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Abstract: Light detection and ranging (LiDAR) sensors utilize a near-infrared (NIR) laser with a
wavelength of 905 nm. However, LiDAR sensors have weakness in detecting black or dark-tone
materials with light-absorbing properties. In this study, SiO2/black TiO2 core/shell nanoparticles
(SBT CSNs) were designed as LiDAR-detectable black materials. The SBT CSNs, with sizes of 140,
170, and 200 nm, were fabricated by a series of Stöber, TTIP sol-gel, and modified NaBH4 reduction
methods. These SBT CSNs are detectable by a LiDAR sensor and, owing to their core/shell structure
with intrapores on the shell (ca. 2–6 nm), they can effectively function as both color and NIR-reflective
materials. Moreover, the LiDAR-detectable SBT CSNs exhibited high NIR reflectance (28.2 R%) in
a monolayer system and true blackness (L* < 20), along with ecofriendliness and hydrophilicity,
making them highly suitable for use in autonomous vehicles.

Keywords: LiDAR-detectable; LiDAR black; NIR-reflective; autonomous vehicle; core/shell; blackness;
nanomaterial

1. Introduction

Autonomous vehicles (i.e., self-driving cars) are the technology that has received
some of the most attention in the smart mobility industry, along with electric vehicles.
Autonomous vehicles should be able to recognize the surrounding environment and thus
avoid accidents and drive safely to their destination without human manipulation [1,2]. To
implement a completely autonomous driving system, various sensor systems, including
radars, cameras, and light detection and ranging (LiDAR) sensors, which act as the eyes of
the autonomous vehicle, have been extensively studied by various research groups and
companies [3]. Among these sensors, LiDAR has received widespread attention owing to
its high resolution, accuracy, and ability to generate three-dimensional maps, as well as the
fact that it is not as affected by rain and fog, in contrast to radar and cameras [4].

The principle of LiDAR sensors is that they emit a near-infrared (NIR) laser with a
wavelength of approximately 905 nm and detect its time of reflection [5,6]. Owing to the
high degree of straightness of the laser, LiDAR sensors have a higher subject recognition
efficiency, which depends on both the distance and width of the object being detected.
Hence, significant efforts have been devoted by major automotive electronics companies to
improve LiDAR devices. However, despite the significant improvements, LiDAR sensors
have a fundamental drawback related to the detection of black and dark-tone materials.
Because black and dark-tone materials absorb light, including that in the NIR region, the
precision and accuracy of LiDAR sensors decrease significantly during the detection of
these materials [7]. Humans have strong color preferences, and dark-toned objects make
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up a large proportion of vehicle components, human outfits, and industry markets [8].
Therefore, it is essential to overcome this drawback of LiDAR sensor systems for the
realization of perfect autonomous vehicles and environments.

Recently, LiDAR-detectable (i.e., NIR-reflective) dark-tone materials have received
wide attention. There are several ways of incorporating NIR-reflective layers on dark-tone-
colored vehicles, including using inorganic pigments, organic dark-tone perylene-derived
pigments, and mixed pigments (Figure 1). In the case of inorganic pigments, various metal
oxides, including Mg-doped ZnFeO4, Al2O3-doped CoFe2O4, and Ce1−xGdxVO4 pigments,
exhibit NIR reflectances of ~25–70 R% [9–11]. However, inorganic pigments have two
drawbacks; namely, they show high L* values and metal toxicity. Specifically, a lower L*
value indicates higher material blackness. The L* values of inorganic pigments that have
been reported in previous studies are approximately 23–49 and closer to those of dark-tone
gray and brown materials instead of those of black ones [9–11]. On the other hand, perylene-
derived organic materials can also be employed as LiDAR-detectable pigments. However,
these organic pigments require a complex bilayered system of stacked dark-tone colors and
a LiDAR-reflective layer of a TiO2-based material [12,13]. The fabrication of a bilayered
system would involve additional coating processes, making it more expensive and time-
consuming. Moreover, perylene-derived organic materials have additional disadvantages
as well, such as a low degradation temperature and high toxicity. Accordingly, there is
an urgent need to develop new materials to overcome these limitations of conventional
LiDAR-detectable pigments and coating systems.
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Figure 1. (a) Conceptual illustration of NIR reflectivity of white- and black-colored cars and their
low- and high-sensitivities on LiDAR sensors. (b) Digital photograph of white- and black-colored car
objects and their practical images on display subjected by the LiDAR sensor employing a 905 nm
wavelength.

Titanium dioxide (TiO2) is one of the most effective NIR-reflective materials in the
780–2500 nm range due to its white color [14]. In addition, TiO2 can be readily incorporated
into other metal oxides, such as silica (SiO2), using a typical sol-gel method. Numerous
studies have reported the synthesis of SiO2/TiO2 core/shell materials with desirable prop-
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erties in terms of the specific surface area, pore volume, hydrophilicity, and toxicity [15–17].
SiO2/TiO2 core/shell materials are employed in numerous applications, including as
light-scattering materials for dye-sensitized solar cells, nanocarriers for drug delivery, and
photocatalysts [18–23]. Furthermore, the properties of the outermost TiO2 shell can be
manipulated through various surface treatments [24]. For instance, noble metals, such as
Au and Pt can be introduced into the TiO2 shell via silylation [25,26]. In addition, various
alkaline earth metals can be doped onto the TiO2 shell using the sonication-mediated
etching method [27,28]. In addition, the TiO2 shell can be turned black by the NaBH4
reduction method. However, the synthesis of SiO2/black TiO2 core/shell materials has not
been reported previously.

In this paper, we report the synthesis of newly designed SiO2/black TiO2 core/shell
nanoparticles (SBT CSNs), which are a highly LiDAR-detectable material. The SBT CSNs
were synthesized using a combination of the sol-gel and NaBH4 reduction methods. The
synthesized SBT CSNs exhibited very high NIR reflectances, which are approximately 28.2%
and 50.2 R% in the monolayer (without a TiO2 surfacer) and bilayer (with TiO2 surfacer)
forms, respectively. Furthermore, SBT CSN-coated black objects were detected using an
actual LiDAR sensor, which could readily perceive the objects. To the best of our knowledge,
this is the first study to report a method for fabricating true black (L* < 20) LiDAR-detectable
materials without using any organic perylene-derived materials or inorganic toxic metals.
In this regard, this study opens new possibilities for the development of LiDAR-reflective
materials that are both efficient and ecofriendly, and thus, in line with the goals of the smart
mobility industry.

2. Materials and Methods
2.1. Materials

Tetraethyl orthosilicate (TEOS, 98%) and titanium (IV) isopropoxide (TTIP, 97%) were
purchased from Sigma-Aldrich Chemical Co. (Burlington, MA, USA). An ammonia solution
(NH4OH, 28.0%), ethyl alcohol (EtOH, 99.9%), acetonitrile (99.8%), sodium borohydride
(NaBH4, 98.0%), acetylene carbon black (99.99%), and 250 nm-sized anatase phase titanium
dioxide powder (TiO2, 98.5%) were purchased from Samchun Chemical Co. (Seoul, Korea).
All the chemicals, reagents, and solvents were used as received without further purification.

2.2. Synthesis of SiO2/TiO2 Core/Shell Nanoparticles (ST CSNs)

A SiO2 colloidal suspension was prepared using the typical Stöber method. Briefly,
ethyl alcohol (101 mL), deionized water (2.1 mL), and the ammonia solution (5.2 mL)
were mixed under vigorous magnetic stirring for 15 min. Subsequently, TEOS (3.3 mL)
was added to the as-prepared solution, and the reaction was allowed to proceed for 6 h
to obtain a SiO2 colloidal solution. The ST CSNs were synthesized based on the typical
sol-gel reaction of metal alkoxides. A mixture of ethyl alcohol (20 mL), acetonitrile (10 mL),
and TTIP (5 mL) was slowly added to the as-synthesized SiO2 colloidal solution while
maintaining the temperature at 4 ◦C. The sol-gel reaction was allowed to continue for 12 h
under vigorous stirring. The synthesized ST CSNs were collected by centrifugation at
12,000 rpm for 30 min, and the impurities were removed by three additional washes and
centrifugation. Finally, the washed ST CSNs were dried overnight in an oven (90 ◦C). To
control the size of the SBT CSNs, the starting amount of the TEOS was controlled at 3.3, 3.8,
and 4.2 mL, resulting in SiO2 core templates with sizes of 100, 120, and 140 nm, respectively.

2.3. Fabrication of SiO2/Black TiO2 Core/Shell Black Nanoparticles (LiDAR-Detectable SBT CSNs)

The SBT CSNs were prepared using a modified NaBH4 reduction method. Typically,
the as-synthesized ST CSNs (0.5 g) and NaBH4 (0.3 g) were mixed thoroughly using a
mortar and pestle. The mixed powder was carefully transferred into an alumina boat,
which was placed in a tube furnace and heated for 40 min at 550 ◦C at a heating rate of
5 ◦C/min in a nitrogen atmosphere. After the heat treatment, the SBT CSNs were washed
by being dispersed in hot deionized water to remove the organic and inorganic residues
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and centrifuged three times. Finally, the washed SBT CSNs were dried overnight in an
oven (90 ◦C).

2.4. Characterization

The morphologies of the ST CSNs and SBT CSNs were analyzed using field-emission
scanning electron microscopy (FE-SEM, SU8230, Hitachi, Tokyo, Japan) and transmission
electron microscopy (TEM, HF5000, Hitachi, Tokyo, Japan). The specific surface areas
and pore volumes of the materials were evaluated based on their N2-sorption curves
(TriStar II 3020, Micromeritics, Norcross, GA, USA) using the Brunauer–Emmett–Teller
(BET) method. STEM elemental mapping images were acquired by a TEM equipped with
a scanning transmission electron microscope (STEM, HD-2700, Hitachi, Tokyo, Japan).
The elemental compositions of the materials were detected by energy-dispersive X-ray
spectroscopy (EDS, Ultim Max, Oxford Instruments, Abingdon, UK) installed on the TEM.
The surface chemical and oxidation states of the materials were investigated using X-ray
photoelectron spectroscopy (XPS, K-alpha, Thermo Fisher Scientific, Waltham, MA, USA).
The crystalline structures of the materials were examined using X-ray diffraction analysis
(XRD, D8 Advance, Bruker Co., Billerica, MA, USA). The NIR reflectances of the materials
were measured using a diffuse reflectance UV-VIS-NIR spectrophotometer (SolidSpec-3700,
Shimadzu, Kyoto, Japan).

2.5. Measurement of Blackness of SBT CSN-Based Paint

The blackness and color of the SBT CSNs were measured with a colorimeter (3nh,
NR60CP) using the CIE L*a*b* system. To measure the blackness and color, the SBT CSNs
were mixed with clear varnish (Jevisco, W21602) at a ratio of 7:1 under vigorous magnetic
stirring for 1 h and then subjected to ultrasonication for 20 min. Next, the well-dispersed
SBT CSN-based paint was left to stand for 5 min until it stabilized. The paint was then
sprayed onto a glass substrate (5 × 5 cm2 with a thickness of 0.3 cm) using a spray
gun (Daiwa, DSP-090) to form a coating with a thickness of approximately 30 µm. For
comparison, black, gray, and brown paints were also sprayed on glass substrates using
the same experimental procedure. The sprayed samples were dried at room temperature
(25 ◦C), and their brightness and color were measured five times using a colorimeter for
accuracy. The average L*a*b* values of each sample were determined.

2.6. Measurement of NIR Reflectance and Evaluation of LiDAR Detectability of SBT
CSN-Based Paint

To investigate the NIR reflectance of the SBT CSNs, the CSNs were prepared under
two different conditions: without a TiO2 surfacer and with a TiO2 surfacer. The formation
of a bilayer with a TiO2 white surfacer is the conventional method for ensuring high NIR re-
flectance in the case of organic perylene-based dark-tone LiDAR-reflective coating systems.
The samples used for the NIR reflectance measurements and LiDAR detectability tests were
prepared using the same procedure as that for the color measurements. Specifically, various-
sized SBT CSNs, a black pigment (carbon black), and TiO2 were mixed thoroughly in clear
varnish at a ratio of 7:1. The well-mixed paints were then sprayed onto glass substrates
to form coatings with a thickness of approximately 30 µm using a spray gun and dried at
room temperature. To prepare the TiO2-surfacer samples, commercially obtained TiO2 was
mixed with clear varnish and sprayed onto glass substrates. After the coatings had dried,
the SBT CSN-based paints were sprayed onto the white TiO2-coated glass substrates to
form the bilayered samples. The LiDAR detectabilities of the samples were tested using
a LiDAR sensor with a detection range of approximately 905 nm (Intel RealSense L515).
The SBT CSN-based painted monolayered samples and black pigment-coated substrates
were placed on black paper, and a LiDAR sensor was used in the depth mode to detect the
samples. The output was viewed on a screen.
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3. Results and Discussion
3.1. Characterization of SBT CSNs

The strategy employed in this study to develop a new black, LiDAR-detectable ma-
terial was to design a material that is free of a bilayer, such as that used in the case of
conventional perylene-based black pigments, as well as harmful heavy metals but that
still exhibits high NIR reflectance and ecofriendliness. The NIR reflectance mechanisms of
the conventional dark-tone organic/inorganic pigment-based materials and the SBT CSNs
synthesized in this study are shown in Figure 2.
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A schematic diagram of the method used for synthesizing the SBT CSNs is shown
in Figure 3. First, a colloidal suspension of uniformly sized SiO2 particles was formed
by sol-gel condensation for use as the template material. TiO2 shells were continuously
formed on the surfaces of the SiO2 nanoparticles. Owing to the low reaction temperature,
the TTIP precursor was slowly converted into TiO2, resulting in the formation of a porous
structure on the SiO2 nanoparticles. This yielded the ST CSNs. Finally, using the NaBH4
reduction method, the TiO2 shells on the ST CSNs were successfully turned black to obtain
the SBT CSNs.
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The morphologies of the SiO2 nanoparticles, ST CSNs, and SBT CSNs were analyzed
using FE-SEM to confirm the successful and uniform synthesis of the materials, as shown in
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Figure 4. The diameters of the SiO2 nanoparticles, ST CSNs, and SBT CSNs were determined
to be approximately 100, 130, and 140 nm, respectively. Moreover, SBT CSNs with sizes
of 170 and 200 nm and their precursor materials (SiO2 nanoparticles with sizes of 120 and
140 nm, respectively, and ST CSNs with sizes of 160 and 190 nm, respectively) were also
successfully synthesized using the same procedure; the only difference was in the size of
the SiO2 core templates used. The core/shell structures of the ST CSNs and SBT CSNs were
analyzed using TEM, as shown in Figure 5. It is clear that all the ST CSNs, as well as the
140, 170, and 200 nm SBT CSNs, maintained their core/shell structure. In addition, small
intrapores were observed on the outer TiO2 shells, confirming the porous nature of the ST
CSNs and SBT CSNs.
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To further characterize the porous nature of the materials, their BET surface areas and
Barrett–Joyner–Halenda (BJH) pore distributions were calculated from their N2-sorption
isotherms, as shown in Figure 6. The SiO2 nanoparticles showed a typical type II isotherm
corresponding to the nonporous materials [29]. On the other hand, the ST CSNs and SBT
CSNs exhibited typical type IV hysteresis isotherms corresponding to porous materials [30].
The pore sizes and BET specific surface areas of the SiO2 nanoparticles, ST CSNs, and SBT
CSNs are listed in Table 1. The specific surface area of the materials increased with the
formation of the TiO2 shells. For instance, the 100 nm SiO2 nanoparticles had a specific
surface area of 74.1 m2·g−1. However, after the formation of the shells, the specific surface
area increased dramatically, to 262.2 m2·g−1 in the case of the 130 nm ST CSNs. This trend
in the specific surface area was observed for all the ST CSNs. In addition, the smaller-
sized materials also showed higher specific surface areas, which was in accordance with
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the nature of nanomaterials [31]. After the NaBH4 heat reduction process, the specific
surface areas of the SBT CSNs were slightly lower compared to those of the precursor
ST CSNs. This phenomenon is attributable to a change in the crystallinity of the TiO2
shells, which were amorphous in the case of the ST CSNs and anatase in the case of the
SBT CSNs. However, the 140 nm SBT CSNs maintained a high specific surface area of
208.8 m2·g−1 even after the reduction process. Moreover, uniform intrapores with sizes of
approximately 2.8–2.9 nm were formed in the TiO2 shells of the ST CSNs. Interestingly, the
SBT CSNs contained pores 2.5–2.6 nm and 6.7–7.1 nm in size. These newly formed slightly
larger pores were the result of a change in the crystalline phase to anatase, as mentioned
previously [32,33]. Accordingly, the SBT CSNs exhibited a core/shell structure with high
porosity and specific surface area owing to the formation of the porous TiO2 shells on the
SiO2 core templates. Various studies have reported that core/shell materials with porous
shells exhibit outstanding light scattering and reflectance characteristics [34]. Therefore, the
proposed approach for synthesizing black materials using a porous core/shell structure is
advantageous with respect to improving the NIR reflectance and hence LiDAR detectability.
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the SBT CSNs. However, the 140 nm SBT CSNs maintained a high specific surface area of 
208.8 m2∙g−1 even after the reduction process. Moreover, uniform intrapores with sizes of 
approximately 2.8–2.9 nm were formed in the TiO2 shells of the ST CSNs. Interestingly, 
the SBT CSNs contained pores 2.5–2.6 nm and 6.7–7.1 nm in size. These newly formed 
slightly larger pores were the result of a change in the crystalline phase to anatase, as 

Figure 5. TEM images of (a) 130 nm ST CSNs, (b) 160 nm ST CSNs, (c) 190 nm ST CSNs, (d) 140 nm
SBT CSNs, (e) 170 nm SBT CSNs, and (f) 200 nm SBT CSNs.
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Figure 6. BJH pore size distribution curves of (a) 100 nm SiO2 nanoparticles, (b) 130 nm ST CSNs,
and (c) 140 nm SBT CSNs (inset: N2-sorption isotherms of respective materials). For ST CSNs and
SBT CSNs, small intrapores (ca. 2–6 nm) were created within TiO2 shells.

Table 1. BET specific surface areas and pore volumes of various-sized SiO2 nanoparticles, ST CSNs,
and SBT CSNs.

BET Specific Surface
Area (m2·g−1) a Pore Size (nm) Pore Volume

(cm3·g−1) b

100 nm SiO2 74.1 m2·g−1 - 0.28 cm3·g−1

120 nm SiO2 63.0 m2·g−1 - 0.25 cm3·g−1

140 nm SiO2 45.6 m2·g−1 - 0.23 cm3·g−1

130 nm ST CSNs 262.2 m2·g−1 2.8 nm 0.56 cm3·g−1

160 nm ST CSNs 210.7 m2·g−1 2.9 nm 0.48 cm3·g−1

190 nm ST CSNs 198.2 m2·g−1 2.8 nm 0.43 cm3·g−1

140 nm SBT CSNs 208.8 m2·g−1 2.5 and 6.7 nm 0.38 cm3·g−1

170 nm SBT CSNs 178.2 m2·g−1 2.6 and 7.0 nm 0.32 cm3·g−1

200 nm SBT CSNs 150.3 m2·g−1 2.6 and 7.1 nm 0.29 cm3·g−1

a Calculated by BET method. b Total pore volume.

The crystallinities and phases of the SiO2 nanoparticles, ST CSNs, and SBT CSNs were
investigated using XRD analysis (Figure 7). The SiO2 nanoparticles and ST CSNs displayed
a broad peak at 20–30◦, indicating that these materials were amorphous, owing to the
sol-gel process. In contrast, the SBT CSNs exhibited sharp peaks related to the (101), (004),
(200), (105), (204), (116), (215), and (303) planes, which matched perfectly the XRD pattern
of anatase TiO2 (JCPDS-21-1272) [35]. Thus, the XRD pattern of the SBT CSNs confirmed
the phase change of the TiO2 shells from amorphous in the case of the ST CSNs to anatase
in the case of the SBT CSNs after the NaBH4 reduction process at 550 ◦C.
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XPS was performed to investigate the chemical and molecular characteristics of the
SiO2 nanoparticles, ST CSNs, and SBT CSNs, as shown in Figure 8. The Si 2p spectra of the
SiO2 nanoparticles, ST CSNs, and SBT CSNs confirmed the presence of SiO2 as the core
material [36]. In the case of the ST CSNs and SBT CSNs, additional Ti 2p signals were also
observed, confirming the successful formation of TiO2 shells on the SiO2 cores. Note that Ti
2p signals were detected at approximately 463.7 and 458.0 eV in the case of the ST CSNs,
indicating the presence of Ti4+ species of pure TiO2 [37]. On the other hand, an additional
Ti 2p peak was observed at 454.2 eV in the case of the SBT CSNs, which was attributed to
the Ti3+ species [38]. A previous study reported that the Ti4+ species in TiO2 was reduced
to Ti3+ during NaBH4 reduction [39]. Furthermore, the reduction of the Ti species was
observed in the case of all the SBT CSNs, and the Ti3+/Ti4+ ratios, as calculated from the
XPS data, are listed in Table 2.
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Table 2. Ratios of Ti species of various-sized ST CSNs and SBT CSNs as determined from their
Ti 2p spectra.

Material
Ratio of Ti Species a

Ti4+ Ti3+

130 nm ST CSNs 95 5
160 nm ST CSNs 96 4
190 nm ST CSNs 94 6

140 nm SBT CSNs 83 17
170 nm SBT CSNs 81 19
200 nm SBT CSNs 77 23

a Ratio of Ti species as calculated by dividing the number of specific Ti species by the total number of species.

Furthermore, scanning transmission electron microscopy (STEM) elemental mapping
analysis was conducted to visualize and confirm the elemental and structural composition
of the as-synthesized 100 nm SiO2 nanoparticles, 130 nm ST CSNs, and 140 nm SBT CSNs
(Figure 9). It was clear that the SiO2 nanoparticles were only composed of Si and O elements.
For the ST CSNs and SBT CSNs, additional Ti elements were detected along with Si and



Nanomaterials 2022, 12, 3689 10 of 15

O, indicating the successful formation of TiO2 shells on the core SiO2 nanoparticles via
the sol-gel method. Moreover, it was evident that the Si, Ti, and O elements were clearly
presented for the SBT CSNs, indicating that the elemental compositions of materials did
not change even after the NaBH4 reduction. The analysis result of the energy-dispersive
X-ray spectroscopy (EDS) further quantified the elemental composition (Table S1). Similar
to STEM, the SiO2 nanoparticles only contained Si and O. In contrast, the ST CSNs and
SBT CSNs were detected with Si, Ti, and O elements with similar Ti/Si ratios of 0.36 and
0.31. The XPS results confirm that some Ti4+ species of the TiO2 shells were reduced to Ti3+

species owing to the NaBH4 reduction, but the overall Ti elemental composition did not
change after the reduction process, as confirmed by the EDS quantification analysis.
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Figure 9. HAADF-STEM images and the corresponding elemental mapping images of (a) 100 nm
SiO2 nanoparticles, (b) 130 nm ST CSNs, and (c) 140 nm SBT CSNs displaying the presence of Si
(green), Ti (blue), and O (yellow) elements. Overall images were acquired by superimposing HADDF
and each elemental image.

3.2. Blackness and Color of LiDAR-Detectable SBT CSNs

The color of the SBT CSNs was measured using a colorimeter. In general, the color
of a material can be determined using the CIE L*a*b* system. The L* value represents the
lightness of the material in the 0–100 range, with lower L* values meaning the material
is blacker. In addition, a* represents the red (positive value) and green (negative value)
color states, while b* represents the yellow (positive value) and blue (negative value) color
states. To measure the blackness and color of the SBT CSNs, a paint of the SBT CSNs was
produced by mixing them in a clear hydrophilic varnish. Owing to the hydrophilicity of the
varnish, the SBT CSNs were readily dispersed in it and formed a hydrophilic paint (i.e., a
water-based paint). It is known that hydrophilic paints have several advantages, such as a
low VOC content, ease of application, and fast drying [40]. In addition, water-based paints
are regarded as suitable materials for smart mobility applications and devices, including
autonomous and electric vehicles, which place an emphasis on ecofriendliness [41]. For
testing, the SBT CSN-based paint was sprayed onto a glass substrate. For comparison,
paints of other colors (black, brown, and gray) were also coated on glass substrates using
the same experimental procedure. Note that the black paint exhibited an L* value of 10.9
and a* and b* values of 0.8 and −2.2, respectively. Importantly, the SBT CSN-based paint
showed an L* value of 11.4, which was similar to that of the black paint, indicating that the
SBT CSNs were true black (Figure 10). Generally, true black color in the CIE L*a*b system
exhibits L* values lower than 20 and a* and b* values of −3 to 3 [42,43]. With respect to
the brown and gray paints, their L*, a*, and b* values did not match those of the black
paint. Thus, it was confirmed that the SBT CSNs were true black in color. As mentioned
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previously, the effective reduction of the TiO2 shells resulted in a change in the color of the
CSNs to black to the human eye under visible light.
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Figure 10. Digital photographs of SBT CSN-based paint and black, brown, and gray paints applied
on glass substrates and their color descriptions in CIE L*a*b* system. Black and SBT CSN-based
paints displayed comparable blackness (L* < 20).

3.3. NIR Reflectance and Practical Use of SBT CSNs in LiDAR Applications

To investigate the NIR reflectances of the various SBT CSN samples, substrates coated
with paints based on the samples were analyzed using a UV-VIS-NIR spectrophotometer.
Generally, most commercial LiDAR sensors utilize NIR wavelengths near 905 nm to lower
the cost [44]. Single coatings of the paints formed using the 140, 170, and 200 nm SBT CSNs
exhibited NIR reflectances of 28.2, 25.2, and 22.1 R%, respectively, at 905 nm without an
NIR-reflective additive, such as a TiO2 surfacer or white material (Figure 11a). Detailed NIR
reflectances of SBT CSNs in monolayer and bilayer are listed in Table 3. The commercially
obtained carbon black exhibited a low NIR reflectance of 5.4 R% owing to its light-absorbing
nature. In addition, the NIR reflectances of the SBT CSNs increased with a decrease in their
size. This result is in accordance with the specific surface areas of the materials, which
are listed in Table 1. Owing to the high specific surface area of the CSNs, the 140 nm SBT
CSN-based paint showed the highest R% value. The NIR reflectance of the SBT CSNs
can be attributed to the synergistic effects of their high specific surface area and porous
nature and the difference in the refractive indices of the SiO2 core and TiO2 shell, which
resulted in light reflection and scattering in the NIR region [18,45]. Previous studies have
reported that the light reflectivity of core/shell or bilayered materials increases with an
increase in the difference in the refractive indices of the constituent materials. Moreover,
the NIR reflectance of the SBT CSN-based paints was also investigated using a bilayered
system, as shown in Figure 11b. With the use of a TiO2 surfacer, the NIR reflectance of
the SBT CSNs increased to 50.2 R%. This can be attributed to the additional reflection of
the NIR light escaping from the SBT CSNs by the TiO2 surfacer in the bilayered system.
The newly designed SBT CSNs were compared with other dark-tone LiDAR-detectable
materials are summarized in Table 4. Compared to the previously reported dark-tone
LiDAR-detectable materials, it was clearly observed that the SBT CSNs were synthesized
with true blackness (L* of 11.4), high NIR reflectance in the monolayer (R% of 28.2), and
no heavy metal inclusion. With these various advantages, SBT CSNs can be a promising
candidate for application in future autonomous vehicles.
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Figure 11. UV-VIS-NIR reflection spectra of (a) single coatings of various-sized SBT CSN- and
carbon black-based paints on glass substrates and (b) 140 nm SBT CSN-based paint monolayer and
bilayered system consisting of 140 nm SBT CSN-based paint and TiO2 surfacer (pink mark: 905 nm
wavelength region).

Table 3. NIR reflectances of SBT CSN-based paint in monolayered and bilayered systems at 905 nm a.

Base Material (Layer System) Reflectance at 905 nm (R%)

140 nm SBT CSNs (monolayer) 28.2
170 nm SBT CSNs (monolayer) 25.2
200 nm SBT CSNs (monolayer) 22.1
140 nm SBT CSNs/TiO2 surfacer (bilayer) 50.2
Commercial carbon black (black, monolayer) 5.4

a Materials were coated on glass substrates.

Table 4. Comparison of NIR properties of SBT CSNs with other dark-tone LiDAR-detectable materials.

Materials NIR Reflectance
CIE L*a*b* System a Layer

System Drawbacks Ref
L* a* b*

SBT CSNs b 28.2 R%
(905 nm) 11.4 0.9 −1.6 Monolayer – Present work

Carbon black 5.4 R%
(905 nm) 7.2 0.96 1.12 – – –

Mg-doped
ZnFeO4

51 R%
(700–2500 nm) 49.01 14.58 9.68 Monolayer High L* value [9]

Al2O3-doped
CoFe2O4

24.5 R%
(700–2500 nm) 23.09 0.66 −0.88 Monolayer Low NIR

reflectance [10]

Ce1−xGdxVO4
66.3 R%

(700–2500 nm) 22.2 5.71 2.77 Monolayer Heavy metal
included [11]

Perylene-
derived

67.71 R%
(905 nm) 28.88 4.6 −1.1 Bilayer Low productivity [12]

a Standard for true black color in the L*a*b* system is L* < 20 with a* and b* in the range of −3 to 3. b For the
bilayer system, NIR reflectance of SBT CSNs was determined to be 50.2 R%.

Finally, the practical LiDAR sensor application of the SBT CSNs was evaluated by
employing a monolayer of the 140 nm SBT CSN-based and black paints, as shown in
Figure 12. It is evident that the SBT CSN-based paint was recognized by the LiDAR sensor
and visualized on the screen (the LiDAR sensor was used in the depth mode). Thus, the
SBT CSNs synthesized in this study can serve as both color- and NIR-reflective materials
without the assistance of white materials. Furthermore, their advantages of ecofriendliness,
hydrophilicity, and nontoxicity make them suitable for use as next-generation materials for
smart mobility and autonomous vehicle applications.
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In conclusion, LiDAR-detectable SBT CSNs were successfully synthesized by the
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of the SBT CSNs suggests that they can be used both as color- and NIR-reflective materials.
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the additional reflectance induced by the escaped NIR light. Finally, the SBT CSN-based
paint could be detected with ease by a commercially available LiDAR sensor. Thus, the
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