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Abstract: The development of wearable electronic devices has greatly stimulated the research interest
of textile-based strain sensors, which can effectively combine functionality with wearability. In this
work, the fabrication of highly stretchable and compressible strain sensors from weft-knitted spacer
fabric was reported. Carbon nanotubes and polypyrrole were deposited on the surface of fabric via
an in situ polymerization approach to reduce the electrical resistance. The as-fabricated WSP-CNT-
PPy strain sensor exhibits high electrical conductivity and stable strain-sensing performance under
different stretching deformations. The WSP-CNT-PPy strain sensor can be stretched up to 450% and
compressed to 60% with a pressure of less than 50 KPa, which can be attributed to the unique loop and
interval filament structures. The distinguishing response efficiency of WSP-CNT-PPy can effectively
detect faint and strenuous body movements. In addition, the electrochemical behavior of WSP-CNT-
PPy was also characterized to study the comprehensive properties. The electro-heating performance
was also evaluated for feasible Joule heater applications. This work demonstrates the practicability of
WSP-CNT-PPy strain sensor fabric for real-time monitoring in promising wearable garments.

Keywords: wearable electronic; weft-knitted spacer fabric; strain sensor; carbon nanotubes

1. Introduction

In the past few years, wearable electronic devices have gradually emerged as a field of
interest, which has received tremendous attention with respectable progress [1–4]. Among
various subassemblies, the wearable strain sensor is the foundation for fabricating wearable
garments and it is effective for converting external mechanical force into recognizable real-
time electrical signals [5,6]. Considering the excellent skin-friendly features and flexibility,
electronic textiles have emerged as the next generation of wearable devices. Textile-based
systems can effectively integrate the multi-functional properties of electronic devices for
various applications including energy storage and conversion [7,8], healthcare monitor-
ing [9–11], visualization signal displays [12,13], soft robotics [14,15], human–machine inter-
faces [16–18], human body movement detection [19–21], etc. Textile sensors can provide a
relatively facile fabrication approach and diverse structure transformations by varying the
arrangements of fibers and yarns. For human motion monitoring, textile strain sensors are
highly sensitive to detect both tiny and large strain deformations, which is an advantage of
the textile skeleton frame [22–25].

Generally, knitted textiles can be intrinsically extended in both weft and warp direc-
tions due to the loop constructions. In the past decades, fabrication of knitted fabric strain
sensors for human body movement detection has been a popular research topic [26–29].
The structure of a weft-knitted spacer fabric consists of two outer layers connected by
floats of yarn laid between two needle beds in the inner layer. Generally, weft-knitted
spacer fabric exhibits good comfort qualities, and is suitable for garment applications. It
has also exhibited good washability and stability due to the unique spacer structure. In our
previous studies, weft-rib-knitted fabric was manufactured from spandex filament, which
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acted as the stretchable component in the core. Both the intrinsic elasticity of filament
and loops can contribute to the highly stretchable performance of the strain sensor [30].
Ye et al. [31] reported a stretchable, washable, and rapid sensitive wool-knitted fabric
sensor modified by graphene that exhibits high linearity with more than 20% elongation
with moisture from 30 to 90%. Flexible knitted fabric strain sensors can also be used
for identifying knee joint motion patterns, which are promising for human body health
monitoring [32,33]. Furthermore, copper nanoparticles deposited on knitted fabric [5],
knitted conductive gloves [34], and polypyrrole-coated knitted cellulose fabric [35] were
also fabricated to construct a strain-sensing system for wearable applications. However,
most of these textile-based strain sensors are designed for onefold stretchable sensing
applications. In practical applications, the deformation is generally complicated. With the
elongation of a strain sensor, the thickness will also be decreased, which is closely related to
the compression property. In addition, a compressible strain sensor is favorable for greater
human motion detection, but it is difficult to fabricate a compressible fabric sensor. Similar
to stretchability, compressibility is also an essential characteristic to realize the accurate
detection of wearable electronics.

According to the reported literature, compressible strain sensors were conventionally
made of elastic polymer materials. An aerogel sensor consisting of aramid nanofibers was
successfully fabricated, which can be used for wearable electronics in detecting pressure
with smart shoes and insoles [36]. Pan et al. [37] prepared composite hydrogels with
improved mechanical properties that can be stretched to a strain of more than ten times
and compressed to a strain of 80%. In addition, a compressible MXene aerogel-based
piezoresistive pressure sensor [38], compressible and conductive self-healing hydrogels
strain sensor [39], and compressible integrated sponge supercapacitor sensor [40] was
also fabricated for wearable applications in different fields. Jiang et al. [41] reported the
preparation of hierarchical three-dimensional graphene fiber assemblies, where the fiber-
to-fiber interfacial region produces a highly sensitive contact resistance, thus leading to a
higher sensitivity. However, this porous structure is difficult to apply directly for garments
and the wearability should be improved. Therefore, it is essential to develop textile strain
sensors for wearable e-textile applications. Spacer-knitted fabrics are usually obtained by
the combination of two fabric layers, while weft-knitted spacer fabrics (WSP) are made by
knitting two single-jersey fabrics, and interval filaments are stitched to connect the double-
faced layers [42]. Considering the excellent compressibility, weft-knitted spacer fabric
has been considered as an alternative choice for compressible strain sensors. Polypyrrole
(Ppy) is one of the most extensively used conducting polymers in design and fabrication of
various types of electro-chemical sensors and biosensors. It can be easily generated and
uniformly deposited on the conducting surfaces of various matrix materials. Furthermore, it
has also exhibited the combination of high electrical conductivity and polymeric properties
including good flexibility, low density, and environmental stability. In the present work,
it has demonstrated a highly stretchable and compressible strain sensor to detect both
elongation and pressure signals. The strain sensor was based on WSP, and polypyrrole was
in situ deposited on the surface to obtain high electrical conductivity and electrochemical
activity. Furthermore, it has also exhibited robust electro-heating effects for potential Joule
heater applications.

2. Experimental
2.1. Materials

Weft-knitted spacer fabric in this study was purchased from Alibaba, Co., Ltd., China.
The superficial layer of weft-knitted spacer fabric is polyamide filament with the specifi-
cations of 240D/36F, and the interval yarn is polyester filament with a diameter of 60 µm.
The thickness of the weft-knitted spacer fabric is 4.0 mm, and the surface area weight is
320 g/m2. Single-walled carbon nanotubes (0.15 wt %, external diameter of 1–2 nm, length
of 5–30 µm, purity of higher than 95%) obtained from Nanjing XFNANO Materials Tech
Co., Ltd., China. Pyrrole and Cetyltrimethylammonium bromide (CTAB) exhibited the
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purity of chemical grade. Sodium dodecylbenzene sulfonate (SDBS), FeCl3·6H2O, phos-
phoric acid, and anhydrous ethanol were obtained from Pharmaceutical Group Chemical
Reagents Co., Ltd., Shanghai, China.

2.2. Preparation of Weft-Knitted Spacer Fabric Sensor

The WSP was firstly pretreated with an acetone solution for 5 h, dried in natural
conditions, then repeatedly soaked in 0.15 wt % single-wall carbon nanotube solutions
to obtain stable electrical resistance. After a 12 h period of drying at 70 °C, the treated
sample was denoted as the carbon nanotube weft spacer fabric (WSP-CNT). An amount of
6 mL of pyrrole was poured into 60 mL of deionized water with 0.208 g CTAB and 0.216 g
SDBS dispersant under magnetic stirring conditions. An amount of 1 cm × 2 cm WSP-CNT
was placed into pyrrole solution for a 2 h ice bath shock. An amount of 0.5 mol/L ferric
chloride solution of 60 mL was slowly dropped into the pyrrole solution for an in situ
polymerization reaction. The sample was washed with anhydrous ethanol and deionized
water three times, and then dried at 70 ◦C for 12 h to prepare the polypyrrole-deposited
WSP-CNT (WSP-CNT-PPy), as shown in Figure 1.
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Figure 1. Diagram of the fabrication process of the WSP-CNT-PPy strain sensor.

2.3. Measurements and Characterization

The microstructures and surface morphologies of the prepared samples were char-
acterized by scanning electron microscopy (SEM, JSM5600LV, JEOL, Tokyo, Japan). The
tensile and compression properties of the samples were measured by Instron equipment.
The electrical resistance was measured by an electrochemical workstation of CHI604E, and
the corresponding resistance variation by digital multimeter. Ω/cm is the most widely used
unit to characterize the surface electrical resistance, therefore, the unit of Ω/cm was used to
measure the resistance of the strain sensors. The cyclic voltammetry (CV), electrochemical
impedance spectroscopy (EIS), and galvanostatic charge-discharge (GCD) were carried out.
The thermal imaging and photo-induced heating performance of the WSP-CNT-PPy strain
sensor was characterized by an infrared thermal camera (FLIR ONE Pro), and both the
surface temperature and thermal images were recorded. All experiments were performed
under the standard temperature of 25 ◦C and humidity of 65%.

3. Results
3.1. Surface Morphologies, Microstructures, and Mechanical Properties

The optical images of the WSP strain sensor under both unstretched and stretched
in weft direction conditions are shown in Figure 2a. The surface morphologies of the
strain sensor with increasing strain levels of 0%, 10%, 100%, and 200% are observed. With
the elongation of the applied strain, the series of loops were stretched in the direction of
loading. The inclination angle of the interval filament gradually increased under applied
pressure and the compression was 0%, 10%, 30%, and 50%, respectively. In Figure 2b,
the measured angle is approximate 8◦, 18◦, 47◦, and 60◦, which indicates the excellent
compressible properties of the WSP-CNT-PPy strain sensor.
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Figure 2. (a) Optical images of the WSP strain sensor under different elongation conditions and
(b) inclination angle of interval filament under different compression conditions.

The microscopic morphologies of the WSP-CNT and WSP-CNT-PPy strain sensors
were characterized by SEM, as shown in Figure 3. In Figure 3a–f, the surface-knitted
structure and interval filaments of the pristine weft-knitted spacer fabric can be clearly seen
from the SEM images. The surface microstructures of the WSP-CNT-PPy strain sensor at
different magnifications are shown in Figure 3g–i. The high-magnification image of the
WSP-CNT-PPy strain sensor indicates the uniform distribution of the CNT-PPy composite
layer on the fabric surface. The grainy microstructure of the fabric is beneficial to improve
the deposition of the strain-sensing layer in the following fabrication step. In Figure 3j–l,
interval filaments of the WSP-CNT-PPy strain sensor were also fully covered with the
CNT-PPy composite layer. The layer can be strongly adhered to the filament and it plays
the role of a conductive layer during the compression process. The amplified images of
the CNT-PPy are shown in Figure 3k,l, which shows a uniform dispersion of CNT-PPy
nanoparticles, therefore, increasing the conductivity and strain-sensing properties.

Excellent mechanical performance has been considered an important feature in the
engineering of wearable applications. The mechanical properties of WSP, WSP-CNT, and
WSP-CNT-PPy were studied. In Figure 4a, it can be seen that the elongation is higher than
450% in the weft direction under a force higher than 90 N, where the cross-sectional length
is 2 cm. The obtained strength and elongation rate are shown in Figure 4b. Compared with
the pristine WSP, the mechanical properties of the WSP-CNT-PPy strain sensor were slightly
decreased, with the tensile strength of 92 N, a cross-sectional length of 2 cm, and elongation
at a break of 450%. This can be attributed to the surface structure being damaged by the
nanoparticles due to the interfacial effects. The WSP-CNT-PPy strain sensor is elongated
up to 450% with the unique loop structure of the weft-knitted spacer fabric. The cyclic
stress–strain curves are shown in Figure 4c, where the strain ranges from 0 to 40% with the
stress from 0 to 3.5 KPa. The result indicates the robust durability of the WSP-CNT-PPy
strain sensor under 80 cycles of press and release experiment. It can be stated that all three
samples can bear the forced pressure of higher than 600 KPa with 90% strain, as shown
in Figure 4d. With a pressure of 25 KPa, the WSP-CNT-PPy strain sensor exhibited good
stability during 80 cycles of pressure-releasing treatment. It is feasible to achieve sensing
efficiency with the compressible strain sensor in practical applications. Figure 4f shows
that the fabricated WSP-CNT-PPy strain sensor exhibited decreased electrical resistance
(from 318 Ω/cm, 240 Ω/cm, and 223 Ω/cm to 14.18 Ω/cm), thus meeting the requirements
of wearable electronics applications.
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3.2. Stretchable Strain Sensing and Wearable Applications

The I–V curves are shown in Figure 5a. With the increasing elongation process, the
slope line was gradually decreased, and a representative linear behavior was observed.
In Figure 5b, the resistance value was tardily elevated with the increasing elongation
process. As the stretching progressed, both knitted fabric and yarn became thinner, thus
the electrical resistance was also improved. The good deformation of the WSP-CNT-PPy
with unique knitting loop structures is beneficial to applications. It can also ensure the high
strain sensitivity and durability of the WSP-CNT-PPy fabric strain sensor. The detailed
spectrum of strain sensor relative resistance variation under cyclic stretching–releasing
strain is shown in Figure 5c–f. The detailed curves under the cyclic strains of 2%, 3%, 4%,
5%, 10%, 20%, 30%, 40%, 50%, 60%, 80%, 100%, 200%, 300%, and 400% are measured and
presented. This indicates that the ∆R/R0 gradually increases with the increase in strain
elongation. However, the culmination of the ∆R/R0 curve sags in the middle and it becomes
increasingly obvious with higher tensile strain. This phenomenon can be attributed to the
inhomogeneity of the knitting loops of weft-knitted spacer fabric under strain conditions.
These measured results are identical with the measured values in Figure 5g. The electrical
resistance variation (∆R/R0) of the WSP-CNT-PPy is shown in Figure 5g. The WSP-CNT-
PPy strain sensor exhibits a wide strain sensing range and it can be observed from measured
and fitted curves that there are two stages of ∆R/R0 ranging from 0 to 450%. The stages of
0–200% and 200–450% are related to a gauge factor (GF) of 2.226 and 1.607, respectively.
The variation in the ∆R/R0 can be attributed to the distortion of the knitted structure due
to loading force. Compared with reported studies, this indicates that the WSP-CNT-PPy
strain sensor exhibits a large sensing deformation. For instance, Souri et al. [43] reported a
stretchable strain sensor based on conductive cotton and wool fabric, where the strain range
is 0–150%. The conductive polyester fabric strain sensor fabricated from a weft-knitted
structure exhibited a high stretchability up to 130% with the loading of increased strain [44].
The slow-motion deformation of loops is related to the variation in the interaction between
different materials. As the stretching process continues, the ∆R/R0 also gradually increases.
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In detail, the strain sensor fabric was initially elongated, and the knitted loops were
divided step-by-step. The forced stretching led to the crack of conductive materials and
abruption of the deposited nanoparticles. Thus, the sample performance mainly included
two steps of 0–200% and 200–450%. Both high sensitivity and wide strain sensing range
are important parameters in detecting human motions. The sensitivity of the WSP-CNT-
PPy strain sensor to various stimuli conditions was evaluated with the periodic pressure
of 10%, and the resulting loading speed was 10 mm/min, 50 mm/min, 75 mm/min,
and 100 mm/min, respectively, as shown in Figure 5h. It has been suggested that the
sensor shows stable ∆R/R0 data with periodic traction and relaxation of different loaded
conditions. The result indicates that the WSP-CNT-PPy exhibits a reliable response under
various external stimuli, thus ensuring reliability in practical applications.

In addition, the cyclic stability of the WSP-CNT-PPy was further measured in Figure 5i.
The performance of the sensor under 5% periodic compressive stress at the loading speed
of 10 mm/min was recorded. Furthermore, the ∆R/R0 value exhibits a constant increase
and decrease in every experiment, which demonstrates the robust reproducibility of the
strain sensor.

To further investigate the promising wearable applications of the WSP-CNT-PPy strain
sensor, a strain-sensing method to monitor various human movements was established.
The WSP-CNT-PPy-based strain-sensing device exhibited high sensitivity in recognition of
tiny motions. In Figure 6a, the WSP-CNT-PPy strain-sensing equipment was inserted into
the cloth of the abdomen to monitor the response to both shallow and deep breath. The
result indicates that the respiratory state can be accurately reflected by the magnitude of the
recorded spectrum. The magnitude of ∆R/R0 within 0–0.04 corresponds to shallow breath,
while the ∆R/R0 within 0–0.16 corresponds to deep breath. The actual time variation of the
∆R/R0 data with human breath indicates the quick induction and good sensitivity of the
WSP-CNT-PPy. Figure 6b,c correspond to the spectra of ∆R/R0 responses for finger down
and wrist up–down motion, respectively. The results indicate that the spectra are distinctive
for different movements. Moreover, the spectra have also exhibited robust repeatability
in the continuous up–down process. The ∆R/R0 data cyclically varied corresponding to
the movement and resulted in a highly periodical spectra. The tiny movements of the
breath, finger, and wrist were reflected by the observed curve of ∆R/R0, which indicates the
shrinkage of muscles or skeleton. These measured results indicate that the strain-sensing
system is effective to detect various human motions.
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Figure 6. Detection of various human body movements including: (a) shallow-deep breath, (b) finger
up-down, and (c) wrist up-down.

3.3. Compressive Strain Sensing and Wearable Applications

The robust compression capability of fabric has been considered as the foundation to
fabricate a compressive strain sensor. Both high compression sensitivity and wide strain
range are important parameters for enhancing the sensing efficiency. With the increase
in forced pressure, the change of strain is shown in Figure 7a. It can be seen that the
WSP-CNT-PPy is easy to be compressed to 60% with a pressure of less than 50 KPa. For
larger deformation, the required pressure is quickly increased. The compression recovery
curves with different pressure were also measured, where the strain value is 20%, 30%,
40%, and 50% as shown in Figure 7b. The results indicate the stable response performance
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of WSP-CNT-PPy, which can meet practical wearable applications. Figure 7c shows the
electrical resistance variation (∆R/R0) of the WSP-CNT-PPy strain sensor when subjected
to forced pressure. It can be seen that the curve was divided into four stages: S1 = −0.082,
S2 = −0.107, S3 = −0.002, and S4 = −0.00004, respectively. The ∆R/R0 shows a linear
decrease against the increasing compressive pressure in different ranges. To investigate
the properties in practical applications, the ∆R/R0 responses to repeated compressing and
releasing cycles are illustrated in Figure 7d,e. The results indicate that a slight stress of
36 Pa can be effectively detected by the WSP-CNT-PPy strain sensor and stable resistance
responses are observed under different compressive pressure, thus it can be used as a
detectable pressure sensor.
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The compress–release curves with pressures of 36 Pa, 72 Pa, 144 Pa, and 180 Pa are
shown in Figure 7d. These resistance responses of WSP-CNT-PPy to small compressive
pressure show potential applications in detecting weak motions, such as facial expression
and language communication. As the compressive stress increases to 0.5 KPa, 5 KPa,
and 20 KPa, the intensity of the signal becomes higher and the stability is also improved.
From the large repeated strains, a series of resistance responses can also be obtained from
Figure 7e. The result indicates that a higher strain causes a higher electrical resistance
response intensity, and it is quite stable under identical pressure conditions. These dis-
tinguishing response signals under different pressures make the WSP-CNT-PPy capable
of detecting strenuous exercise and accurately reflecting large-scale human movements.
With the pressure of 5KPa, the ∆R/R0 spectrum of WSP-CNT-PPy is recorded, where the
loading speed is 1 mm/min, 5 mm/min, 20 mm/min, and 60 mm/min, respectively.

In addition, the cyclic compression stability of the WSP-CNT-PPy was recorded in
Figure 7g. The performance of the sensor with 180 Pa stress at the loading speed of
5 mm/min was tested. It indicates that the ∆R/R0 signal exhibits good reproducibility
for at least 10 min. Furthermore, the current–voltage (I–V) curve of WSP-CNT-PPy under
different compressive pressure has been studied, as shown in Figure 7h. It can be seen that
WSP-CNT-PPy exhibits good linear I–V characteristics under different compressive stress
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values of 0 to 20 KPa. The slope was gradually increased with the increasing compressive
stress, which corresponds to the decrease in electrical resistance, as shown in Figure 7i. The
ultra-wide compressive deformation of the WSP-CNT-PPy sensor is due to the interval
filaments of three-dimensional knitted spacer fabric. Therefore, the WSP-CNT-PPy fabric
with high-strain sensitivity and durability can be used as a high compression strain sensor
in wearable garments.

The integrated strain-sensing equipment was taken to evaluate the compression sens-
ing efficiency of WSP-CNT-PPy. The result indicates that the WSP-CNT-PPy exhibited
good sensitivity to recognize different compression behavior. In Figure 8a, the WSP-CNT-
PPy strain sensor was used to measure the finger compression and response behavior.
It can be seen that the respiratory state was accurately monitored by the magnitude of
the spectrum. The cyclic variation of ∆R/R0 corresponds to 0 to negative 0.4 with the
behavior of compressing and releasing. The ∆R/R0 value with the pressing process indi-
cates good sensitivity properties of the WSP-CNT-PPy compression sensor. Figure 8b is
the measured curve of ∆R/R0 related to foot down and up, where the cyclic variation of
∆R/R0 corresponds to zero to negative 0.6. It can be stated that the compressive stress
is higher than the finger. Figure 8c is the measured spectrum corresponding to a 50 g
counterweight. These distinctive spectrums have also exhibited good repeatability in the
continuous down–up compression process. The ∆R/R0 curve was cyclically changed due
to the compression behavior, thus to obtain a highly periodical spectrum. This indicates
that the WSP-CNT-PPy sensor is effective in detecting compression behaviors in different
compressive strain-sensing applications.
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3.4. Electrochemical Performance of WSP-CNT-PPy

Electrochemical sensors have been widely used in various areas due to the advantages
of their simplicity and convenience. The preparation of flexible electrochemical sensors
is based on fibrous materials and deformability of the material is important to install
the devices for consecutive charging–discharging. The electrochemical performance of
the WSP-CNT-PPy fabric was evaluated by CV, GCD, and EIS methods. In detail, WSP-
CNT-PPy was measured and the I–V curves at different scanning rates are shown in
Figure 9a. It can be seen that the CV curves have a good symmetrical phenomenon,
which indicates excellent supercapacitor performance of WSP-CNT-PPy. According to
Ccv =

∫
IdVQ/(2A∆U), I denotes response current (A), v denotes scan rate (mV/s), A is the

areal of material (cm2), and ∆U is the potential working window (V). The areal capacitance
of WSP-CNT-PPy at 1 mV/s is approximately 1765.6 m F/cm2. The GCD data of various
areal currents ranging from 0.8 to 2.4 mA/cm2 are presented in Figure 9b. Furthermore, the
typically inverted V-shape of the data has proven the slight inside resistance. According
to Formula Cgcd = It/(A∆U), the calculated areal special capacitance Cgcd is 740 mF/cm2

at 0.8 mA/cm2, with a capacitance retention of 87.4% when the current density increases
seven times. The ED is 65.8 µW h/cm2 and the PD is 320.1 µW/cm2 according to the
equation of ED = Cgcd ∆U2/7200 and PD = 3600 ED/t, at a current of 0.8 mA/cm2.
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Figure 9. (a) I-V curves of WSP-CNT-PPy under various rates; (b) GCD curves with different areal
currents; (c) Nyquist plot under the amplitude of 50 mV/s; (d) cycle stability curve; (e) CV curves of
various strain pressure; (f) GCD curves of different strain conditions; (g) the efficiency of CV and
GCD curves is maintained with the strain ranging from 0 to 40%; (h) CV curves under different
pressure conditions; (i) GCD curves of different pressure conditions; (j) capacitance maintain of CV
and GCD curves with the pressure of 0 to 30%; and (k) single electrode, and electrodes connected in
series and parallel.

EIS was recorded under the frequency between 0.01 and 100 kHz of 50 mV current, as
shown in the Nyquist plot of Figure 9c. The result indicates that WSP-CNT-PPy exhibits
good supercapacitor behavior. The periodic curve of electrochemical properties is shown
in Figure 9d, after 10,000 times experiments, the retention productivity is approximate
88%, indicating a good reversibility and long cycling stability. Figure 9e,f presents the
recorded CV and GCD curves with various strain–stress up to 80%, and the curves show
slight variation corresponding to various strain-sensing conditions. Furthermore, the
illustrations in Figure 9e,f indicate good stability. The capacitance retention of CV and
the GCD curves are presented in Figure 9g. This result suggests stable electrochemical
efficiency under a strain between 0 and 40% and this is due to the special knitting loops
of the weft-knitted spacer fabric. Figure 9h–k present the electrochemical properties of
WSP-CNT-PPy under different pressure conditions, which are similar to strain conditions.
The good electrochemical behavior is due to the unique structure of the spacer fabric and
electrical conductivity of CNT-PPy. The spacer knitted fabric with CNT-PPy composites
under stretching and pressure conditions maintained good electrochemical properties.
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3.5. Electro-Heating Performance

Electric heating is the process concerning the energy of electric current converted
into heat, which is also referred to as Ohmic heating or Joule heating. Considering the
simplicity of electrical power and relative high energy conversion efficiency, electrical
heating is the most widely used method for various heating applications. The electro-
heating performance of WSP-CNT-PPy was evaluated as shown in Figure 10. It can be seen
that all temperature profiles exhibited a similar tendency. Once the devices are powered, the
measured temperature of WSP-CNT-PPy increased simultaneously and reached a plateau
in 50 s. After 250 s, the system powered off and the temperature decreased quickly, as
shown in Figure 10a. The Joule heating capability of WSP-CNT-PPy was also evaluated
by measuring the temperature, which was increased with time and applied voltage, as
shown in Figure 10b. The generated thermal energy was gradually increased with the
input voltage. According to Joule’s law, E = V2t/R, where E is heat produced by Joule
effect, V is the applied voltage, t is time, and R is electrical resistance. Figure 10c has
presented the experimental value and fitted linear curve between temperature and square
voltage, and the obtained temperature can be effectively predicted when the voltage ranged
from 1 V to 6 V. With the input voltage of 6 V, the WSP-CNT-PPy reached the highest
temperature of 120 ◦C with a fast response time. The high heat generation efficiency allows
for promising application of WSP-CNT-PPy in personal thermal management devices. The
cyclic on–off thermal response process at an applied voltage of 3–6 V is shown in Figure 10d.
The obtained temperature was gradually increased with the increasing voltage, and was
maintained during the four cycles, respectively. The heating process of WSP-CNT-PPy
under different cycles is shown in Figure 10e, where the applied voltage is 4 V. It indicates
the excellent repeatability of WSP-CNT-PPy under reutilization conditions for long-term
practical applications. The heat-imaging of the WSP-CNT-PPy fabric is shown in Figure 10f,
and the voltage ranged from 1 V to 6 V. The relationship between temperature and time
under various conditions of electro-heating is nearly identical, which indicates the ultra-
stability and high repetitiveness of the WSP-CNT-PPy fabric. The WSP-CNT-PPy fabric
could monotonically increase to the steady-state maximum temperature of 123.2 ◦C by 50 s
under the applied 6 V electric voltage.
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Figure 10. (a) The heating process of WSP-CNT-PPy under different applied voltage; (b) the increase
in temperature with the increasing voltage; (c) experimental value and fitted linear curve between
temperature and square of voltage; (d) heating process under cyclic voltage of 3 V, 4 V, 5 V, and 6 V;
(e) heating process under different cycles; and (f) heat-imaging of the WSP-CNT-PPy fabric.
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4. Conclusions

In this work, a stretchable and compressive strain sensor with good extensibility and
sensitivity was prepared by employing weft-knitted spacer fabric as a matrix. Carbon
nanotubes and polypyrrole were successfully deposited on the surface of the fabric through
an in situ polymerization process to obtain high conductivity. The unique knitted loop
structures together with interval filaments are beneficial to improve strain sensing efficiency
under both tiny and high deformations. The WSP-CNT-PPy strain sensor also exhibited
excellent electrochemical performance at various strain and pressure conditions. It is
suggested that highly stretchable and compressive WSP-CNT-PPy can be used as a potential
candidate for future wearable electronic devices. In addition, the as-fabricated WSP-
CNT-PPy strain fabric also exhibited robust electrochemical and electroheating properties,
and the heating/cooling process exhibits good repeatability. The present work would
enable the development of next-generation carbon-nanotube-based wearable textiles for
multifunctional applications.
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