silicon substrate as it shows in Figure 1b. The heterostructure is
mainly composed of exfoliated MLG, which is encapsulated with hBN as the dielectric layer.
The Raman spectra of hBN/MLG/hBN is shown in Figure 1c, the characteristic peak of hBN
is at 1366 cm−1 and the characteristic G and 2D peak of monolayer graphene is at 1578 cm−1

and 2678 cm−1, respectively. We notice the G peak intensity of graphene is rather low due
to the coverage of hBN, but the 2D peak is symmetrical, which accords with the Raman
2D peak of monolayer graphene. The low charged defect density in hBN can improve
the carrier mobility [36], and then FLG is used as the graphite-gated electrode to shield
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the disorder of charged impurities in the silicon substrate [37], which can also improve
the carrier mobility and reduce the inhomogeneity of charge [38,39]. At the same time, in
order to reduce the contact resistance between graphene and metal electrode and realize
the accurate measurement of the QHE, we use a one-dimensional edge contact method
to realize the ability of high-quality electrical contact [28]. Compared with conventional
surface contact [40–43], edge contact can reduce the doping of graphene in the process of
metal evaporation [44,45], and can effectively reduce the contact resistance, so as to achieve
high electronic performance [46] and make the carrier mobility of graphene devices close
to the limit [21].
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Figure 1. (a) Optical microscope image of the graphene quantum Hall device. (b) Schematic
of the cross-section view of the hBN/MLG/hBN vdW heterostructure device. (c) Raman spec-
tra of the hBN/MLG/hBN vdW heterostructure. The wavelength of laser is 532 nm, see
Supplementary Material Section 2.

We first measured the electronic transport properties of the device at room temperature
(290 K) and low temperature (1.6 K) by using standard low-frequency locking technology
under small ac bias (100 nA) to measure the four-probe longitudinal (Rxx) and Hall re-
sistance (Rxy) and applied the graphite-gate voltage Vg to adjust the carrier density, the
measurement set-up is shown in Figure S3. Figure 2a,d plot the longitudinal resistance of
graphene as a function of applied gate voltage (Rxx-Vg) under room temperature (290 K)
and low temperature (1.6 K). The gate voltage changes the carrier concentration n and
thus the resistance of graphene through the capacitance of MLG/hBN/FLG. In consider-
ation of the thickness of the bottom hBN flake, a graphite-gate capacitance per area A of
Cg/A = ”0”r/e dhBN ≈ 6 × 1011 cm−2 V−1, where ”0 is the dielectric constant, ”r ≈ 3.9
is the relative permittivity of hBN, e is the electron charge and dhBN= 36 nm is the thickness
of the bottom hBN flake [47]. In Figure 2a, the device showed the charge-neutrality point
(Dirac point, DP) situated close to zero gate voltage, VDP= −0.17 V at room temperature
T = 290 K. The intensity of the peak in Figure 2a,d represents the largest resistance of
graphene at the DP of graphene, while the width of the peak represents the broadening
of the DP, mainly caused by the electron-hole puddles in our devices. For graphene near
the DP, the concentration of thermally excited carriers ∆nT can be estimated as: (T/}vF)

2,
where T is temperature, } is reduced Planck constant, and vF is Fermi velocity. Therefore,
the resistance at DP increases with decreasing temperature, as shown in Figure 2a,d.
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Figure 2. (a) Longitudinal resistance Rxx as a function of gate voltage (Vg) at 290 K under small
ac bias current (100 nA). (b) The inverse longitudinal resistance Rxx as a function of the charge
carrier density n. The residual charge carrier fluctuation is calculated by the intercept of two lines.
(c) Carrier mobility µ as function of charge carrier density n for |n| > 5.7 × 1010 cm−2. (d,e) Same
as (a,b), but measured at T = 1.6 K. (f) Carrier mobility µ as a function of charge carrier density
n for |n| > 1.7 × 1010 cm−2~2.4 × 1010 cm−2.

The width of the Rxx peak represents the broadening of the DP, namely, how closely
can one approach the DP in graphene. Many theoretical works predict that graphene
exhibit σmin = e2/h even at vanishing charge density, the DP. However, in a realistic sample
charged impurities or structural disorder break up the carrier system into puddles of elec-
trons and holes for Vg near the VDP. As a result, the combined (electron plus hole) carrier
density in “dirty” graphene never drops below a value ∆n, referred to as inhomogeneity
density. Both the thermally activated carriers and phonon scattering process increase with
increasing temperature, leading to a broadened ∆n and width of the Rxx-Vg peak in Figure 2.
In Figure 2a,d, the experimental observation that the peak widths increase and the intensity
decrease with the increase of the temperature are in good agreements with previous reports
in high-quality graphene devices.

The residual charge carrier fluctuation is n∗= 5.7× 1010 cm−2 and the charge car-
rier mobility µ is calculated by using Drude formula œ = ne¯, where œ is the elec-
trical conductivity [48]. It can be observed that the mobility of the device can reach
around 1× 105 cm2/V s, see Figure 2c. Then, we cooled down the device in a 4He cryo-
stat system to 1.6 K, the residual charge carrier fluctuation decreases to 1.7 × 1010 cm−2

∼ 22.4 × 1010 cm−2 and the mobility increases to 3 × 105 cm2/V s close to the DP, see
Figure 2f. Figure 2c,f represent the field-effect carrier mobility as a function of carrier
concentration in graphene. The x-axis is the carrier concentration of graphene, which can
be tuned from electron side (positive n) to hole side (negative n) by apply a gate voltage
(Vg). The carrier fluctuation (referred as ∆n) is determined by the fitting in Figure 2b,d. As
shown in Figure 2c,f, the field-effect carrier mobility of graphene is carrier-concentration-
dependent. The behavior of non-constant µ(n) may originate from different scattering
efficiency for a particular type of defects in graphene. An alternative explanation consistent
with the behavior of µ(n) is the renormalization of the Fermi velocity vF, as previously
observed in high-mobility suspended graphene devices [49–51]. In principle, the valence
band (hole doping) and the conduction band (electron doping) are symmetric and the
contribution of hole and electron to the carrier mobility is equal in in freestanding perfect



Nanomaterials 2022, 12, 3777 5 of 10

graphene sheet. As shown in Figure 2c,f, the extracted carrier mobilities of hole and electron
are slight asymmetric, which may originate to the substrate-induced scattering and the
electron-hole puddles in graphene. We also compared the device performance of graphene
on different substrates, which is shown in Supplementary Material Section 4.

As shown in Figure 3a, under fixed gate voltage (Vg = 0.5 V) and low temperature
(T = 1.6 K), the overall positive Rxy indicates that the contribution is mainly from electrons.
Under a low magnetic field, the QHE shows clear Shubnikov-de Haas (SdH) oscillations.
With the increase of the magnetic field, Rxy appears plateaus and Rxx is vanishing, which is
the typical QHE [52,53]. Multiple plateaus are clearly observed in the Rxy measurements.
For the filling factors ν = 2 and ν = 6, the magnetic fields range from 1.88 T to 2.36 T
(ν = 2) and from 0.77 T to 0.82 T (ν = 6), respectively. Therefore, the ν = 2 plateau has
the widest range of magnetic field in all the Rxy plateaus, which can be utilized as the
quantum resistance standard. In Figure 3b, we adjust Vg at a fixed magnetic field (B = 1 T)
and low temperature (T = 1.6 K) to access the quantum Hall plateaus. The lowest point
of longitudinal resistance Rxx corresponds to the plateaus of the Hall resistance, and the
quantum Hall plateaus of v = ±2, ±6, ±10, ±14, ±18 are clearly observed. The QHE in
graphene is different from the conventional QHE because the quantization is turned into a
half integer, R−1

xy = v
(
e2/h

)
, where the filling factor v = ±4 (n+1/2), n is a non-negative

integer, the negative filling factor represents the quantum Hall effect (Rxy) in the hole
doping regime, while it is positive for electron doping. In Figure 3c, we show the change of
longitudinal resistance Rxx with the regulation of gate voltage (Vg) and magnetic field (B),
in which we can see the typical fan of Landau levels. The black-colored areas indicate
the vanish of Rxx, which means the Landau levels at these areas are clearly visible [54].
At magnetic field B > 0.5 T, Rxy(B) exhibits plateaus and Rxx is vanishing, which are the
hallmarks of the QHE. At least two well-defined plateaus with values (2e2/h) and (6e2/h),
followed by a developing (10e2/h) plateau, are observed before the QHE features transform
into SdH oscillations at a lower magnetic field. We observed the equivalent QHE features
for holes with negative Rxy values. Alternatively, we can probe the QHE in both electrons
and holes by fixing the magnetic field B = 1 T and changing Vg across the Dirac point. In
this case, as Vg increases, first holes (Vg < VDP) and later electrons (Vg > VDP) fill successive
Landau levels and exhibit the QHE, as shown in Figure 3b. For a fixed magnetic field, the
periodicity of Rxx oscillation in carrier concentration is given by:

∆n = α∆Vg = 4B/Φ0

where ∆Vg is the periodicity in gate voltage and Φ0 = h/2e is the flux quanta. The factor
“4” corresponds to the four-fold spin and valley degeneracy in graphene.

To further support the high performance of the device, we also measured the transport
properties by changing the magnetic field at relatively high temperatures of 100 K and
150 K, and we observe that the device can also show hall plateau values of h/±2e2. As
shown in Figure 4a, at the temperature of 100 K, with the continuous enhancement of
the magnetic field, the hall plateau values of h/±2e2 are gradually obvious. Similarly,
at the temperature of 150 K, the same phenomenon can be observed. The reason why
the QHE can be observed at such high temperatures is the large cyclotron gaps of Dirac
fermions in graphene, which is }!c. Their energy in the magnetic field is quantified as
EN= vF

√
|2e}BN|, where vF ≈ 106 m/s is the Fermi velocity and N is the integer of

Landau level [21,23]. The energy gap at B = 12 T between N = 0 and ± 1 is ∆E ≈ 1449 K,
which means that even with the high temperature of 150 K in our experiment, }!c is about
10 times bigger than the thermal energy kBT. We also measured at T = 200 K and B = 12T,
where we can we can barely see the quantum hall plateaus, see Figure S6. The higher
the temperature goes, the more the mobility decreases, and we need a much stronger
magnetic field to observe the QHE. Moreover, graphene devices have a very high carrier
concentration occupied with a single 2D sub-band, which can completely fill the lowest
Landau level under a high magnetic field; secondly, our graphene devices still have a high
carrier mobility of 1× 105 cm2/V·s at room temperature, which is proportional to scattering



Nanomaterials 2022, 12, 3777 6 of 10

time τ. Additionally, the scattering time of our device can reach τ~10−12 s, so the condition
of ωcτ = µ · B � 1 can be reached at a low magnetic field of several T, compared with
the Hall devices based on GaAs/AlGaAs heterostructures [3], HgTe quantum wells [55],
and SiO2 supported graphene [25], which usually require magnetic fields above 20 Tesla to
achieve the quantum Hall effect above the nitrogen temperatures (>77 K). However, we
cannot observe the plateaus at 100 K and 150 K with a too low magnetic field (0.1 T), see
Figure S7. Generally speaking, in order to eliminate the influence of thermal fluctuation on
the measurement, the observation of QHE requires a low temperature. On the one hand,
we need to study quantum phenomena under extreme environmental conditions, while on
the other hand, the more stable quantum state is also important for the actual measurement
under relaxed experimental conditions.
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magnetic field (from B = 2 T to 12 T). The horizontal gray lines indicate the hall plateau values of
h/±2e2. (b) Same as (a), but measured at T = 150 K.
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3. Conclusions

In summary, we report high-quality graphene field-effect devices by hBN encapsu-
lation and local graphite bottom gate electrodes. Electrical transport experiments show
that the graphene devices exhibit very high carrier mobility in both electron and hole sides.
For the electron doping regime, the mobility exceeds 105 cm2/V·s and 3 × 105 cm2/V·s at
room temperature (290 K) and cryogenic temperature (1.6 K). The residual charge carrier
fluctuation is only about 1010 cm−2, indicating the great purity and homogeneity of the
graphene devices. The well-defined low carrier concentration in graphene makes it ideal for
an ultra-sensitive Hall sensor with a current-related sensitivity of SI~ 500 V/(AT) at room
temperature, which surpasses both silicon-based Hall sensors and the best Hall sensors
based on III/V semiconductors. Further, benefiting from the high carrier mobility, the inte-
ger quantum Hall effect is finely developed in graphene under a perpendicular magnetic
field below 1 T at low temperature. More surprisingly, clear quantum plateaus at ν = 2 in
graphene can even persist at an elevated temperature of 150 K, far above the liquid nitrogen
temperature. At the same time, the required magnetic field for the high-temperature quan-
tum Hall effect is only about 5 T, which can be realized by commercial superconducting
solenoids. The relaxed conditions of quantum Hall effect in graphene, including high
temperatures and small magnetic fields, will open new routes for the development of
graphene-based resistance standards for the new Système International d’unités.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12213777/s1, Figure S1: (a–c) Preparation of slide for transfer;
Figure S2: (a–f) Fabrication process of hBN/MLG/hBN/FLG heterostructure; Figure S3: The method
of electrical measurement; Figure S4: Graphene Hall bar devices on different substrates. Optical
microscopy images of (a) graphene device on SiO2 substrate and (b) hBN encapsulated graphene
(Gr) device on graphite (Gra) local gate. Measured longitudinal resistivity of (c) SiO2-supported
graphene device and (d) graphite-gated graphene device. VDP refers to the gate voltage for the
Dirac point of graphene; Figure S5: Carrier concentration dependence of transport properties of
graphene devices on different substrates. The conductivity as a function of the charge carrier density
n for (a) SiO2-supported graphene devices and (b) graphite-gated graphene device. The residual
charge carrier fluctuation is calculated by the intercept of two lines. Carrier mobility µ as function of
charge carrier density (c) SiO2-supported graphene devices and (d) graphite-gated graphene device;
Figure S6: (a) Rxx and Rxy at 200 K under a big magnetic field of 12 T. (b) Filling Factor of Rxy as a
function of graphite-gate voltage at T = 200 K and B =12 T; Figure S7: (a) Rxy and Filling Factor as a
function of graphite-gate voltage at T = 100 K at B = 0.1 T. (b) Same as (a) but measured at T = 150 K.
References [56,57] are cited in the supplementary materials.
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