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Abstract: Recently, the development of anti-cancer approaches using different physical or chemical
pathways has shifted from monotherapy to synergistic therapy, which can enhance therapeutic
effects. As a result, enormous efforts have been devoted to developing various delivery systems
encapsulated with dual agents for synergistic effects and to combat cancer cells acquired drug
resistance. In this study, we show how to make Institute of Bioengineering and Nanotechnology
(IBN)-1-based mesoporous silica nanoparticles (MSNs) for multifunctional drug delivery to overcome
drug resistance cancer therapy. Initially, curcumin (Cur)-embedded IBN-1 nanocomposites (IBN-1-
Cur) are synthesized in a simple one-pot co-condensation and then immobilized with the prodrug
of Cisplatin (CP) on the carboxylate-modified surface (IBN-1-Cur-CP) to achieve photodynamic
therapy (PDT) and chemotherapy in one platform, respectively, in the fight against multidrug
resistance (MDR) of MES-SA/DX5 cancer cells. The Pluronic F127 triblock copolymer, as the structure-
directing agent, in nanoparticles acts as a p-glycoprotein (p-gp) inhibitor. These designed hybrid
nanocomposites with excellent structural properties are efficiently internalized by the endocytosis
and successfully deliver Cur and CP molecules into the cytosol. Furthermore, the presence of Cur
photosensitizer in the nanochannels of MSNs resulted in increased levels of cellular reactive oxygen
species (ROS) under light irradiation. Thus, IBN-1-Cur-CP showed excellent anti-cancer therapy
in the face of MES-SA/DX5 resistance cancer cells, owing to the synergistic effects of chemo- and
photodynamic treatment.

Keywords: photodynamic therapy; p-glycoprotein; Cisplatin; mesoporous silica nanoparticles; reac-
tive oxygen species

1. Introduction

Cancer has emerged as one of the leading causes of death, accounting for millions
of deaths each year worldwide [1]. The most commonly used treatment strategy, which
employs traditional chemotherapeutics, is only partially effective due to low bioavailabil-
ity and susceptibility to resistance acquired by cancer cells, resulting in poor therapeutic
outcomes [2]. Furthermore, because of differences in pharmacokinetic (PK) and pharma-
codynamics (PD) properties in the body, these agents frequently cause adverse effects [3].
Multidrug resistance (MDR) refers to a phenomenon in the cancer cells that can resist a vari-
ety of chemotherapeutic drugs through different molecular mechanisms [4]. Several studies
on cancer biology have demonstrated that MDR is acquired through various approaches,
including altered apoptosis pathways, enhanced deoxyribonucleic acid (DNA) damage
repair, down-regulation of anti-apoptosis signaling pathways, alterations of drug entry at
the cell membrane level via receptors, modifications of drug metabolism enzymes, and
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changes in cell membrane composition, etc. [5,6]. MDR is frequently developed through
overexpression of adenosine triphosphate (ATP)-binding cassette (ABC) proteins such as
MDR-associated protein-1 (MRP-1) and P-glycoprotein (P-gp) [7,8]. Many researchers have
focused their efforts on overcoming resistance by targeting P-gp receptors, which effectively
reduce the concentration of chemotherapy agents and various types of endo/exogenous
toxins by relying on ATP levels [9]. Traditional approaches to MDR include the use of
new ABC transporter inhibitors (small molecule or protein-based drugs) [10]. Thus, the
development of ABC transporter inhibitors is a promising treatment for MDR by inhibiting
the efflux receptors via antagonist action and impact on the functions of the efflux recep-
tor [11]. To address these issues, researchers have focused their efforts on developing novel
treatment modalities based on nanotechnology [12,13].

Nanoparticles as drug delivery systems have ushered in a new era in theranostics by
employing various synthetic strategies to create multifunctional nanomaterials, combining
various therapeutic and diagnostic approaches in a single formulation [14,15]. Because
of their small size, targeted drug delivery, enhanced PK-PD profile, reduction in adverse
effects, multiple drug delivery, and successful inhibition of efflux activity of P-gp receptors,
these nanoconstructs have shown promising effects in overcoming the MDR of cancer
cells [16]. Liposomes, polymeric cargos, solid lipid nanoparticles, dendrimers, carbon-
based nanoparticles, layered double hydroxide nanoparticles, and MSNs have been used as
a delivery vehicle to overcome MDR [17,18]. MSNs have received much attention because
of their ease of synthesis, high surface area, high pore volume, and flexibility of surface
functionalization, among other things [19–22]. Furthermore, using MSNs to deliver one
or more drugs at a time improves the bioavailability of drugs with improved anti-cancer
effects at low doses, reducing side effects [23–25]. Recently, some studies on the use of
MSNs for treating MDR cancers using synergistic chemo-photodynamic effects have been
published [26]. Previous research suggested that nanoparticles could avoid P-gp-mediated
drug resistance by passing the efflux pump because these small-sized constructs could be
easily internalized via endocytosis [27].

In recent years, some advanced therapeutic strategies, such as light-induced thera-
peutic strategies, have been used to address issues associated with simple drug delivery
nanodevices and to improve therapeutic efficacy [28]. One of them is photodynamic
therapy (PDT), which uses a specific light source to generate ROS by utilizing molecular
oxygen to eradicate cancer cells [29]. This method allows for the selective destruction
of cancer cells while leaving healthy surrounding tissues unaffected. Due to these facts,
combining PDT with chemotherapy can significantly improve treatment efficacy against
drug-resistant cancers [30]. Furthermore, combining PDT with chemotherapeutic drugs is
highly effective in combating drug resistance at very low drug doses with minimal side
effects [31]. ROS produced by PDT can permeate cell membranes, resulting in damage of
DNA and protein, triggering apoptosis and necrosis of cancer cells [32]. The combination
of PDT and chemotherapy can stimulate the synergistic effects and compensate for their
shortcomings (photosensitizer agglomeration, drug efflux), thereby improving therapeutic
outcomes [33]. Furthermore, by acting on several intracellular organelles such as mitochon-
dria, endosomes, and DNA, combination therapies can potentiate ROS levels, alleviating
drug resistance [34].

Accordingly, increasing ROS levels has become a powerful strategy for improving
anti-cancer efficacy by combating drug resistance [12,13]. Several studies have been pub-
lished, indicating that these nanoparticles are a highly effective strategy for combating
drug resistance with minimal side effects [35]. For example, Tang and colleagues demon-
strated the fabrication of magnetic species-functionalized MSNs to treat MDR breast cancer
using doxorubicin (DOX) as a chemotherapeutic drug and Ce6 as a photosensitizer. This
biocompatible formulation containing a drug combination demonstrated highly effective
therapeutic effects at very low doses [36]. Zhang et al. recently developed an MSNs-based
nanoformulation to deliver CP in combination with the photosensitizer chlorin e6 (Ce6) for
the treatment of drug-resistant A549R lung cancer cell lines. The authors demonstrated
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that by enhancing ROS, this formulation successfully inhibited tumor growth and achieved
very effective chemo-photodynamic therapy (CPDT) at a low dose [37]. Recently we pub-
lished metal-substituted MSNs to improve the hydrophobicity and stability of drugs and
to broaden the antibacterial therapeutic spectrum and address MDR by generating massive
amounts of light-induced ROS [13,38].

In this study, we demonstrate the one-pot synthesis of Cur-embedded Institute of
Bioengineering and Nanotechnology (IBN)-1-based MSNs using the triblock copolymer
(F127) and fluorocarbon surfactants, motivated by these facts and the dreadful effects on
MES-SA/DX5 cancer cells (MDR) cancer cells. The Cur species were first assembled in
the micelle of the nonionic surfactant (F127). The silica source TEOS was then added,
along with the particle size limiting of fluorocarbon surfactant (FC-4), to produce the IBN-1
structures. Furthermore, the diaqua prodrug of CP was immobilized on the surface of the
carboxylate-modified MSNs. These nanocomposites were also systematically characterized
using various techniques. Finally, the MES-SA/DX5 cancer cell (MDR) line was used to
test the bio-efficacy of the designed nanoconjugates for chemo-photodynamic synergistic
therapy. The rationale for choosing IBN-1, one type of mesoporous silica-based material,
is that it is convenient for the encapsulation of dual drugs, specifically the hydrophobic
curcumin drug. The triblock copolymer (F127) in the nanochannels would substantially
hold the curcumin species. In addition, the particle size of IBN-1 is smaller than SBA-15
species and has larger pores compared to MCM-41 species [19–21]. Considering these
attributes, IBN-1-based composites were preferred over other mesoporous silica-based
materials in this study.

2. Materials and Methods
2.1. Materials

Cur (Purity: >75%), Pluronic F-127, [3-(2-aminoethylamino)propyl]trimethoxysilane
(Purity: 97%), glutaric anhydride (GA, Purity: 95%), cis-diamine dichloro-platinum (II)
(Purity: 99.9%), 1,3-diphenylisobenzofuran (DPBF, Purity: 97%), trypan blue solution (0.4%),
o-phenylenediamine (OPDA, Purity: ≥98.0%), ninhydrin, and Thiazolyl Blue Tetrazolium
Bromide (MTT, Purity: 98%) were purchased from Sigma Aldrich Co. Ltd. (St. Louis, MO,
USA). Dimethyl sulfoxide (DMSO, Purity: ≥99.9%), dimethylformamide (DMF Purity:
≥99.9%), ethanol (EtOH), and toluene (Purity: 99%) were obtained from Acros Organics
(Loughborough, UK). JC-1 assay kit was purchased from Invitrogen (Waltham, MA, USA).

2.2. Characterizations

To explore the chemical functionalities, the designed nanoparticles and their suc-
cessive modifications of functional groups were subjected to Fourier-transform infrared
spectroscopy (FT-IR) spectroscopy on the Bruker Alpha Spectrometer (Madison, WI, USA).
The zeta potential values of analogous modified samples were measured by a Malvern
Zetasizer (Zeta PALS, Malvern Panalytical, and Malvern, UK). Ultraviolet-visible (UV-Vis)
absorbance values were recorded on a Genequant–1300 series spectrophotometer (GE
Healthcare Biosciences, Pittsburgh, PA, USA). Flow cytometry analysis was performed on
a C5 Flow Cytometer (BD Accuri™).

2.3. Cur-Embedded IBN-1 Synthesis

The IBN-1 nanoparticles embedded with Cur were synthesized using the previously
described procedure with minor modifications [39]. 3.25 g of Pluronic F127, 1.2 g of Cur,
and 4 g of FC-4 were dissolved in 200 mL of 20 mM HCl solution and stirred for 2 h
at 30 ◦C, resulting in the encapsulation of Cur molecules in the Pluronic F127 micelle.
In addition, 11 g of TEOS was added dropwise to the above solution and stirred at a
constant temperature for 24 h. The total solution was hydrothermally treated by placing
the resultant mixture in an autoclave at 100 ◦C for 24 h. The Cur-embedded IBN-1 solid
product was centrifuged and thoroughly washed with an excess of dd-H2O to remove
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the surfactant FC-4. Finally, the IBN-1-cur product was lyophilized and stored at 4 ◦C for
future experiments.

2.4. Diamine-Modified IBN-1-Cur Synthesis

To improve drug binding affinity on the surface of IBN-1 nanoparticles, we modified
most outside surfaces of IBN-1-Cur with diamine silane at high temperatures with constant
stirring [40]. 200 mg of IBN-1-Cur sample was first dispersed in 80 mL of dry-toluene
and thoroughly mixed before continuing to stir at 80 ◦C. The homogeneous nanoparticle
mixture was then added with 1 mL of diamine silane. The reaction was further stirred
for 20 h under the same conditions. Furthermore, the solid product was centrifuged and
washed with hexane twice before being dried under vacuum at room temperature. The
product was denoted as IBN-1-Cur-2N.

2.5. Carboxylic Acid Group Modification

The acid modification was carried out following the previously reported proce-
dure [41]. In 10 mL of dd-H2O, 100 mg of IBN-1-Cur-2N nanoparticles were suspended.
The mixture was then mixed with 60 mg of GA at room temperature and stirred for 12 h
at the optimal speed. Finally, the nanoparticle sample was collected and washed several
times with water. The finished product was vacuum-dried and stored at 4 ◦C. The product
was denoted as IBN-1-Cur-GA.

2.6. CP Coordination on IBN-1-Cur-GA

The highly reactive diaqua-CP was created by replacing the CP’s two chlorine atoms [42].
First, 50 mg of CP was placed in a centrifuge tube containing a solution (57 mg in 4 mL
of dd-H2O). The mixture was shaken for 24 h at 37 ◦C in the dark in an arbitrary shaker.
Furthermore, the silver chloride (AgCl) precipitate was centrifuged, the diaqua-modified
CP-containing supernatant was carefully collected, and the pH of the sample was adjusted
to 6.8. Finally, dd-H2O was used to increase the volume to 10 mL. The diaqua CP solutions
were mixed with 50 mg of IBN-1-Cur-GA nanoparticles and shaken for 24 h at 37 ◦C in the
dark. Centrifugation was used to collect the CP-coordinated nanoparticles, and the resulting
solid was washed several times with dd-H2O to remove the unreacted drug molecules.
Finally, the CP loading percentage was calculated by using UV-vis spectrophotometry to
validate changes in absorbance values at 275 nm.

2.7. In Vitro Release Studies

The CP release from the IBN-1 nanocomposites was accomplished using the previously
described procedure [43]. Initially, the CP calibration curve was established and mixed with
OPDA solution with heating at 100 ◦C for 10 min, resulting in a light green color change.
After cooling to room temperature, the solution was subjected to UV-vis spectrometry
analysis at 705 nm to obtain the standard curve. The test sample solutions were then
prepared by suspending 5 mg of CP-loaded IBN-1-Cur nanoparticles in 1 mL of phosphate-
buffered saline (pH-7.4 and 5.0). Furthermore, aliquots of samples were separated at
predetermined intervals, and the equivalent amount was replenished accordingly. Finally,
the amount of CP released from the nanoconjugates was calculated by comparing it to the
standard curve.

2.8. Ninhydrin Assay

In general, the traditional ninhydrin assay was used to determine both quantitative
and qualitative primary amines [44]. The ninhydrin solution (in methanol) readily reacts
via nucleophilic displacement reaction, which produced Ruhemann’s purple color upon
heating with a maximum absorption peak at 570 nm. In a nutshell, the same amount of
amine, acid, and CP-loaded IBN-1-Cur nanoparticles was mixed with 1 mL of ninhydrin
solution. The tubes were then sonicated for 2 min before being heated at 90 ◦C for 20 min.
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Finally, the solid was removed by centrifugation, and the supernatant was analyzed with a
UV-vis spectrophotometer.

2.9. Photostability Test

The stability of Cur-encapsulated nanoparticle samples after prolonged exposure to
light illumination was investigated [45]. The IBN-1-Cur nanoformulation (5.0 mg) and
equivalent molar concentration of Cur were weighed and dissolved in 1 mL of DMSO:
H2O solution (1:1 v/v). The prepared samples were irradiated with a UV light source for
7 min, and the changes in absorbance values were recorded using UV-vis spectrometry at
1-min intervals. Notably, the experiment safety precautions were taken, such as placing the
samples in the dark of 4 ◦C, to minimize the external thermal effect on the samples.

2.10. DPBF Assay for Detecting the Generation of Singlet Oxygen (1O2)

A steady-state method was used to detect the 1O2 species using the DPBF probe [46].
Indeed, the property of DPBF’s participation in the Diels-Alders reaction (1,4-cycloaddition)
can be used as a sensitive probe for the detection of 1O2 species in the presence of a light
source in vitro. Correlating the decreasing intensity of DPBF with the amount of 1O2 species
allows us to calculate the amount of 1O2 species. In brief, 2 mg of various nanoparticles,
IBN-1-Cur, and IBN-1-Cur-CP were dissolved in 10 mM of DPBF solution (EtOH:H2O, 1:1
v/v), and the mixture solution was illuminated with blue light (15 mW/cm2) for 5 min, and
changes in absorbance values at 412 nm were recorded using a UV-vis spectrophotometer.
Furthermore, the sample without the Cur-loaded IBN-1 nanoparticle and the DPBF solution
alone served as a control experiment.

2.11. Cell Culture

The BioSource Collection and Research Center provided human uterine sarcoma drug
resistance (MES-SA/DX5 cell line) cells (Hsinchu, Taiwan). In a humidified incubator
(37 ◦C, 5% CO2), the cells were cultured in McCoy’s medium with 10% FBS.

2.12. In Vitro Cytotoxicity of IBN-1-Cur-CP against Drug-Resistant Tumor Cells

The drug-resistant MES-SA/DX5 cell line was used to test the in vitro cytotoxicity of
IBN-1-Cur-CP using the MTT assay. The cells were seeded in a 96-well plate at a density of
1 × 104 cells per well and incubated in a complete medium for one day. The cells were then
treated with different concentrations of nanoparticles and incubated for 24 h. Similarly,
the experiment was repeated by treating the cells with nanoparticles for 4 h, irradiated
with 450 nm light (15 mW/cm2) for 5 min, and further incubated for another 20 h. Finally,
the medium was added 10 µL of MTT reagent (5 mg/mL in PBS-7.4) and incubated for
another 4 h. After removing the medium and washing the cells with PBS, the production
of formazan crystals was dissolved by adding 100 µL DMSO. The optical density (OD) at
550 nm was measured using a microplate reader to determine cell viability. The following
equation was used to calculate cell viability.

Cell viability (%) = (OD of treated group/OD of control group) × 100

2.13. Trypan Blue Cell Assay

We used a trypan blue exclusion assay, as described in the previous report [47], to
determine the number of viable cells. In brief, the MES-SA/DX5 cells were cultured in a 6-
well plate at a density of 1 × 105 cells per well for one day. After that, the cells were treated
with IBN-1-Cur-CP, exposed to light for 5 min, and incubated for 24 h. The trypan blue dye
(10 µL) was added to the stain for 5 min and then washed with PBS twice. Images of cells
were captured using a microscope to determine the distribution of dead and live cells.
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2.14. DCFDA Test

The DCFDA fluorescent probe assay was used to detect the intracellular generation
of ROS levels [48]. The MES-SA/DX5 cells were cultured for 24 h in a 6-well plate at a
density of 1 × 105 cells/well. In addition, IBN-1-Cur-CP (50 µg/mL) was added to the
culture medium. After incubating for 4 h, 10 µM DCFDA was added to each well and
incubated for another 30 min. The cells were carefully washed with PBS, further exposed
to the light source for 5 min (PDT group), and then incubated for 12 h. Finally, the cells
were observed using a fluorescence microscope (Ex/Em-488/525 nm), and the amount of
DCF fluorescence produced by ROS was measured using flow cytometry.

2.15. JC-1 Test

The transmembrane mitochondrial membrane potential (MMP) was measured using
the JC-1 assay as described previously [49]. MESA-SA/DX5 cells were harvested in 6-well
plates at a density of 1 × 105 cells per well, incubated overnight, and then treated with
IBN-1-Cur-CP nanoconjugates for 4 h. The cells were carefully washed with PBS, and
further exposed to the light source for 5 min (PDT group). After 12 h, 2 µmol/L of JC-1
fluorescent probe was added and incubated for another 30 min. A microscope and plate
reader were used to estimate the fluorescence of each sample (JC-1 aggregate with red
emission and. JC-1 monomers with green emission). MMP levels indicating mitochondrial
health were quantified as fluorescence intensities ranging from red to green, which were
then correlated with control cells. A fluorescent microscope was used to capture the images.

3. Results and Discussion

Due to their unique properties, MSNs have garnered enormous interest from re-
searchers for biomedical applications due to their ability to control the release of multiple
drugs, ease of synthesis, control of size, and particle clearance through degradation under
physiological conditions. In general, one of the most commonly used strategies for the
synthesis of MSNs is a sol-gel process, which is known to impart good morphological
properties in terms of size, shape, and surface area. In this paper, we show how to use
acidic media to create MSNs with tunable morphology and size control for the delivery
of hydrophobic drug cargo. Initially, a weakly acidic solution was used to dissolve the
copolymer F127 and Cur, resulting in the formation of Cur-encapsulated micelles. The FC-4
surfactant was then combined with TEOS to form a mesoporous silica shell over the micelle
(Cur@F127). In this context, the acidic medium can delay silica hydrolysis by stabilizing the
silica shell over the Cur@F127 micelle and surrounding FC-4 surfactant molecules, limiting
silica growth and yielding stable IBN-1-Cur nanoparticles. Furthermore, the surface was
post-modified with amino functional groups by condensation at high temperatures of 3-(2-
aminoethylamino) propyltrimethoxy silane) (diamine silane). Through a coupling reaction,
the obtained IBN-1-Cur-2N surface was further reacted with GA. Finally, the surface of
carboxylated groups was coordinated with diaqua CP (prodrug) for combined chemo- and
photodynamic therapy to combat MES-SA/DX5 cancer cells’ drug resistance (Figure 1).
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Figure 1. A schematic representation of the synthesis of IBN-1-Cur, subsequent surface modifications,
and CP species loading.

3.1. Synthesis and Characterization

The hydrodynamic size and polydispersity index (PDI) of the IBN-1-Cur and further
their modified samples were measured by the dynamic light scattering (DLS) method, and
the data are shown in Table 1.

Table 1. IBN-1 and their modified samples display surface area, pore volume, particle size, polydis-
persity index, and zeta potential.

Sample Surface Area a

(m2 g−1)
Pore Volume b

(cm3 g−1)
Particle Size (nm) PDI Zeta Potential

(mV)

IBN-1-Cur 17.2 0.095 198.6 0.107 −14.12
IBN-1-Cur-2N 0.8 0.035 220.4 0.128 +24.56

IBN-1-Cur-2N-C c 830.6 0.824 N.D. d N.D. d N.D. d

IBN-1-Cur-GA 2.6 0.017 239.5 0.204 −16.02
IBN-1-Cur-CP 13.9 0.039 247.5 0.124 +10.01

Note: a Determined by the BET method, b Determined by the t-plot method, c Calcined sample of IBN-1-Cur-2N,
and d N.D. = Not determined.

The average diameter of IBN-1-Cur was 198.6 nm (PDI 0.107), diamine and glutaric
anhydride-modified samples IBN-1-Cur-2N was 220.4 nm (PDI 0.128), IBN-1-Cur-GA was
239.5 nm (PDI 0.204), respectively. The particle size of these samples was increased by 21.8,
and 40.9 nm, respectively, compared with IBN-1-Cur, which might be attributed due to
the surface modifications of functional groups. The size of IBN-1-Cur-CP was 247.5 nm
(PDI 0.124), a slightly increased size compared with glutaric anhydride functionalized
formulation, attributing to the successful coordination of chemically modified CP prodrug
with IBN-1-Cur-GA nanoparticles. The zeta potential of nanoparticles plays a critical role
in the stability of nanoformulations in an aqueous medium. Because of the extensive
surface silanol groups, the as-synthesized IBN-1-Cur formulation has a negatively charged
zeta value of −14.12 mV. The IBN-1-Cur nanoparticles were then modified with diamine
functional groups, yielding a positive zeta potential of +24.56 mV. The IBN-1-Cur-2N
samples were then modified with a glutaric anhydride functional group (IBN-1-GA),
which shifted the zeta value to a negative charge of −16.02 mV, indicating successful
acid functional group conjugation. At neutral conditions, the negative charge could be
attributed to the deprotonation of the surface with acid functional groups. Finally, IBN-1-
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Cur-CP samples have a positive zeta potential of +10.01 mV, indicating that the CP prodrug
was immobilized on the surface. Because cancer cell membranes are negatively charged,
the positively charged final formulations may enhance cellular affinity and uptake of the
IBN-1 species. The nitrogen adsorption–desorption isotherms were used to measure the
surface area, pore size, and pore volume of the IBN-1-Cur and their modified samples
(Figure 2A). The results are summarized in Table 1. The surface area and pore volume of
as-synthesized IBN-1-Cur, the surface-modified diamine silane, grafted GA, and further
coordinated CP samples are very small. Notably, the main surface area and pore volume of
mesoporous silica are contributed by the internal structure of the material itself. During the
synthesis process, F127 and Cur are self-assembled to form a micelle structure. Thus, the
as-synthesized product of silica frameworks can stabilize F127/Cur in the inner structures
of IBN-1. Despite the continuous reaction and washing process, the Cur molecules are
very stable inside the nanochannels and have no leaching phenomenon to maintain a
high loading capacity. To further confirm the existence of mesoporous structure in the
IBN-1-Cur sample, we used the diamine silane modified sample to calcine at 550 ◦C for
5 h for F127/Cur removal. We can find that the calcined samples showed a complete
restoration of the IBN-1 pore structure with high surface area (830.6 m2/g), pore volume
(0.824 cm3/g), and single pore size distribution. The pore size distribution was determined
by the adsorption curve of the isotherm from Barrett–Joyner–Halenda (BJH) method. The
curve of Figure 2B(c’) showed uniform pore size of a single distribution peak with a
maximum value falling at 6.3 nm. The results showed that the one-pot reaction by the
co-condensation approach could achieve high loading of Cur for therapeutic purposes. The
aqueous distributions of all sample photographs were enclosed in Figure 2C, indicating
that the samples were distributed well in the aqueous medium without aggregation. These
snippets of evidence suggest that these formulations with well-controlled particle sizes
could easily apply in nanoparticle-based drug delivery systems.
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Figure 2. (A) Nitrogen adsorption–desorption isotherms of (a) IBN-1-Cur, (b) IBN-1-Cur-2N, (c) IBN-
1-Cur-2N (calcination), (d) IBN-1-Cur-GA, and (e) IBN-1-Cur-CP samples. (B) Pore size distribution of
the IBN-1-Cur-2N (calcined sample). (C) Photographic representation of aqueous solutions containing
(a) IBN-1-Cur, (b) IBN-1-Cur-2N, (c) IBN-1-Cur-GA, and (d) IBN-1-Cur-CP samples.
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Transmission electron microscopy (TEM) images were also taken to confirm the mor-
phology of the nanoparticles. TEM images of IBN-1-Cur-GA and IBN-1-Cur-CP samples
are shown in Figure 3. The synthesized nanoformulations were found to possess a spherical
shape and pore-dense matter, which could be attributed to the presence of F127@Cur
micelles in the IBN pores. The nanoparticle size of the silica core was near 100–200 nm.
Furthermore, IBN-1-Cur-GA and IBN-1-Cur-CP samples had a much rougher surface,
indicating successful deposition of functional groups and CP prodrug on the surface.
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Further, we used FT-IR spectroscopic investigations of Cur-embedded, amine-modified,
acid-modified, and CP-loaded IBN-1 samples to demonstrate the successful immobilization
of diverse organic functionalities (Figure 4).
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The O-H stretching vibrations of adsorbed H2O molecules and hydroxyl groups of
Cur species produced a broad spectrum at 3100–3500 cm−1 in the IBN-1-Cur sample. In its
structure, the Cur molecule has three types of functional groups: two aromatic rings with
O-methoxy phenolic groups attached to a seven-carbon linker with α, β-unsaturated, and
β-diketone functional entities. Because Cur has a carbon backbone, the peak at 2925 cm−1

could be attributed to CH2 vibrations. This peak, however, may be overlapped with
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the carbon peaks in F127. Peaks at 1648 and 1545 cm−1 could be attributed to carbonyl
functional groups, representing Cur’s tautomeric functional groups. To that end, the strong
peaks at 1090 and 540 cm−1 could be attributed to silica peaks, such as Si-O-Si and Si-O-H
peaks, which were observed in all samples, indicating the successful formation of a siliceous
framework around the Cur@F127 polymer shell.

Furthermore, the IBN-1-Cur-2N sample exhibited a high-intensity peak at 1502 cm−1,
which could be attributed to the N-H bending vibration of primary amines on the sur-
face of nanoparticles, confirming successful diamine silane modification of the IBN-1
surface. Furthermore, GA samples showed a reduced peak at 1502 cm−1 and a new peak
at 1578 cm−1, which could represent the C=O stretching vibrations of carboxyl groups
(Figure 4c). The CP-loaded sample showed broad peaks at 3300 and 2400 cm−1, which
could be attributed to OH molecules’ stretching vibrations. Furthermore, the N-H bending
vibration of hydroxo-CP conjugated with the IBN-1-Cur-GA surface could represent a peak
at 1610 cm−1 (Figure 4d).

Figure 5 depicts the UV-vis spectrum of the ninhydrin test of various IBN-1-Cur
functionalized surfaces, namely IBN-1-Cur-2N, IBN-1-Cur-GA, and IBN-1-Cur-CP samples.
The amine-modified IBN-1-Cur-diamine sample exhibited Ruhemann’s purple color with
peaks at 450 nm and 570 nm (Figure 5b), indicating the presence of primary anime functional
groups that took part in the nucleophilic addition reaction with ninhydrin and produced the
colorimetric product. In addition, the inset images confirmed Ruhemann’s purple coloring.
In contrast, no characteristic absorption peak representing the ninhydrin complex was
observed in the successively modified samples of GA and CP-immobilized nanoparticles,
indicating that the amine functionalities were completely occupied
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inset figure.

3.2. Photostability Studies

Despite the encapsulation of Cur species in nanoparticles, the stability of Cur in
the presence of light is always a challenge. In this vein, it is clear from the literature
that there are no obvious studies quantitatively explaining Cur’s Photostability [50]. In
general, instability refers to the rapid degradation of Cur species in the presence of a light
source, which may result in a loss of Cur’s bioefficacy. The aqueous and photo-stabilities
of the IBN-1-Cur-CP formulation play critical roles in cancer therapy in evaluating the
characteristic properties of PDT correlating to the efficacy of the formulation. First, the
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stability of IBN-1-Cur-CP in the presence of light was investigated. Figure 6A shows the
UV-vis absorption spectra of free Cur and IBN-1-Cur-CP in DMSO: H2O (1:1 v/v) solutions
irradiated with UV light at various time points. The intensity of the free Cur absorption
peak (438 nm) decreased significantly as the light irradiation time increased from 0 to
7 min, but no apparent changes were observed in the IBN-1-Cur-CP samples (444 nm).
The findings indicated that the Cur species embedded in the IBN-1 nanoparticles were
highly stable in UV light. In addition, we tested the Cur stability in the IBN-1-Cur-CP
nanoformulation by soaking it in a serum-free cell culture medium for 24 h and measuring
the supernatant absorbance at 438 nm. The excellent aqueous stability was attributed to
the fact that the release amount of Cur was meager. Further confirmation was obtained
by photographing the insets of sample tubes at various time intervals. The experimental
results revealed no significant differences, indicating Cur’s aqueous stability (Figure 6B,C).
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Figure 6. Photostability studies of Cur, (A) UV-vis spectrum analysis of absorption bands of free Cur
and IBN-1-Cur-CP samples by UV light irradiation with time up to 7 min in DMSO: H2O (1:1 v/v)
medium; (B) The samples of (a) free Cur (λmax at 438 nm) and (b) IBN-1-Cur-CP (λmax at 444 nm)
irradiation under UV light up to 7 min, calculating the percentage photo-degradation rate; and
(C) UV-vis absorbance values of Cur showing the leakage of Cur content from the IBN-1-Cur-CP
formulation in cell culture medium for 24 h.

3.3. CP Releasing Profile

Indeed, hydroxo CP molecules were conjugated onto IBN-1-Cur-GA samples via
electron coordination in carboxyl groups and the d orbital of platinum. Through the
endocytosis mechanism, the IBN-1-Cur-CP sample was trapped in endosomes. Because
of the low pH gradient conditions, the interactions between carboxylated groups and CP
would be weakened once the nanoparticles reached the endosome or late endosome. The
nucleophile in the cytosol (Cl− and H2O) may participate in the nucleophilic displacement
reaction, producing highly reactive mono or diaqua (dichlorine) CP. The CP molecules
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could then bind to nuclear and mitochondrial DNA, inhibiting DNA synthesis, affecting
transcriptional pathways and resulting in cell death. We used the OPDA assay to quantify
the released amounts of CP in different pH values of PBS at 37 ◦C from the IBN-1-Cur-CP
formulation (Figure 7A). The CP coordinated IBN-1-Cur-CP samples were dispersed in
different pH of a PBS solution (pH-5.0 and 7.4) at 37 ◦C to mimic cellular endosome and
cytosol environments in their releasing behavior. The resulting OPDA and released CP in
DMF were heated at 100 ◦C for 10 min, resulting in a light green color and an absorption
peak at 705 nm. The CP demonstrated an immediate release effect of around 29% in a pH-
5.0 environment within 3 h, and the release reached 90% in 24 h. In the pH-7.4 environment,
it showed around 51% in 24 h. The nucleophile attack in the acidic environment could
explain the pH-dependent release of CP. These findings show that the specific release in an
acidic environment would favor anti-cancer therapy (Figure 7B) [51].
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mechanism of CP release in cancer cells, and highly active monoaqua CP binding to DNA.

3.4. In Vitro Singlet Oxygen Generation Assay

Excessive intracellular ROS production has been linked to the destruction of DNA,
cell membrane integrity, the abolition of lipid membranes, and the activation of apoptosis
signaling pathways in cancer cells [52]. The DPBF assay was used to detect the levels of
singlet oxygen species, a type of ROS, in the aqueous solution (EtOH: H2O, 1:1 v/v) to
evaluate the potency of photodynamic features of IBN-1-Cur-CP. The UV-vis absorption
intensities of DPBF were measured at 412 nm for samples of DPBF, IBN-1, IBN-1-Cur, and
IBN-1-Cur-CP mixed with aqueous solution and exposed to light at various time points.
Figure 8 shows that the absorption intensities of the IBN-1-Cur-CP sample decreased with
increasing time up to 25 min, owing to the generation of ROS by Cur molecules under light
irradiation. The absorption intensities of the IBN-1 and pure DPBF samples, on the other
hand, were not changed significantly (Figure 8, inset).
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3.5. Cell Viability Experiments In Vitro

Cur and CP are therapeutic agents that participate in the generation of ROS and
induce cell death by altering the redox environments [53]. Furthermore, the F127 polymer
inhibits efflux pumps, such as P-gp receptor efflux activity. It increases the concentration
of therapeutic agents for the availability of producing the desired apoptosis activity to
overcome MDR [54]. As a result, our formulation overcame MDR by successfully inhibiting
the efflux activity of P-gp receptors and inducing cell death via enhanced ROS-mediated
apoptosis via chemo- and photodynamic therapy [55]. To further demonstrate the efficacy
of combination therapy, we used the MTT assay to assess the cytotoxicity of IBN-1-Cur-CP
on drug-resistant MES-SA/DX5 cells. As shown in Figure 9, after 24 h of treatment with
IBN-1-Cur-CP samples of varying concentrations, the designed nanoconjugates showed
a significant reduction in cell viability in the presence of a light source versus without a
light source.
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3.6. Trypan Blue Assay

In addition, the trypan blue exclusion assay was used to assess the PDT effects of the
nanoformulation. Trypan blue is a membrane-impermeable dye that can easily enter dead
cells rather than living cells. Figure 10 shows that the cell membranes produced significant
damage after treating IBN-1-Cur-CP (50 µg/mL) under light irradiation. Thus, many cells
were stained by trypan blue dye, which was attributed to PDT effects from light-induced
ROS generation [56].
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3.7. In Vitro Cellular Uptake Studies

Furthermore, the cellular internalization efficiency of IBN-1-Cur-CP was assessed
using Cur’s self-fluorescence property (Figure 11A). In cases of endosomal/lysosomal
pH sensitivity, nanoparticles enter cells via the endocytosis pathway and release thera-
peutic agents into the cytosol (Figure 11B). To demonstrate the delivery efficiency of the
nanocomposites to MDR cancer cells, we treated the IBN-1-Cur-CP sample (50 µg/mL)
to MES-SA/DX5 cells for 4 h, and the intracellular Cur fluorescence was measured using
fluorescence microscopy. The nuclei were counterstained with DAPI, and the nanopar-
ticles were identified using Cur species’ green fluorescence (Figure 11A). Microscopic
studies showed large amounts of nanocomposites were uptake and accumulated in the
cytosol of cells, and the green fluorescence was around the nucleus to demonstrate the
successful internalization.
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3.8. DCFDA Assay

ROS levels in MES-SA/DX5 cells were determined using the DCFDA assay. In general,
in the presence of ROS, the DCFDA probe is converted to the green fluorescent compound
DCF (Figure 12). The cells were incubated with IBN-1-Cur-CP for 4 h and further exposed
to the DCFDA and light source. The generated green fluorescence was observed under
fluorescence microscopy.
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Flow cytometry was used to quantify the intensity of cell fluorescence and deter-
mine ROS production (Figure 12A). Compared with the control group, the IBN-1-Cur-CP
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(Figure 12A(b)) treated cells showed higher fluorescent intensity with moderate ROS pro-
duction. The further light irradiation of the IBN-1-Cur-CP sample could observe the highest
fluorescence intensity with large amounts of ROS production (Figure 12A(c)). Microscopy
images of cells treated with IBN-1-Cur-CP nanoparticles also revealed massive fluorescence,
which was attributed to the production of excess ROS in (Figure 12B(a–c) MES-SA/DX5
cells. The findings support using IBN-1 as a delivery vehicle to achieve synergistic effects
for chemo-photodynamic therapy against MDR cancer cells.

3.9. Assay for Mitochondrial Membrane Permeability (MMP)

The organelle mitochondria is a vital apoptosis target through lethal ROS production
from therapeutic drugs [57]. The JC-1 fluorescent probe assay was used to estimate the
potency of the IBN-1-Cur-CP sample on MMP (m) changes. At high MMP conditions,
JC-1 shows an aggregated form and emits red fluorescence. However, the dysfunction of
apoptotic cells shows depolarized mitochondria membrane, and JC-1 is monomeric and
emits green fluorescence (Figure 13).
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Figure 13. MMP assay on MES-SA/DX5 cells using the JC-1 staining method. (A) MMP depo-
larization was examined using a fluorescence microscope after cells were treated with IBN-1-Cur,
IBN-1-Cur-CP (dark), and IBN-1-Cur-CP (light) (50 g/mL), a scale bar of 100 µm. (B) Quantitative
analysis of the ratio of red/green fluorescent percentage intensity using a microplate reader.

After treatment with the IBN-1-Cur sample (50 µg/mL), JC-1 emitted minor orange
fluorescence and showed a slight decrease in the MMP. However, the IBN-1Cur-CP treated
cells showed a further increase in fluorescent intensity, which could be due to the release of
CP and the trigger of mitochondria ROS from the electron transfer chain. The transference
of fluorescence from the red of the control group to the green of the IBN-1-Cur-CP sample
(with light) indicated that nanocomposite treatments could result in a great decrease in
MMP level. Via light irradiation, IBN-1-Cur-CP can further generate energy transfer of
Cur to convert nontoxic triplet oxygen to cytotoxic singlet oxygen. Therefore, the green
fluorescence demonstrated the trigger collapse and depolarization in the MMP (Figure 13A).
Notably, combining chemo- and photodynamic therapy could enhance the nanoparticles to
change in membrane potential of mitochondria and activate the intrinsic apoptotic pathway.
To compare the effects of IBN-1-Cur and IBN-1-Cur-CP nanoparticles on MMP changes,
the ratio of red/green fluorescence was determined using a microplate reader. As shown in
Figure 13B, the control ratio of red/green fluorescence percentage was 92% after treatment
with IBN-Cur (42%), IBN-1-Cur-CP (38%), and IBN-1-Cur-CP+L (4%).
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4. Conclusions

In conclusion, we demonstrated the one-pot synthesis of Cur-embedded IBN-1 nanocon-
jugates, the successful immobilization of CP prodrug, and the conquering of MDR in
MES-SA/DX5 cancer cells. The engineered IBN-1-Cur-CP nanoconjugates were system-
atically investigated with various physiochemical characterization methods, confirming
their morphological, textural, and photostability attributes. Furthermore, the cellular exper-
iments revealed an excellent internalization effect through endocytosis and increased ROS
under the light source. The ROS enrichment strategy demonstrated significant anti-cancer
activity against drug-resistant MES-SA/DX5 cells. Together, our findings indicated that
these designed nanocomposites showed great potential against MDR cell line using a
combination of chemotherapy and photodynamic therapy.
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