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2Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, 10691 Stockholm, Sweden
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S1. LOW-ENERGY MODEL FOR TRILAYER GRAPHENE

We consider the low energy model for rhombohedral trilayer graphene (RTG) [1–4]. We use the notation by Szabó
and Roy in Ref. [4]. Considering the Nambu (particle-hole), sublattice (or layer), valley and spin degrees of freedom,
the single-particle Hamiltonian for noninteracting electrons is given by,

H0 = α [f1(k)Γ3031 + f2(k)Γ3002] + uΓ3003 − µΓ3000, (S1)

where α = t30a
3/t⊥, a is the lattice spacing, f1(k) = kx(k2

x − 3k2
y), f2(k) = −ky(k2

y − 3k2
x). The form factors f1(k)

and f2(k) transform under A1u and A2u irreducible representations of D3d point group of the RTG. Momentum k is
measured from the respective valleys (band touching points). Electron (hole) doping corresponds to µ > 0 (µ < 0).
The sixteen-dimensional matrices are Γµνρλ = ηµσντρβλ. Four sets of Pauli matrices {ηµ}, {σν}, {τρ} and {βλ}
operate on the particle-hole, spin, valley and sublattice indices, respectively, with µ, ν, ρ, λ = 0, · · · , 3.

S2. OPTICAL CONDUCTIVITY IN THE KUBO LINEAR-RESPONSE FORMALISM

In the Kubo linear-response formalism, the optical conductivity σij(Ω) is expressed in terms of the polarization
tensor Πij by the following relation:

σij(Ω) = lim
iΩn→Ω+i0+

iΠij(iΩn)

Ω
, (S2)

where the polarization tensor is expressed by the auto-correlation function between the currents

Πij(iΩn) = −e2T

∞∑
n=−∞

∫
d2k

(2π)2
Tr [v̂iG(iωn + iΩn,k)v̂jG(iωn,k)] . (S3)
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Here v̂i = ∂H/∂ki, ωn = (2n+1)πT are the fermionic Matsubara frequencies, and we defiend the (finite temperature)
Green´s function for the Hamiltonian Eq.(S1) by

G(iωn,k) =
1

iωn −H
=

1

(iωn + µ)− H̃
, (S4)

where H̃ is just H|µ=0.

S3. PARAMAGNETIC METAL

We do not consider superconductivity in our model, and hence the Nambu indices can be omitted. Moreover, we
will focus in the paramagnetic case, where the spin indices are trivial. We can therefore write the noninteracting
low-energy Hamiltonian as,

H0 = α [f1(k)Γ31 + f2(k)Γ02] + uΓ03 − µΓ00, (S5)

where now Γρλ = τρβλ and again, {τρ} and {βλ} are the sets of Pauli matrices that act on the valley and sublattice
(layer) indices, respectively. The paramagnetic nature of the metallic state indicates that it is spin-singlet, for
which there are three candidates: Valence bond order (A1), bond current (A2) and smectic charge-density-wave (E),
respectively, represented by the matrices [4]

Γρ1,Γρ2, and (Γρ0,Γρ3),

with ρ = 1, 2. Their irreducible representations in the D3 group, which is a subgroup of D3d point group of RTG,
are shown inside the parentheses. Here ρ = 1, 2 explicitly account for the valley mixing in this phase, which implies
the lowering of the symmetry from D3d down to D3. The smectic charge-density-wave (sCDW) also breaks rotational
symmetry about the z direction, generated by Γ33.

A. Valence bond order

In this section we consider the valence bond order (VBO) in our model. The operator representing the VBO is
given by:

HVBO = ∆1Γ11 + ∆2Γ21, (S6)

therefore the total Hamiltonian that includes this VBO contribution is:

H = H0 +HVBO. (S7)

In order to calculate the optical conductivity defined by Eq.(S2), we first compute the Green’s function from Eq.(S4).

For the VBO case, the different terms in H̃ anticommute, so it is straightforward to find

G(iωn,k) =
1

(iωn + µ)− H̃
=

(iωn + µ) + H̃

(iωn + µ)2 − H̃2
=

(iωn + µ) + H̃

(iωn + µ)2 − (u2 + α2k6 + ∆2)
, (S8)

where we have defined ∆2 = ∆2
1 + ∆2

2. To evaluate the polarization tensor Eq. (S3), we also need to compute the
velocities v̂x and v̂y, which are explicitly given by

v̂x = α
[
3(k2

x − k2
y)Γ31 + 6kxkyΓ02

]
, v̂y = α

[
−6kxkyΓ31 + 3(k2

x − k2
y)Γ02

]
. (S9)

We now compute the components Πxy(iΩn) and Πxx(iΩn) combining Eq.(S8) and Eq.(S9) to obtain

Tr [v̂xG(iωn + iΩn,k)v̂yG(iωn,k)] =
72α4kxkyk

8

[(iωn + µ)2 − (u2 + α2k6 + ∆2)] [(iωn + iΩn + µ)2 − (u2 + α2k6 + ∆2)]
(S10)

Tr [v̂xG(iωn + iΩn,k)v̂xG(iωn,k)] = −
36α2k4

[
u2 + α2(k2

x − k2
y)k4 + ∆2 − (iωn + µ)(iωn + iΩn + µ)

]
[(iωn + µ)2 − (u2 + α2k6 + ∆2)] [(iωn + iΩn + µ)2 − (u2 + α2k6 + ∆2)]

(S11)
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Notice from the above expressions that Πxy = 0 after integration over the momenta, as expected since time reversal
symmetry (TRS) is not broken. Having calculated the trace, we now proceed to do the sum over the Matsubara
frequencies and the integral over momenta.

The expression in Eq. (S11), at finite temperature, involves an infnite sum over Matsubara frequencies, that can
be performed analytically, to obtain

T
∑
n∈Z

Tr [v̂xG(iωn + iΩn,k)v̂xG(iωn,k)] =
72α2k4

(
u2 + ∆2 + α2k4k2

x

)
E(k) [4E2(k) + Ω2

n]

∑
s=±

s nF [sE(k)− µ] . (S12)

Here, we defined the dispersion relation

E(k) =
√
α2k6 + u2 + ∆2, (S13)

and the Fermi distribution function is

nF (z) =
(
ez/T + 1

)−1

. (S14)

The analytic continuation to real frequency, given by the prescription iΩn → Ω + i0+, allows us to obtain the
expression for the polarization tensor

Πxx(Ω) = 72e2α2

∫
d2k

(2π)2

k4
(
u2 + ∆2 + α2k4k2

x

)
E(k)

[
4E2(k)− (Ω + i0+)

2
] {nF (E(k)− µ)− nF (−E(k)− µ)} . (S15)

Upon performing the angular integral first, and subsequently change the variables k5dk = (3α2)−1EdE, where the

integration domain k ≥ 0 maps into E ≥
√
u2 + ∆2, the expression for the polarization tensor is simplified to

Πxx(Ω) =
6e2

π

∫ Λ

√
u2+∆2

dE
E2 + u2 + ∆2[

4E2 − (Ω + i0+)
2
] {nF (E − µ)− nF (−E − µ)} , (S16)

where we defined an energy cutoff of the order Λ ∼ α/a3, with a the microscopic lattice constant. Moreover by using
the identity

1

4E2 − (Ω + i0+)
2 =

1

4Ω

[
1

E − Ω/2− i0+
− 1

E + Ω/2 + i0+

]
= P 1

4E2 − Ω2
+ i

π

4Ω
[δ(E − Ω/2) + δ(E + Ω/2)] , (S17)

where P(z) stands for Cauchy’s principal value, we have

Πxx(Ω) = <eΠxx(Ω) + i=Πxx(Ω), (S18)

with

<eΠxx(Ω) =
6e2

π
P
∫ Λ

√
u2+∆2

dE
E2 + u2 + ∆2

[4E2 − Ω2]
{nF (E − µ)− nF (−E − µ)} , (S19)

and

=Πxx(Ω) =
3e2

2|Ω|

(
Ω2

4
+ u2 + ∆2

)
{nF (Ω/2− µ)− nF (−Ω/2− µ)} . (S20)

Based on these results, the real part of the optical conductivity is given by the simple analytical expression

<eσxx(Ω) = −=Πxx(Ω)

Ω
=

3e2

2Ω2

(
Ω2

4
+ u2 + ∆2

)
{nF (−|Ω|/2− µ)− nF (|Ω|/2− µ)} . (S21)

As a final remark, we notice that the density of states (DOS) implied by the dispersion Eq.(S13) is given by the
expression

NV BO(E) =

∫
d2k

(2π)2
δ (E(k)− E) =

1

2π

∫ ∞
0

dk k δ(
√
α2k6 + u2 + ∆2 − E)
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=
|E|

6πα2

(
E2 − u2 −∆2

α2

)−2/3

Θ(E −
√
u2 + ∆2). (S22)

A remarkable feature of this expression is that the DOS develops a pole at the minimum of the conduction band
E =

√
u2 + ∆2, and hence it grows as compared to the gapless case u = ∆ = 0. This effect is observed in an

enhancement of the optical conductivity with the gap, as compared to the universal value σ0 = 3e2/8, in units e2/~,
for gapless case, as can be clearly seen in Eq. (S21). This expression is used to obtain the plot in Fig. 2(a) in the
main text.

B. Bond current

In this section we consider the bond current (BC) in our model. The operator representing the BC contribution is
given by:

HBC = ∆
(BC)
1 Γ12 + ∆

(BC)
2 Γ22. (S23)

Then the total Hamiltonian used to compute the Green’s function from Eq.(S4) is

H = H0 +HBC . (S24)

Notice that in this case the different terms in H̃ do not mutually anticommute.
We now compute Πxx(iΩn) from Eq.(S3), using the expressions for the velocities in eq. (S9) and the Green’s

function G(iωn,k), to obtain

Tr [v̂xG(iωn + iΩn,k)v̂xG(iωn,k)] = 36α2k4A

B
(S25)

where we defined the coefficients

A = ∆6
BC −∆4

BC

[(
z +

iΩn
2

)2

+
3

4
(iΩn)

2
+ 2E2

0(k)− 3u2

]
+ ∆2

BC

[
4
(
E2

0(k)− u2
){(

z +
iΩn
2

)2

+
1

4

(
E2

0(k)− 5u2
)}

−u4 − z (z + iΩn)

{(
z +

iΩn
2

)2

+
3

4
(iΩn)

2 − 2u2

}]
+
[
z (z + iΩn)− u2

] [
z2 − E2

0(k)
] [

(z + iΩn)
2 − E2

0(k)
]

+
(
E2

0(k)− u2
)

cos(2φ)

{
∆4

BC + ∆2
BC

[
6

(
z +

iΩn
2

)2

− (iΩn)2

2
− 2

(
E2

0(k) + 2u2
)]

+
(
z2 − E2

0(k)
) [

(z + iΩn)
2 − E2

0(k)
]}

B =
[
z2 − E2

+(k)
] [
z2 − E2

−(k)
] [

(z + iΩn)2 − E2
+(k)

] [
(z + iΩn)2 − E2

−(k)
]
. (S26)

Here ∆BC =

√[
∆

(BC)
1

]2
+
[
∆

(BC)
2

]2
, z = iωn + µ, and we defined the dispersion relations

E0(k) =
√
α2k6 + u2, E±[E0(k)] =

√(√
E2

0(k)− u2 ±∆BC

)2

+ u2. (S27)

Since upon integration over k-space the term proportional to cos(2φ) in Eq. (S26) will vanish, we only care about the
Matsubara sum of the remaining terms in A. Therefore, we obtain

T
∑
n∈Z

Tr [v̂xG(iωn + iΩn,k)v̂xG(iωn,k)] = 36α2k4 {ᾱ[E0(k)] [nF (E+(k)− µ)− nF (−E+(k)− µ)]

+γ̄[E0(k)] [nF (E−(k)− µ)− nF (−E−(k)− µ)]} . (S28)

After applying analytic continuation into the real frequency space iΩn → Ω + i0+, the coefficients reduce to the
following expressions

ᾱ[E0] =
α[E0]

D2[E0]
, γ̄[E0] =

γ[E0]

D1[E0]
. (S29)

In these expressions, we defined
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α[E0] = E2
0

(
4u2

(
−20∆3 + 3∆Ω2 − Ω2

√
E2

0 − u2

)
+
(
4∆2 − Ω2

)(
4∆3 −∆Ω2 + (12∆2 − Ω2)

√
E2

0 − u2

))
−u2

(
16∆2u2

(√
E2

0 − u2 − 2∆

)
+
(
4∆2 − Ω2

)(
4∆3 −∆Ω2 + (12∆2 + Ω2)

√
E2

0 − u2

))
+4E4

0

(
4∆2 − Ω2

)(
3∆ +

√
E2

0 − u2

)
,

γ[E0] = E2
0

(
4u2

(
20∆3 − 3∆Ω2 − Ω2

√
E2

0 − u2

)
+
(
4∆2 − Ω2

)(
−4∆3 + ∆Ω2 + (12∆2 − Ω2)

√
E2

0 − u2

))
+u2

(
4∆2 − Ω2

)(
4∆3 −∆Ω2 − (12∆2 + Ω2)

√
E2

0 − u2

)
− 16∆2u4

(
2∆ +

√
E2

0 − u2

)
+4E4

0

(
4∆2 − Ω2

)(√
E2

0 − u2 − 3∆

)
,

D1[E0] = −2

√
∆

(
∆− 2

√
E2

0 − u2

)
+ E2

0

√
E2

0 − u2
[(

Ω + i0+
)2 − (χ+[E0])

2
] [(

Ω + i0+
)2 − (φ+[E0])

2
]

×
[(

Ω + i0+
)2 − (φ−[E0])

2
]
,

D2[E0] = −2

√
∆

(
∆ + 2

√
E2

0 − u2

)
+ E2

0

√
E2

0 − u2
[(

Ω + i0+
)2 − (χ−[E0])

2
] [(

Ω + i0+
)2 − (φ+[E0])

2
]

×
[(

Ω + i0+
)2 − (φ−[E0])

2
]
, (S30)

with the functions given by

χ±[E0] = 2

√
E2

0 + ∆2 ± 2∆
√
E2

0 − u2 (S31)

φ±[E0] =

√
2 (E2

0 + ∆2)± 2

√
(E2

0 −∆2)
2

+ 4u2∆2

By applying an analogous decomposition for D[E0] in terms of its poles, as in Eq. (S17), and inserting into Eq. (S28),
we can integrate by the change of variables E0dE0 = 3α2k5dk, where the integration domain k ≥ 0 maps into E0 ≥ u.
This procedure leads to the analytical expressions

Πxx (Ω) = <eΠxx (Ω) + i=Πxx (Ω) , (S32)

with

<eΠxx (Ω) =
3e2

π
P
∫ Λ

u

dE0
E0√

E2
0 − u2

[
Ω2 − (φ+[E0])

2
] [

Ω2 − (φ−[E0])
2
]

×


α[E0] [nF (E+ − µ)− nF (−E+ − µ)]√

∆
(

∆ + 2
√
E2

0 − u2
)

+ E2
0

[
Ω2 − (χ−[E0])

2
] +

γ[E0] [nF (E− − µ)− nF (−E− − µ)]√
∆
(

∆− 2
√
E2

0 − u2
)

+ E2
0

[
Ω2 − (χ+[E0])

2
]


=Πxx (Ω) = −3e2

∫ Λ

u

dE0
E0√
E2

0 − u2


α[E0] [nF (E+ − µ)− nF (−E+ − µ)]√

∆
(

∆ + 2
√
E2

0 − u2
)

+ E2
0

 δ
(
Ω2 − (χ−[E0])2

)[
Ω2 − (φ+[E0])

2
] [

Ω2 − (φ−[E0])
2
]

+
δ
(
Ω2 − (φ+[E0])2

)[
Ω2 − (χ−[E0])

2
] [

Ω2 − (φ−[E0])
2
]
+

γ[E0] [nF (E− − µ)− nF (−E− − µ)]√
∆
(

∆− 2
√
E2

0 − u2
)

+ E2
0

 δ
(
Ω2 − (χ+[E0])2

)[
Ω2 − (φ+[E0])

2
] [

Ω2 − (φ−[E0])
2
]

+
δ
(
Ω2 − (φ+[E0])2

)[
Ω2 − (χ−[E0])

2
] [

Ω2 − (φ−[E0])
2
]
 . (S33)
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By analyzing the support of the delta functions in parameter space, we obtain the expressions

δ
(

Ω2 − (χ+[E0])
2
)

= Θ(|Ω| − 2u)Θ(2
√

(u2 + ∆2)− |Ω|)
[
δ(E0 − ε1)

2|Ω||J+(ε1)|
+

δ(E0 − ε2)

2|Ω||J+(ε2)|

]
, (S34)

δ
(

Ω2 − (χ−[E0])
2
)

=
δ(E0 − ε2)

2|Ω||J−(ε2)|
Θ(|Ω| − 2

√
u2 + ∆2) (S35)

δ
(

Ω2 − (φ+[E0])
2
)

=
δ(E0 − ε3)

2|Ω||J+(ε3)|
Θ(|Ω| − 2

√
u2 + ∆2), (S36)

where we defined the frequency-dependent parameters

ε1 =

√√√√u2 +

(
∆ +

√
Ω2

4
− u2

)2

,

ε2 =

√√√√u2 +

(
∆−

√
Ω2

4
− u2

)2

,

ε3 =

√
u2∆2

∆2 − Ω2/4
+

Ω2

4
. (S37)

Performing the integrals in Eq.(S33), and using the conditions in Eq.(S36), we obtain an explicit analytical expression
for the real part of the optical conductivity

<eσxx(Ω) =
3e2

2Ω2

Θ (|Ω| − 2u) Θ
(

2
√
u2 + ∆2 − |Ω|

) ∑
j=1,2

α−(εj) δnF (E−(εj))

|J−(εj)|
[
Ω2 − φ2

+(εj)
] [

Ω2 − φ2
−(εj)

] (S38)

+Θ
(
|Ω| − 2

√
u2 + ∆2

){∑
s=±

αs(ε3)δnF (Es(ε3))

|J+(ε3)| [Ω2 − χ2
s(ε3)]

[
Ω2 − φ2

−(ε3)
] +

α+(ε2) δnF (E+(ε2))

|J+(ε2)|
[
Ω2 − φ2

+(ε2)
] [

Ω2 − φ2
−(ε2)

]}] .
Here, we defined

δnF (E) = nF (−E − µ)− nF (E − µ), (S39)

and the coefficients

α+[ε] =
ε α[ε]√

∆
(
∆ + 2

√
ε2 − u2

)
+ ε2
√
ε2 − u2

,

α−[ε] =
ε γ[ε]√

∆
(
∆− 2

√
ε2 − u2

)
+ ε2
√
ε2 − u2

, (S40)

along with the Jacobian functions

J±[ε] =
∂χ±
∂ε

=
2ε
(

1± ∆√
ε2−u2

)
√
ε2 + ∆2 ± 2∆

√
ε2 − u2

, (S41)

J±[ε] =
∂φ±
∂ε

=

2ε

(
1± (ε2−∆2)√

(ε2−∆2)2+4u2∆2

)
√

2 (ε2 + ∆2)± 2

√
(ε2 −∆2)

2
+ 4u2∆2

. (S42)

Eq. (S39) is reduced to a more compact notation, which is shown in the main text, as follows

<eσxx(Ω) =
3e2

2Ω2

Θ (|Ω| − 2u) Θ
(

2
√
u2 + ∆2 − |Ω|

) ∑
j=1,2

F−[εj ]δnF (E−(εj)) + Θ
(
|Ω| − 2

√
u2 + ∆2

)

×

{∑
s=±
Gs[ε3]δnF (Es(ε3)) + F+[ε2]δnF (E+(ε2))

}]
, (S43)
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where we defined the functions

F±[ε] =
α±(ε)

|J±(ε)|
[
Ω2 − φ2

+(ε)
] [

Ω2 − φ2
−(ε)

] ,
G±[ε] =

α±(ε)

|J+(ε)|
[
Ω2 − χ2

±(ε)
] [

Ω2 − φ2
−(ε)

] . (S44)

We now consider the DOS from the dispersion relation Eq. (S27). The explicit analytical expression then reads

NBC(E) =

∫
d2k

(2π)2

∑
s=±,λ=±

δ

(
λ

√
(αk3 + s∆)

2
+ u2 − E

)
(S45)

=
|E|

6πα2/3

1√
E2 − u2

[(√
E2 − u2 −∆

)− 1
3

Θ(E2 − u2 −∆2) +
(√

E2 − u2 + ∆
)− 1

3

Θ(E2 − u2)

]
.

This expression is used for the plot in Fig. 2(b).

C. Smectic charge-density wave

In this section, we consider the smectic charge-density wave (sCDW) instability of the RTG. The mean-field Hamil-
tonian corresponding to the sCDW is given by

HSCDW = ∆
(SCDW)
10 Γ10 + ∆

(SCDW)
20 Γ20 + ∆

(SCDW)
13 Γ13 + ∆

(SCDW)
23 Γ23

≡ ∆0(cosχΓ10 + sinχΓ20) + ∆3(cos δ Γ13 + sin δ Γ23), (S46)

where we now introduced the polar angles χ and δ to parametrize the CDW components ∼ Γρ0 and ∼ Γρ3, with the
amplitudes, respectively, given by ∆0 and ∆3, both positive. The mean-field band structure, taking u = 0 and µ = 0,
then reads

Ẽλ,ξ(k) = λ

√
∆2

0 + ∆2
3 + α2k6 + ξ

√
2fSCDW, (S47)

with

fsCDW = ∆2
0∆2

3 + (∆2
0 + ∆2

3)α2k6 + ∆2
0∆2

3 cos(2δ − 2χ)

+ α2k6
[
(∆2

3 −∆2
0) cos 6φ− 2∆0∆3 sin(δ − χ) sin 6φ

]
, (S48)

and λ, ξ = ± label four bands.

1. Splitting of the band touching points

We now show that that the conduction (λ = +) and the valence (λ = −) bands, both with ξ = −, touching at zero
energy at the two valleys, feature two-triplets of nondegenerate touching points with the linear dispersion. At the
touching points, therefore,

(∆2
0 + ∆2

3 + α2k6)2 − 2fsCDW = 0. (S49)

Introducing x = α2k6, the solution of this equation explicitly reads

x± = −
[
(∆2

0 −∆2
3) cos 6φ+ 2∆0∆3 sin(δ − χ) sin 6φ

]
± i|2∆0∆3 sin(δ − χ) cos 6φ+ (∆2

3 −∆2
0) sin 6φ|. (S50)

To realize the band touching, the imaginary part of the above solution should vanish,

2∆0∆3 sin(δ − χ) cos 6φ+ (∆2
3 −∆2

0) sin 6φ = 0, (S51)

implying that at the band touching point

tan 6φ0 =
2∆0∆3 sin(δ − χ)

∆2
0 −∆2

3

. (S52)
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The polar angle of the band touching point is therefore well defined for any sCDW configuration. For the values of
the polar angle in Eq. (S52), the solution for the radial coordinate of the band-touching point in Eq. (S50), takes the
form

x0 = − sin 6φ0

2∆0∆3 sin(δ − χ)

[
(∆2

0 −∆2
3)2 + 4∆2

0∆2
3 sin2(δ − χ)

]
, (S53)

which has to be positive. We now show that this is, indeed, the case, and such a solution for x0 = αk6
0 implies that

there are six angles where the bands touch, i.e. there are six band touching points with the same absolute value of
the momentum. We consider four separate cases as follows:

1. sin(δ − χ) > 0 & ∆0 −∆3 < 0 implying that sin 6φ < 0, cos 6φ > 0. According to Eq. (S52), the corresponding
solutions for the angle are given by

φ0 = n
π

3
− 1

6
arcsin

2∆0∆3 sin(δ − χ)√
(∆2

0 −∆2
3)2 + 4∆2

0∆2
3 sin2(δ − χ)

, (S54)

with n = 0, 1, 2, 3, 4, 5, with the value of the momentum at the band touching points given by Eq. (S50).

2. sin(δ − χ) > 0 & ∆0 −∆3 > 0 implying that sin 6φ0 < 0, cos 6φ0 < 0. Therefore, according to Eq. (S52), the
corresponding solutions for the angle are given by

φ0 = (2n+ 1)
π

6
+

1

6
arcsin

2∆0∆3 sin(δ − χ)√
(∆2

0 −∆2
3)2 + 4∆2

0∆2
3 sin2(δ − χ)

, (S55)

with n = 0, 1, 2, 3, 4, 5, with the value of the momentum at the band touching points given by Eq. (S50).

3. sin(δ − χ) < 0 & ∆0 −∆3 < 0 implying that sin 6φ0 > 0, cos 6φ0 > 0. Therefore, according to Eq. (S52), the
corresponding solutions for the angle are given by

φ0 = n
π

3
− 1

6
arcsin

2∆0∆3 sin(δ − χ)√
(∆2

0 −∆2
3)2 + 4∆2

0∆2
3 sin2(δ − χ)

, (S56)

with n = 0, 1, 2, 3, 4, 5, with the value of the momentum at the band touching points given by Eq. (S50).

4. sin(δ − χ) < 0 & ∆0 −∆3 > 0 implying that sin 6φ0 > 0, cos 6φ0 < 0. Therefore, according to Eq. (S52), the
corresponding solutions for the angle are given by

φ0 = (2n+ 1)
π

6
+

1

6
arcsin

2∆0∆3 sin(δ − χ)√
(∆2

0 −∆2
3)2 + 4∆2

0∆2
3 sin2(δ − χ)

, (S57)

with n = 0, 1, 2, 3, 4, 5, with the value of the momentum at the band touching points given by Eq. (S50).

Finally, the explicit solutions in cases when one of the sCDW components vanishes read:

(a) For ∆0 = 0, ∆3 6= 0,

k0 =

(
∆3

α

)1/3

, φ0 = n
π

3
; (S58)

(b) For ∆0 6= 0, ∆3 = 0,

k0 =

(
∆0

α

)1/3

, φ0 = (2n+ 1)
π

6
, (S59)

with n = 0, 1, 2, 3, 4, 5.

Expansion of the Hamiltonian in Eq. (S46) about these six band touching points shows that they split into two
triplets, with the vorticity equal to ±π. Therefore, two cubic band touching points at the two valleys, with the
net zero vorticity, 0 = 3π− 3π, split in the sCDW phase into two triplets of gapless points of the vorticity equal
to ±π, so that the total vorticity is still vanishing, as it should. Finally, we emphasize that the states of the
new band touching points in the sCDW are all admixtures of the low-energy states living in single valleys of the
noninteracting TBLG.
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2. Density of states

To find the form of the DOS in the sCDW case, we can, therefore, without loss of generality, choose, for instance,
∆3 = 0. Then the total Hamiltonian involving the sCDW is

H = H0 +HsCDW (S60)

where

∆ =

√[
∆

(sCDW)
10

]2
+
[
∆

(sCDW)
20

]2
, z = iωn + µ.

The dispersion relation that follows from this Hamiltonian is, for λ = ± and ξ = ±, respectively,

Ẽλ,ξ(k) = λ

√
α2k6 + u2 + ∆2 + ξ∆

√
2α2k6(1− cos(6φ)) + 4u2. (S61)

It is then more convenient to rewrite this expression by defining the dispersion, after setting µ = 0,

Ẽ0(k) =
√
α2k6 + u2 + ∆2, (S62)

such that, using 2 sin2(3φ) = [1− cos(6φ)],

Ẽλ,ξ(k, 3φ) = λ

√
Ẽ2

0 + 2ξ∆

√(
Ẽ2

0 − u2 −∆2
)

sin2(3φ) + u2. (S63)

Let us calculate the density of states, as follows

NsCDW (E) =
∑

λ=±,ξ=±

∫
d2k

(2π)2
δ(E − Ẽλ,ξ(k, 3φ)) =

∑
λ=±,ξ=±

∫ ∞
0

dk k

(2π)2

∫ 2π

0

dφδ(E − Ẽλ,ξ(k, 3φ)) (S64)

=
1

3

∑
λ=±,ξ=±

∫ ∞
0

dk k

(2π)2

∫ 6π

0

dφδ(E − Ẽλ,ξ(k, φ)− E),

where in the last step we made the change of variable in the angular coordinate 3φ → φ. Now, we split the angular
integral into three subintervals, [0, 6π] = [0, 2π]∪ [2π, 4π]∪ [4π, 6π], and use the periodicity of sin2(φ+ 2π) = sin2(φ),
to obtain

1

3

∫ 6π

0

dφδ(E − Ẽλ,ξ(k, φ)) =
1

3

2∑
`=0

∫ 2π(`+1)

2π`

dφδ(E − Ẽλ,ξ(k, φ)) =

∫ 2π

0

dφδ(E − Ẽλ,ξ(k, φ)). (S65)

Therefore, Eq.(S65) reduces to the expression

NsCDW (E) =
∑

λ=±,ξ=±

∫ 2π

0

dφ

(2π)2

∫ ∞
0

dk kδ(E − Ẽλ,ξ(k, φ))

=
1

6α2/3

∑
λ=±,ξ=±

∫ 2π

0

dφ

(2π)2

∫ ∞
u2+∆2

d(Ẽ2
0)(

Ẽ2
0 − (u2 + ∆2)

)2/3
δ
(
E − Ẽλ,ξ(Ẽ2

0 , φ)
)

=
1

6α2/3

∑
λ=±,ξ=±

∫ 2π

0

dφ

(2π)2

∫ ∞
u2+∆2

d(Ẽ2
0)(

Ẽ2
0 − (u2 + ∆2)

)2/3

∑
`=±

δ
(
Ẽ2

0 − ε`(E, φ)
)

∣∣∣∂Ẽλ,ξ
∂(Ẽ2

0)

∣∣∣ , (S66)

where in the second line we changed the integration variable k → Ẽ0 as defined in Eq.(S62). In the final step, we

defined by ε± the two independent roots of the equation E − Ẽλ,ξ(Ẽ2
0 , φ) = 0, as follows

ε±(φ) = E2 + 2∆2 ± 2∆

√
[E2 − (u2 + ∆2)] sin2(φ) + u2 + ∆2 sin4(φ). (S67)
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In addition, the Jacobian in the denominator of Eq. (S66) is given by

∂Ẽλ,ξ

∂(Ẽ2
0)

∣∣∣∣∣
ε`

=
1 + 2∆2 sin2(φ)

E2−ε`(φ)

2E
. (S68)

Finally, evaluating the integral and taking into account the support of the delta-function for each possible case, we
obtain the expression

NsCDW (E) =
|E|

3α2/3

∑
`=±

∫ 2π

0

dφ

(2π)2
Θ(ε`(φ)− (u2 + ∆2))

(
ε`(φ)−

(
u2 + ∆2

))−2/3
∣∣∣∣1 +

2∆2 sin2(φ)

E2 − ε`(φ)

∣∣∣∣−1

(S69)

Notice that at low-energies the DOS scales linearly with energy, consistent with the existence of the six non-degenerate
band touching points in the Brillouin zone (see also Fig. 3 in the main text). This expression for the DOS is used for
the plot in Figs. 2(c) in the main text.

3. Optical conductivity

We calculate optical conductivity in sCDW phase using the mean-field Hamiltonian, where we can set ∆3 = 0 and
∆0 ≡ ∆. The collisionless optical conductivity will be considered at T = 0, µ = 0, and u = 0, and for ω � ∆. We
carry out the calculation following the steps outlined in Sec. (S2). First, we perform the trace in Eq. (S3). After
performing transformations in the angular variable, φ, the integral over frequency and the substitution in the radial
coordinate of the momentum, y = αk3 , takes the form

Πxx(iΩ) = −i 3

4π

∑
ζ=±

∫ π/2

0

dφ

∫ ∞
0

dy y δ [gζ(y)] , (S70)

where

gζ(y) =
ω

2
−

√
(∆− ζy)2 + 2ζ∆y

(
1− sin

φ

2

)
. (S71)

We now use the property of the δ−function

δ[f(y)] =
∑
i

1

|f ′(y0i)|
δ(y − y0,i), (S72)

where f(y0,i) = 0, and the above sum is carried out over all the zeroes of the function f(y). The zeroes of gζ(y) in
Eq. (S71) are given by

y
(ζ)
0,(±) = ζ∆ sin

φ

2
±
√

∆2 sin2 φ

2
+

Ω2

4
−∆2. (S73)

In the universal limit Ω� ∆, the only two positive zeroes are

• y
(+)
0,(+) = ∆ sin φ

2 +
√

∆2 sin2 φ
2 + Ω2

4 −∆2,

• y
(−)
0,(+) = −∆ sin φ

2 +
√

∆2 sin2 φ
2 + Ω2

4 −∆2.

Using Eq. (S73), we then obtain

Πxx(iΩ) = −i 3

4π

(
Ω

2

)∫ π/2

0

dφ

∫ ∞
0

dy y

[
Ω2

4
−∆2 cos2 φ

2

]−1/2 {
δ
(
y − y(+)

0,(+)

)
+ δ

(
y − y(−)

0,(+)

)}
= −i3

8
Ω. (S74)
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The Eq. (S2) implies that the conductivity in the collisionless regime of the sCDW phase at the mean-field level is a
constant

σ(Ω) =
3

8

e2

~
=

3π

4

e2

h
. (S75)

This result is consistent with the splitting of the two nodal points at the two valleys, with the vorticity ±3π into six
simple band touching points, featuring two triplets of the vorticity equal to ±π.

Finally, one can explicitly check that in the collision-dominated regime, for ω � ∆, the the polarization tensor
component in Eq. (S70) is purely real, and therefore, after the analytical continuation yields the Drude peak ∼ δ(Ω/∆).
This is analogous to case of the band touching for noninteracting Dirac electrons at a finite temperature yielding the
Drude peak ∼ δ(Ω/T ).

[1] M. Koshino and E. McCann, Phys. Rev. B 80, 165409 (2009).
[2] F. Zhang, B. Sahu, H. Min, and A. H. MacDonald, Phys. Rev. B 82, 035409 (2010).
[3] V. Cvetkovic and O. Vafek, arXiv:1210.4923 (2012).
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