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S1. LOW-ENERGY MODEL FOR TRILAYER GRAPHENE

We consider the low energy model for rhombohedral trilayer graphene (RTG) [1-4]. We use the notation by Szabd
and Roy in Ref. [4]. Considering the Nambu (particle-hole), sublattice (or layer), valley and spin degrees of freedom,
the single-particle Hamiltonian for noninteracting electrons is given by,

Hy = a[fi1(k)T3031 + fa(k)3002] + ul'3003 — L3000, (S1)

where o = t3a®/t 1, a is the lattice spacing, fi(k) = k.(k2 — 3k2), f2(k) = —ky (k2 — 3k2). The form factors fi (k)
and fo(k) transform under Ay, and As, irreducible representations of D34 point group of the RTG. Momentum k is
measured from the respective valleys (band touching points). Electron (hole) doping corresponds to p > 0 (u < 0).
The sixteen-dimensional matrices are Iy, 0 = 1,0,7,06x. Four sets of Pauli matrices {n,}, {0.}, {7,} and {Bx}
operate on the particle-hole, spin, valley and sublattice indices, respectively, with u,v, p, A =0,--- 3.

S2. OPTICAL CONDUCTIVITY IN THE KUBO LINEAR-RESPONSE FORMALISM

In the Kubo linear-response formalism, the optical conductivity o;;(2) is expressed in terms of the polarization
tensor II;; by the following relation:

S = 1 PR \Bon)
o:5(0) iQnJQm+¢o+ Q

: (S2)

where the polarization tensor is expressed by the auto-correlation function between the currents

o 2
I0;(iQ) = —*T > / (‘;&Tr [0:G (i, + i, k)0;G (iwn, k)] . (S3)

n=—oo



Here 0; = 0H/0k;, wy, = (2n+1)nT are the fermionic Matsubara frequencies, and we defiend the (finite temperature)
Green’s function for the Hamiltonian Eq.(S1) by
1 1

} nak = - - ~ 3 4
Giwn, k) iwn — H  (iw, +p)— H (54)

where H is just H|,—o.

S3. PARAMAGNETIC METAL

We do not consider superconductivity in our model, and hence the Nambu indices can be omitted. Moreover, we
will focus in the paramagnetic case, where the spin indices are trivial. We can therefore write the noninteracting
low-energy Hamiltonian as,

Ho = a[fi(k)T31 + f2(k)Lo2] + ul'oz — puloo, (S5)

where now I',y = 7,5\ and again, {7,} and {\} are the sets of Pauli matrices that act on the valley and sublattice
(layer) indices, respectively. The paramagnetic nature of the metallic state indicates that it is spin-singlet, for
which there are three candidates: Valence bond order (A1), bond current (As) and smectic charge-density-wave (E),
respectively, represented by the matrices [4]

th Fpg, and (Fp07 Fpg),

with p = 1,2. Their irreducible representations in the D3 group, which is a subgroup of D3y point group of RTG,
are shown inside the parentheses. Here p = 1,2 explicitly account for the valley mixing in this phase, which implies
the lowering of the symmetry from D3y down to D3. The smectic charge-density-wave (SCDW) also breaks rotational
symmetry about the z direction, generated by I'ss.

A. Valence bond order

In this section we consider the valence bond order (VBO) in our model. The operator representing the VBO is
given by:
Hvpo = AiTl'11 + Aol (S6)
therefore the total Hamiltonian that includes this VBO contribution is:
H = Hy+ Hypo. (S7)

In order to calculate the optical conductivity defined by Eq.(S2), we first compute the Green’s function from Eq.(S4).
For the VBO case, the different terms in H anticommute, so it is straightforward to find
1 (iwn +p) + H (iwn + ) + H

G(i nak — - = — = — , S8
(ieon, ) (iwn +p) — H  (iwy +p)2 — H2  (iwn +p)? — (u? + a?k6 + A2) (S8)

where we have defined A2 = A? + AZ. To evaluate the polarization tensor Eq. (S3), we also need to compute the
velocities 0, and ?,, which are explicitly given by

by = o [3(K2 — k;)Ts1 + 6kokyToa] , 0y = a [~6kyky sy + 3(k3 — k;)Loz] - (S9)
We now compute the components I, (i€Q2,) and I, (i€2,) combining Eq.(S8) and Eq.(S9) to obtain

7204k iy kB

Tr [’U;EG(an +ZQn7k)’0yG(lwn7k)] = [(zwn +M)2 _ (ug +a2/€6 _’_AQ)} [(an 4 ZQn +M)2 _ (ug +a2k:6 4 A2)]

(S10)

3602kt [u? + o? (k2 — k2 k* + A% — (iwy 4 p) (iwn + Q0 + p)]
[Gon + 1% — (o + o2k + AD)] (2w & 00 1) — (62 + oZk0 + AZ)
(S11)

Tr [0, G (iwy, + Q0 k)0,G (iwy,, k)] = —




Notice from the above expressions that II,, = 0 after integration over the momenta, as expected since time reversal
symmetry (TRS) is not broken. Having calculated the trace, we now proceed to do the sum over the Matsubara
frequencies and the integral over momenta.

The expression in Eq. (S11), at finite temperature, involves an infnite sum over Matsubara frequencies, that can
be performed analytically, to obtain

720%k* (u? + A% + o?k*k2)

TT;Z’IY [’UIG(ZUJW, + ZQn, k)sz(lwnu k)] - E(k) [4E2 ) + QQ

Here, we defined the dispersion relation

anp [s E(k) — u]. (S12)

E(k) = Va2k6 + u? + A2, (S13)

and the Fermi distribution function is
—1
np(z) = (eZ/T + 1) . (S14)

The analytic continuation to real frequency, given by the prescription iQ, — € + 0", allows us to obtain the
expression for the polarization tensor

M0 () = 7262a2/ kK (7 4+ A% + o7k TE)

A Ek — —nNg —Ek} — . S
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Upon performing the angular integral first, and subsequently change the variables k°dk = (3a2?)~!EdE, where the
integration domain k& > 0 maps into E > v/u? + A2, the expression for the polarization tensor is simplified to
6e? E? +u?+ A2

L@ ="C [ S e (B ) —nr (B - ), (516)
T Vs 4B (@4 i)

where we defined an energy cutoff of the order A ~ a/a®, with a the microscopic lattice constant. Moreover by using
the identity

1 1 1 1
—(Q+i0t)* 10 L?—Q/Q—iOJr - E+Q/2+i0+
1
273792 +1 Q[6(E—Q/2)—i—(S(E—I—Q/Q)]7 (S17)

where P(z) stands for Cauchy’s principal value, we have

I, (Q) = Rell,, () + ST, (), (S18)

with
E2 +u? + A?
Rell,, () = < p / B ey (e (=) —ne (B =)} (519)
v @
and
3e? 92 9
SMLa(©) = g (5 + +A2) {e(@/2 = ) = (92 )} (520)
Based on these results, the real part of the optical conductivity is given by the simple analytical expression
S 1L, (Q 3e? /02
Reaa(s) = =t 2 (Tl 4 82) {mp (02— ) = (/2 - ). (s21)

As a final remark, we notice that the density of states (DOS) implied by the dispersion Eq.(S13) is given by the
expression

NVBO(E):/(;ZjTI;Q(S(E(k)—E):;ﬂ/ooodkké( a2k +u? + A% — E)



B (E2 —u? — A2

—2/3
- ) O(E — \u2 + A2). (S22)

02
A remarkable feature of this expression is that the DOS develops a pole at the minimum of the conduction band
E = vu? + A2, and hence it grows as compared to the gapless case u = A = 0. This effect is observed in an
enhancement of the optical conductivity with the gap, as compared to the universal value oy = 3¢2/8, in units e?/h,
for gapless case, as can be clearly seen in Eq. (S21). This expression is used to obtain the plot in Fig. 2(a) in the
main text.

B. Bond current
In this section we consider the bond current (BC) in our model. The operator representing the BC contribution is
given by:
Hpo = AP, + AP, (S23)
Then the total Hamiltonian used to compute the Green’s function from Eq.(S4) is
H = Hy+ Hpc. (S24)

Notice that in this case the different terms in H do not mutually anticommute.
We now compute I, (i€2,) from Eq.(S3), using the expressions for the velocities in eq. (S9) and the Green’s
function G(iwy, k), to obtain

A
Tr [0, G (iwn, + i, k)0, G (iw,, k)] = 36a2k4§ (S25)

where we defined the coefficients

. 2
A= A% — AL [(z + ZZ”) + % (i) + 2E2 (k) — 3u?| + Al

4(Ej(k) — v?) { <z + ZQQ") + i (E5 (k) — 5u2)}

+[2 (2 + i) — u?] [22 — E2(k)] [(z )% - Eg(k)]

i0,\° 3

+ (Eg(k) - uQ) cos(2¢) {A%C + A% |6 (z + 192”) — (ZQ;) -2 (Eg(k) + 2u2) + (22 — Eg(k‘)) [(z + iQn)2 - Eg(k)} }

B=[22 - E3 (k)] [* — E2(K)] [(z +iQ0)* — E2(K)] [(z +iQ)? — E2 (k)] . (S26)

2 2
Here Apg = \/{A&BC)} + [A(QBC)} , 2 = iw, + 1, and we defined the dispersion relations

2
Eo(k) = Va2kS +u2,  Ei[Eo(k)] = \/( B2(k) — u? £ ABC> + 2. (S27)

Since upon integration over k-space the term proportional to cos(2¢) in Eq. (S26) will vanish, we only care about the
Matsubara sum of the remaining terms in A. Therefore, we obtain

TN Ty [0,Gliwy + i, k)inGiwn, k)] = 360°k* {a[Eo (k)] [np (B4 (k) — 1) — np (—Ey (k) — )]
nez
+3[Eo (k)] [Inp (B~ (k) — p) —np (=E_(k) — p)]} - (528)

After applying analytic continuation into the real frequency space i€, — Q + i0", the coefficients reduce to the
following expressions

(S29)

alEo] =

In these expressions, we defined



olEo] = B3 <4u2 (20A3 +3A0% - Qﬂ/ﬂ) + (402 - 0?) <4A3 CAQ? 1 (1222 - gﬁm»
—u? <16A2u2 (W - 2A> + (422 — 0?) <4A3 —AQ? 4 (1242 + Q“‘)m»
+4Ej (4A% — Q?) (3A + Jﬂ) ;

V(B = B2 <4u2 <2OA3 _3A0% - 2 \/ﬂ> + (422 - 02) (—4A3 + A%+ (12242 — 92)\/@))
12 (402 — 02) <4A3 ~AQ? - (1247 4 QQ)\/m) 16A% (QA 4 \/ﬂ)
+AEL (402 — 0?) (W - 3A> ,

D1 [Bo] = —2\/A (a-2y/Eg— ) + B3B3 a2 [(@+0)? - ()] [(@ 4 0)” = (o110

x[(@+i0%)* = (o [Bo))?]

Dy[Ey] = —2\/A (A +24/E2 — u2) + E2\/E? — u? [(Q +i0t)? = (x_ [Eo])2] [(Q +i0t)? - (¢+[Eo])2}

X [(Q +i0) = (¢ [Eo])ﬂ , (S30)

with the functions given by
X=+|Eo] :2\/E§+A2:I:2A\/E3—u2 (S31)

o+ [Eo] = \/2 (E2 + A?) + 2\/(E§ — A2)? 4 4u2A2

By applying an analogous decomposition for D[Ey] in terms of its poles, as in Eq. (S17), and inserting into Eq. (528),
we can integrate by the change of variables EqdEq = 3a2k®dk, where the integration domain k > 0 maps into Ey > u.
This procedure leads to the analytical expressions

Mo () = Rell,, () + ST, (), (532)
with
Ey
et P/ RN = (92 — (64 [E)’] 22 - (o- [Ea])’]
§ alBo] [ne(By =) —np(=Ey =) Bl [p(E- = ) = np(=E- = )]
\/A (a+2VEF—w?) + B3 [02 - (x-[Eo])’] ¢A (a-2VEF =) + B3 |02 = (x+ [Eo))’]

S / . olBy] o (By —p) — (= E+—u)][ (92— (v-|E,))?)
EQ*UQ ¢ (avoyE—)+ B3 L[ -@ulB)7] [22 - (o [E])]

$@ - @ulE)?) || slB e ) ne(-E_ )

R R e Y N N O R

J (2% — (x+[Eo])?)
(92 = (64 [Ea])] |22 - (6 [Bo))?]

(933)




By analyzing the support of the delta functions in parameter space, we obtain the expressions

6 (02 = (x4 [Ea])’) = ©(19] - 2002v/(w? + A7) - |Q)) 29|E‘j7+( )) - ;éf‘}:(e:;) : (S34)
3 (9~ (- [B)?) = gt 09 — 2V £ &%) (535)
3 (9 = (6410))?) = gt L0l = 2V + &), (536)

where we defined the frequency-dependent parameters

2
2

€ = u2+<A+\/Qu2>,
4

[0 ’

€2 = ’U,2+<A— 4—U2>7

w2 A2 02

Performing the integrals in Eq.(S33), and using the conditions in Eq.(S36), we obtain an explicit analytical expression
for the real part of the optical conductivity

_ 3¢ a_(€;) onp(E_(¢)))
Reozs () = 53 [@ (19 — 2u)© (2 u? + A% — |Q|) j;Z TN )] [ )] (S38)
— u? 2 a8(63)6nF(Es(63)) Oé+(€2) (57’LF(E+(€2))
#6 (191 -2+ %) { 2 T2\l [ - )] @l [ - )] [ — 2 (e] H |
Here, we defined
onp(E) =np(—E — p) —np(E — p), (S39)
and the coefficients
os]d = eale]
+ y
VA (A +2VE@ =) + eV — a2
a_ld = <7l (S40)

JAQ 2@ ) revE e

along with the Jacobian functions

A
A =)
J+le] = = , (S41)
Oe \/62+A2:‘:2A\/627’U,2
% (1 4 &
J@—nawar
Tl = 2= _ e s . (S42)

Oe 5
2 (e 4+ A2) £2/(e2 — A?)° + 4u2A2

Eq. (S39) is reduced to a more compact notation, which is shown in the main text, as follows

Reo e () = ;% {@(m —2u)0 (2 u? + A2 — |Q|) > Folelonr(E-(e)) + © (|Q| 9 u2+A2)

X {Z Gsleslonr(Es(es)) + Fy [62]571F(E+(62))H : (543)
s=%+



where we defined the functions

a(€)
File] = ,
| T£(e)] [22 = 6% (6)] [2* — 62 (€)]
a(€)
Gile] = : (S44)
[T ()] [Q2 = XxE.(e)] [22 — 62 (e)]
We now consider the DOS from the dispersion relation Eq. (S27). The explicit analytical expression then reads
2
Npco(E) = /L"; >os (A\/(akS +sA)? +u2 — E) (S45)
(271—) s=+, =%
= 2] L (\/E2—u2—A)7% O(E? —u? — A?) + (\/ —u2+A) % O(E? —u?)|.
6ma?/3 \/EZ — 2

This expression is used for the plot in Fig. 2(b).

C. Smectic charge-density wave

In this section, we consider the smectic charge-density wave (sSCDW) instability of the RTG. The mean-field Hamil-
tonian corresponding to the sCDW is given by

Hscpw = A(SCDW)Fm + A(SCDW)Fgo + AS,CDW)FB + A2§CDW)F23

= Ap(cos xT'19 + sin xT'a9) + Az(cos § T'y3 + sin § T'ag), (S46)
where we now introduced the polar angles x and ¢ to parametrize the CDW components ~ I',g and ~ I' 3, with the

amplitudes, respectively, given by Ag and Ag, both positive. The mean-field band structure, taking v = 0 and u = 0,
then reads

Eae() = M/ A2 + A3 + a2k5 + £/2fsopw, (547)
with

fecpw = A2A2 + (A2 4+ A2)a?k® + A2A2 cos(20 — 2x)
+ k8 [(A] — Ad) cos 66 — 2A0 A3 sin(6 — x) sin66] (S48)

and \, & = £ label four bands.

1. Splitting of the band touching points

We now show that that the conduction (A = +) and the valence (A = —) bands, both with £ = —, touching at zero
energy at the two valleys, feature two-triplets of nondegenerate touching points with the linear dispersion. At the
touching points, therefore,

(A2 + A2 + a?k5)? — 2f.cpw = 0. (S49)
Introducing & = a?kS, the solution of this equation explicitly reads
zy = — [(A§ — A3) cos 66 + 2A¢Azsin(d — x) sin 6¢] + i|2A0 A3 sin(5 — x) cos 66 + (A — AF) sin 6¢)|. (S50)
To realize the band touching, the imaginary part of the above solution should vanish,
2A0A3sin(8§ — x) cos 66 + (A3 — A2)sin6¢ = 0, (S51)
implying that at the band touching point

2A0A3sin(d — x)
A2 — A2

tan 6¢g = (S52)



The polar angle of the band touching point is therefore well defined for any sCDW configuration. For the values of
the polar angle in Eq. (S52), the solution for the radial coordinate of the band-touching point in Eq. (S50), takes the
form

sin 6oy

9 A sin(8 ) LA~ A8)7 +4ATAGsIn*(0 — X)) ($53)

To =

which has to be positive. We now show that this is, indeed, the case, and such a solution for zo = ak§ implies that
there are six angles where the bands touch, i.e. there are six band touching points with the same absolute value of
the momentum. We consider four separate cases as follows:

1. sin(6 — x) > 0 & Ag — Az < 0 implying that sin 6¢ < 0,cos6¢ > 0. According to Eq. (S52), the corresponding
solutions for the angle are given by

: (S54)

T 1 . 2AOA3 Sil’l(5 — X)
oo = ng ~ % arcsin
V(A2 — A2)2 1+ 4AZAZ sin? (5 — )
with n =0,1,2,3,4,5, with the value of the momentum at the band touching points given by Eq. (S50).

2. sin(d — x) > 0 & Ag — Az > 0 implying that sin 6¢¢ < 0, cos6¢g < 0. Therefore, according to Eq. (S52), the
corresponding solutions for the angle are given by

$o = (2n + 1)1 + é arcsin 280A35in(d — x)

G ; (S55)
V(82— A2)2 + 4A3AZsin(5 — x)

with n =0,1,2,3,4,5, with the value of the momentum at the band touching points given by Eq. (S50).

3.sin(d — x) < 0 & Ag — Az < 0 implying that sin 6¢¢ > 0, cos6¢g > 0. Therefore, according to Eq. (S52), the
corresponding solutions for the angle are given by

o 1 . 2A0A3 sin(5 — X)
¢ = ng ~ 5 arcsin
V(82— A2)2 +4A3AZ sin? (5 — )

7 (S56)

with n =0, 1,2,3,4,5, with the value of the momentum at the band touching points given by Eq. (S50).

4. sin(d — x) < 0 & Ag — Az > 0 implying that sin6¢y > 0,cos6¢pg < 0. Therefore, according to Eq. (S52), the
corresponding solutions for the angle are given by

2AOA3 sin(5 — X)

™

1 .
+ — arcsin

go=(n+1)c+ ¢ ; (S57)
V(A2 - A2)2 +4AZAZsin(5 — )
with n =0, 1,2,3,4,5, with the value of the momentum at the band touching points given by Eq. (S50).
Finally, the explicit solutions in cases when one of the SCDW components vanishes read:
(a) For Ag =0, Az #0,
A\ Y3 T
= () w=ng (559)
(b) For Ag #0, Az =0,
A 1/3
= (22) L do=@+F, (559)

with n = 0,1,2,3,4, 5.

Expansion of the Hamiltonian in Eq. (S46) about these six band touching points shows that they split into two
triplets, with the vorticity equal to +7. Therefore, two cubic band touching points at the two valleys, with the
net zero vorticity, 0 = 37 — 37, split in the sSCDW phase into two triplets of gapless points of the vorticity equal
to 4, so that the total vorticity is still vanishing, as it should. Finally, we emphasize that the states of the
new band touching points in the sSCDW are all admixtures of the low-energy states living in single valleys of the
noninteracting TBLG.



2. Density of states

To find the form of the DOS in the sSCDW case, we can, therefore, without loss of generality, choose, for instance,
Az = 0. Then the total Hamiltonian involving the sCDW is

H = Hy + Hscow (560)

where

2 2
A= J[a5) 4 [a5P) ) =

The dispersion relation that follows from this Hamiltonian is, for A = + and £ = &4, respectively,

Ere(k) = A\/anG + u2 + A2 + EA/202k5(1 — cos(6¢)) + 4u2. (S61)
It is then more convenient to rewrite this expression by defining the dispersion, after setting p = 0,

Eo(k) = Va2kS +u2 + A2, (S62)

such that, using 2sin?(3¢) = [1 — cos(6¢)],

EA,&U% 3¢) = A\/EQ + 2§A\/( —u?— A2) sin?(3¢) + u2. (S63)
Let us calculate the density of states, as follows

2 o) 27 B
Neeow(®)= 3 | GetE =By = [ GG [ dos(m— Baehiae) (60

=+,¢=+ A==, =+
1 < dkk [T .
== = E—-E - FE
5 2 | e aebE-Beho)- D).
A==+,¢=+

where in the last step we made the change of variable in the angular coordinate 3¢ — ¢. Now, we split the angular
integral into three subintervals, [0, 67] = [0, 27] U [27, 47| U [47, 67, and use the periodicity of sin?(¢ + 27) = sin?(¢),
to obtain

67 B 2 27 (L+1) B 27 B
5| aosE-Bachon =33 [ aos(B - Balho) = [ doi(B - Breka). (509

=0 V27t
Therefore, Eq.(S65) reduces to the expression

Necow(E)= Y /W /OOO dkkS(E — Exe(k, 0))

A==, =+

S d(E2) L
60‘72/3 )\—:I:Z,é:—:t/o (2m)2 u24A2 (ES — (u? +0 AQ))2/3 ’ (E - E/\’é(Eg’ ¢)>
5 (Eg — (B, ¢>))

o d¢ > d(E)
= a2/3 Z / 2/32 0B ¢

S e (e an) 5[50

; (S66)

where in the second line we changed the integration variable ~I<: — ~EO as defined in Eq.(S62). In the final step, we
defined by ey the two independent roots of the equation E — E) ¢(E3, ¢) = 0, as follows

€x(9) = B2 + 207 £ 28/ [E? — (u2 + A)]sin%(9) + u? + A2 sin’ (¢). (S67)



10

In addition, the Jacobian in the denominator of Eq. (S66) is given by

~ 2A% sin?(¢)
OBe| _ 1+ maty) (S68)
o). 28

Finally, evaluating the integral and taking into account the support of the delta-function for each possible case, we
obtain the expression
2A2 sin?(¢)

|E| /271’
N
cow ( T 342/3 Z B2 — ¢,(¢)

Notice that at low-energies the DOS scales linearly with energy, consistent with the existence of the six non-degenerate
band touching points in the Brillouin zone (see also Fig. 3 in the main text). This expression for the DOS is used for
the plot in Figs. 2(c) in the main text.

—1

2 (S69)

eo(¢) — (U + A?)) (ee(9) — (u® + A?)) 1+

8. Optical conductivity

We calculate optical conductivity in sSCDW phase using the mean-field Hamiltonian, where we can set Az = 0 and
Ag = A. The collisionless optical conductivity will be considered at T'= 0, p = 0, and u = 0, and for w > A. We
carry out the calculation following the steps outlined in Sec. (S2). First, we perform the trace in Eq. (S3). After
performing transformations in the angular variable, ¢, the integral over frequency and the substitution in the radial
coordinate of the momentum, y = ak? , takes the form

w/2 0o
(i) = =2 30 [ do [ dyyslacto)]. (570)
(=+

where

w .
9cy) =5 - \/(A —(y)? +2CAy (1 —sin 0;) (S71)
We now use the property of the j—function
1
= 5 - i)y S72
)] XZ: |f/(y07,)| (y Yo, ) ( )

where f(yo,;) = 0, and the above sum is carried out over all the zeroes of the function f(y). The zeroes of g.(y) in
Eq. (S71) are given by

QQ
Y e = CA smg \/ A sin? % + - (S73)

In the universal limit Q > A, the only two positive zeroes are

. y(()(_i_)—AblIl*—F\/Azbln —|—Q2—A2,
° yéil) = —Asin% + \/A2sin2§+%2 — A2,

Using Eq. (S73), we then obtain

. 3N [P L, .0]7 (+) (=)
I, (iQ2) = ~i (2> /0 d¢o ; dy y {4 — A”cos 2} {5 (y —yO,(Jr)) +4 (y _yo,(+)>}

= —iZQ. (S74)
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The Eq. (S2) implies that the conductivity in the collisionless regime of the sCDW phase at the mean-field level is a
constant

3e?  3me?
O’(Q)—Sh =T (S75)
This result is consistent with the splitting of the two nodal points at the two valleys, with the vorticity 437 into six
simple band touching points, featuring two triplets of the vorticity equal to 4.

Finally, one can explicitly check that in the collision-dominated regime, for w < A, the the polarization tensor
component in Eq. (S70) is purely real, and therefore, after the analytical continuation yields the Drude peak ~ 6(2/A).
This is analogous to case of the band touching for noninteracting Dirac electrons at a finite temperature yielding the

Drude peak ~ §(2/T).
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