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Abstract: In this study, graphitic carbon nitride (g-C3N4) was extensively utilized as an electron
transport layer or interfacial buffer layer for simultaneously realizing photoelectric performance
and stability improvement of perovskite solar cells (PSCs). This review covers the different g-
C3N4 nanostructures used as additive and surface modifier layers applied to PSCs. In addition,
the mechanism of reducing the defect state in PSCs, including improving the crystalline quality
of perovskite, passivating the grain boundaries, and tuning the energy level alignment, were also
highlighted in this review. Currently, the power conversion efficiency of PSCs based on modified
g-C3N4 has been increased up to 22.13%, and its unique two-dimensional (2D) package structure
has enhanced the stability of PSCs, which can remain stable in the dark for over 1500 h. Finally, the
potential challenges and perspectives of g-C3N4 incorporated into perovskite-based optoelectronic
devices are also included in this review.

Keywords: g-C3N4; perovskite solar cells; additive; surface modifier layer

1. Introduction

Fossil fuels created a huge amount of pollution in the environment. Solar energy,
as one of the main sources of clean and renewable energy, can solve both environmental
pollution and energy demand. Perovskite solar cells (PSCs) are a new type of photovoltaic
device that can directly convert solar energy into electrical energy [1,2]. Compared with
silicon-based solar cells, the manufacturing cost of PSCs is lower, and their photoelectric
characteristics are more prominent [3–5]. Moreover, the PSCs can be attached on the flexible
substrate, significantly expanding its application scenarios [6,7]. Currently, the lab-scale
power conversion efficiency (PCE) has been certified to boost efficiency up to 25.5% [8].
For realizing the commercialization of PSCs as soon as possible [9,10], several urgent
breakthroughs are required, such as obtaining a higher PCE, longer-term stability, and
eco-friendliness [11–17].

Generally, the structure of PSCs are composed of a hole transport layer (HTL), a per-
ovskite layer, and an electron transport layer (ETL), along with counter electrodes [18,19].
The defect-induced recombination of photo-generated carriers significantly impacts the
extraction and transportation of charges in PSCs [20–23], which severely diminishes the
performance of PSCs, in including short-circuit current density (Jsc), PCE, current hys-
teresis and stability, etc. [24,25]. For PSCs, defects are mainly located at the interfaces of
ETL/perovskite/HTL, as well as at the grain boundaries (GBs) of perovskite films [26–28].
Many routes have been explored to reduce defects in PSCs, including additive and in-
terface engineering, etc. [29–40]. Meanwhile, it is worth noting that the stability and
eco-friendliness of the materials used in additive or interface engineering should also be
taken into account.

Due to the polymeric feature, the surface of g-C3N4 abounds with N, -NH2, -NH-, and
other groups, which are facile functionalized by surface modification [41–43]. Thus, g-C3N4

Nanomaterials 2022, 12, 3625. https://doi.org/10.3390/nano12203625 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12203625
https://doi.org/10.3390/nano12203625
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://doi.org/10.3390/nano12203625
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12203625?type=check_update&version=2


Nanomaterials 2022, 12, 3625 2 of 14

has been utilized in PSCs as an additive or interface engineering material, as depicted in
Figure 1a [44,45]. Additionally, different nanostructures (bulk, nanosheets, nanoparticle
and quantum dots, etc.) of g-C3N4 reveal diversified photoelectric characteristics [46,47].
In this work, we summarized the role of g-C3N4 in PSCs. The main role are as follows:
first, facilitating electron transport or perovskite growth via adjusting the energy level or
roughness of ETL, corresponding. Second, decreasing the deep electron defect state of
PSCs via improving the crystalline quality of perovskite. Moreover, we looked into the
development trend of applying g-C3N4 in perovskite-based optoelectronic devices.
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Figure 1. (a) g-C3N4 as an additive or interface engineering material in PSCs, (b) surface groups and
properties of tri-s-triazine-based g-C3N4 (reproduced with permission [42]; copyright 2020, American
Chemical Society).

2. g-C3N4 as an Additive in Perovskite Films

g-C3N4 is a metal–free, non–toxic, and high–yield polymeric semiconductor with
an around 2.7 eV bandgap. More importantly, it has excellent thermal and chemical
stability [46,48–50]. Consequently, g–C3N4 has been broadly used in pollutant degradation,
sensing, optoelectronic devices, and other fields [51–60]. Figure 1b plotted the molecule
structure diagrams of g–C3N4, based on tri–s–triazine connection patterns. The hexagon
triazine ring is comprised of sp2 hybridized N and C atoms, with hydrogen bonds between
the –NH2 groups and the N edge atoms, and they are linked at the end with a C–N bond,
creating an extended network–like planar structure.

2.1. Pure g–C3N4 Nanosheets as an Additive

g–C3N4 nanosheets are π–conjugated nanomaterials with two–dimensional structure, and
a larger specific surface area, thus conducting the separation of photo–generated charges [61,62].
In 2018, Jiang et al. reported pure g–C3N4 nanosheets mixed into a perovskite precursor solution
as additives [63], suppressing nucleation and slowing down the growth of perovskite during
the crystallization process; this results in the g–C3N4:CH3NH3PbI3 films have larger grain
sizes and a lower defect density (nt). In 2019, Liao et al. used a method similar to that of
Jiang et al. to add g-C3N4 nanosheets into perovskite films [64]. Importantly, they revealed
the location of g-C3N4 in perovskite. Meanwhile, the mechanisms of defect passivation
and charge extraction by g-C3N4 were clarified. From Figure 2a, it can be seen that g-C3N4
was uniformly anchored at the surface of the GBs, and the dangling Pb2+ can coordinate
with the N atom in g-C3N4, retarding the crystallization of perovskite [65,66]. Moreover,
the conductive g-C3N4 network condensed at the GBs can act as an efficient carrier shuttle,
facilitating the electron transport. From the TRPL spectra, as presented in Figure 2b, for
g-C3N4 additive CH3NH3PbI3 films, the PL lifetime reduce to 17 ns, which is less than that
of the CH3NH3PbI3 films, indicating ultrafast photo–excited carrier transport due to the
addition of g–C3N4 [67].

Yang et al. added g–C3N4 into carbon-based PSCs [68]. Additionally, the insulating
layer was prepared on the surface of the ETL by spin-coating Al2O3 [69–71]. Figure 2c
presents the fabrication procedure of the device. From the J-V curve, as shown in Figure 2d,
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it can be noted that the Jsc has barely changed after incorporating the Al2O3 layer, which
suggests that the conductive g-C3N4 network at the GBs can provide electrons via a carrier
shuttle. This can be proved from the TRPL spectra, as shown in Figure 2e. In the field of
wearable electronics, g-C3N4 nanosheets were applied into flexible tin-based PSCs [72].
Figure 2f plots the device configuration: PDMS/hc-PEDOT:PSS/PEDOT:PSS/FASnI3/C60/
BCP/Ag. The network structure of g-C3N4 indicates a better lattice match with formami-
dine cation, which is more conducive to the crystallization of FASnI3 films. The illustration
of bonding and passivation between FASnI3 and g-C3N4 is shown in Figure 2g. Finally, the
stabilized PCE of 8.56% was obtained.
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Figure 2. (a) Schematic illustration of the functions of g–C3N4 as an additive in perovskite films.
(b) TRPL lifetime of g–C3N4:CH3NH3PbI3 and CH3NH3PbI3 films (reproduced with permission [64];
copyright 2019, Royal Society of Chemistry). (c) Fabrication procedure of a device with FTO/c–
TiO2/m–TiO2/Al2O3/g–C3N4:CH3NH3PbI3/carbon. (d) J–V curves of the devices and (e) TRPL
spectra of perovskite films (reproduced with permission [68]; copyright 2019, Elsevier). (f) Device
configuration: PDMS/hc–PEDOT:PSS/PEDOT:PSS/FASnI3/C60/BCP/Ag. (g) Illustration of bond-
ing and passivation between FASnI3 and g–C3N4 (reproduced with permission [72]; copyright 2021,
John Wiley and Sons).
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2.2. Functionalized g–C3N4 Nanosheets as an Additive

The pure g–C3N4 nanosheets tend to agglomerate in the organic or aqueous environ-
ment due to the robust van der Waals interactions, resulting in lower dispersibility [49,73].
However, the functionalized g–C3N4 nanosheets show good dispersity in liquid, mainly
caused by the electrostatic repulsion of the charged groups [42]. Here, there are two
main methods to achieve functionalized g–C3N4 nanosheets—doped, and surface modi-
fied [74,75].

In 2019, Cao et al. reported that iodine–doped g–C3N4 (g–CNI) was added into triple
cation perovskite films as an additive [76]. Due to the fact that doped iodine can coordinate
with dangling Pb2+ at GBs, the trap states in PSCs were effectively passivated [77,78].
Therefore, they achieved high–quality perovskite films with fewer trap states [65,79,80].
Figure 3a displays the mechanism of g–CNI modified PSCs. From the XPS spectra, as
shown in Figure 3b, for perovskite with g–CNI, the I 3d signal is higher than that of the ref.,
suggesting the incorporation of g–CNI into the perovskite [81]. After adding g–CNI, the nt
reduced to 1.07×1016 cm3 from 1.43 × 1016 cm3, with the maximum PCE of up to 18.28%.
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Figure 3. (a) Mechanism illustration of g–CNI modified PSCs. (b) XPS spectra of Pb 4f and I
3d in perovskite (reproduced with permission [76]; copyright 2019, Royal Society of Chemistry).
(c) Average crystallite size. (d) PL spectra of perovskite films with different functionalized g–C3N4

(reproduced with permission [41]; copyright 2019, John Wiley and Sons). (e) FESEM images of
U–g–C3N4 nanoparticles. (f) Scheme of g–C3N4 fragments coils into U–g–C3N4 nanoparticles.
(g) Scheme of the U–g–C3N4 self–recognizing grain boundaries of CH3NH3PbI3 films (reproduced
with permission [82]; copyright 2019, Elsevier).
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Li et al. reported that surface–modified g–C3N4 with various organic groups (–NO3,
–NH3, –SO3 and –OH) was mixed into perovskite films [41], which can improve crystalline
quality and passivate defects state at the GBs. Specifically, for NO3–C3N4–based perovskite,
the average crystallite size of up to 68 nm was achieved, as exhibited in Figure 3c, leading
to a decent photovoltaic performance, which can be proved by the PL spectra, as shown
in Figure 3d. It is worth noting that the PL intensity of NO3-C3N4–based perovskite film
is the strongest compared to the other perovskite films. This can be ascribed to the better
crystallinity of perovskite with the NO3–C3N4 addition, as well as a reduction in the trap
states density. As a result, for p–i–n PSCs based on NO3–C3N4, the best PCE obtained was
up to 20.08%.

2.3. Ultrafine g–C3N4 Nanoparticles as an Additive

In 2019, Liu et al. reported that g–C3N4 nanoparticles were introduced into perovskite
films as an additive [82]. Here, the ultrafine size of g–C3N4 nanoparticles is about 20–50 nm,
which were successfully synthesized with exfoliated g–C3N4 nanosheets. The surface of
ultrafine g–C3N4 nanoparticles (U–g–C3N4) is rich in O–H or N–H groups, which can
easily bond with N–H bonds on CH3NH3PbI3 GBs [83]. Thus, it can self–recognize GBs
and adhere to them, decreasing the deep electron trap state. The FESEM images of U–g–
C3N4 nanoparticles are plotted in Figure 3e. Figure 3f presents the scheme of U–g–C3N4
nanoparticles from g–C3N4 fragments. Figure 3g describes the scheme of the U–g–C3N4
self–recognizing CH3NH3PbI3 GBs. Finally, the champion PCE of U–g–C3N4 based planar
PSCs is up to 15.8%.

3. g–C3N4 as a Surface Modifier Layer
3.1. g–C3N4 Quantum Dots (g–CNQD) as Modifier Layer

g–C3N4 quantum dots are a type of zero–dimensional nanomaterial in which electrons
and holes cannot move freely [84]. The tiny particle size creates its unique size effect,
macroscopic quantum tunnel effect, edge effect [85], etc. In 2020, Chen et al. prepared
g–CNQD via acid etching and hydrothermal cure [86]; the diameter of g–CNQD were about
5–10 nm, and they were added into an SnO2 colloid precursor, forming nanocomposite
ETL (G–SnO2). Figure 4a exhibits the position of g–CNQD in SnO2. Tiny and conductive
g–CNQD could reorganize the electronic density distribution of SnO2. The charge density
difference between G–SnO2 and SnO2 is displayed in Figure 4b, which was obtained using
the density functional theory. It can be seen that the vacancies surrounding the three
Sn atoms interact with g–C3N4, and an obvious charge redistribution occurs around the
oxygen vacancy, resulting in the elimination of the trap state defects [87]. Importantly,
g–CNQD can effectively adjust the Fermi level of ETL, promoting electron transport [88,89].
The energy–level diagrams are shown in Figure 4c. For G–SnO2 based planar PSCs, the
PCE is up to 22.13% with a Voc of 1.176 V. They also exhibit excellent long–term stability
under ambient conditions, e.g., about 60% humidity [90].

Liu et al. published a similar report on g–CNQD. The g-CNQD was synthesized
with urea and sodium citrate [91], the diameter was about 10–30 nm, and it was well
monodispersed. In this work, g–CNQD were intercalated into the ETL/perovskite layer,
which facilitates the formation of high–quality perovskite films due to the smoother surface
of ETL [92,93]. Figure 4d presents the schematic illustration of the g–CNQD–based device.
The roughness of the ETL was evaluated by AFM, as shown in Figure 4e. After intercalating
g–CNQD, the root mean square roughness reduced from 17.5 nm to 12.8 nm, suggesting
that a smoother ETL was obtained, which is conducive to perovskite growth [94]. From
the SEM images and XRD spectra of the perovskite films as shown in Figure 4f,g, it can be
seen that the g–CNQD based perovskite films have purer phases, fewer GBs, and lower
trap states. Finally, the maximum PCE is noted, up to 21.23% under full air–processing,
and without apparent current hysteresis.
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Figure 4. (a) The position of G–CNQD in SnO2. (b) The side view for the charge density difference of
SnO2 (above) and G–SnO2 (below) with oxygen vacancy; the yellow and cyan areas indicate electron
depletion and accumulation, respectively. (c) Energy band alignment of the devices (reproduced
with permission [86]; copyright 2020, Royal Society of Chemistry). (d) Schematic illustration of
the devices with a g–CNQD layer and a J–V curve. (e) AFM images of pristine SnO2 film and
SnO2/g–CNQD films. (f) SEM images and (g) XRD spectra of perovskite films based on different
ETL. The asterisks indicate the main peaks of perovskites structure (reproduced with permission [91];
copyright 2020, Elsevier).

3.2. g–C3N4 Nanosheets as a Modified Layer

In 2020, Liu et al. used multilayer g–C3N4 to simultaneously modify the upper
and lower interfaces of perovskite [95]. For the perovskite/HTL interface, the dangling
Pb2+ can coordinate with lone–pair electrons on g–C3N4, reducing the defects state at the
perovskite film surface. For the ETL/perovskite interface, the Gibbs free energy of SnO2
surface was decreased, which facilitates the preparation of flat and non–pinhole perovskite
films [96,97]. Figure 5a displays the schematic diagram of dual–modified PSCs with g–
C3N4. The improvement of perovskite films can be seen from SEM, as shown in Figure 5b.
A maximum PCE of 19.67% was obtained for planar PSCs with longer–term stability. The
main reason for this was that g–C3N4 could reduce the surface defects of perovskite films,
thus decreasing the migration of iodide and ion mobilization within the perovskite lattices.
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In 2021, Yang et al. adopted g–C3N4 nanosheets as a modified layer [98], and the work
function of ETL was finely tuned, as shown in Figure 5c, resulting in the enhancement
of Voc from 1.01 to 1.11 V, and diminishing the current hysteresis of PSCs. Therefore, the
maximum PCE was boosted to 19.55% from its initial 15.81%. Yang et al. reported new
buried layers for efficient perovskite [99], which are composed of a mixture of g–C3N4
and SnO2. Due to the fact that amine–rich g–C3N4 can promote the prenucleation of the
Pb–related intermediates, the vertical crystallization of perovskite films were obviously
optimized, exhibiting superior carrier transmission characteristics. Figure 5d presents the
schematic illustration of vertical carrier transportation via buried manipulation.
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Figure 5. (a) Schematic diagram of g–C3N4 dual–modified PSCs. (b) SEM of perovskite films
(reproduced with permission [95]; copyright 2018, Royal Society of Chemistry). (c) Energy band
alignment of the device. The EF level of the ETL, without and with g–C3N4, are represented with
a dotted line (reproduced with permission [98]; copyright 2021, Springer Nature). (d) Schematic
of the vertical carrier transportation of the perovskite films via buried manipulation (reproduced
with permission [99]; copyright 2021, John Wiley and Sons). (e) Schematic illustration of the possible
interface defect sites (reproduced with permission [100]; copyright 2021, John Wiley and Sons).

3.3. Functionalized g–C3N4 as a Modified Layer

In 2019, Cruz et al. prepared thiazole–modified g–C3N4 via exfoliation treatment [101],
then intercalated it in p–i–n PSCs as ETL. The charge recombination in the interface was
suppressed due to the enhanced energy level of electronic interface [88]. Finally, the Voc
of 1.09 V and the Jsc of 20.17 mA/cm2 were achieved. In 2021, Wang et al. prepared the
functionalized g–C3N4 with thiophene or thiazole by thermal treatment [100]. Then, the
functionalized g–C3N4 were intercalated between ETL and the perovskite layer. Notably,
there was a well–matched energy level in the device. Due to the strong chemical affinity
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between Pb2+ and N or S atoms [67], the defect state in the device was efficiently passivated.
Figure 5e shows the possible interface defect sites in perovskite, as well as the passivation of
thiophene or thiazole. For the thiazole g–C3N4based device, the maximum PCE increased
to 19.23% from pristine 13.42%, with the Voc increasing from 1.02 V. to 1.11 V.

4. Conclusions and Future Perspectives

In this paper, we summarize the recent progress of g–C3N4 application in PSCs. g–
C3N4 is an eco–friendly polymeric semiconductor with a suitable bandgap. Recently, it has
been widely applied in PSCs, which can reduce defect states in PSCs, and simultaneously
enhance the PCE and long–term stability of PSCs. Specifically, different nanostructures of
g–C3N4 (i.e., nanosheets, nanoparticles, and QDs) used as additive and surface modifier
layers have been discussed in detail. The performance of the devices is listed in Table 1.

Pure g–C3N4 nanosheets are a kind of two–dimensional nanomaterial with large N,
–NH2, –NH, and other groups, and the N atom in g–C3N4 can coordinate a bond with
dangling Pb2+, increasing the perovskite grain size. Moreover, when it functions as an
additive, the conductive g–C3N4 network acts as an efficient carrier shuttle, facilitating
electron transport. g–C3N4 nanoparticles are formed by the self–coiling of the exfoliated
g–C3N4 nanosheets, with an ultra–fine size (20–50 nm), and the surface of the g–C3N4
nanoparticles contains abundant O–H or N–H groups. Therefore, g–C3N4 nanoparticles
can magically self–recognize GBs in perovskite films, decreasing the deep electron trap
state of PSCs. Functionalized g–C3N4 nanosheets can also be achieved from nanosheets,
but the former shows better dispersity in organic solvent. They exhibit a similar effect
as additives. Specifically, when used as a modifier layer, they can adjust the energy level
alignment of PSCs, making the electron transport more efficient. g–CNQD has a tiny
particle size, which can adjust the energy level or roughness of the ETL, facilitating electron
transport or perovskite growth, corresponding. These features give the PSCs potential
for consideration as next–generation photovoltaic devices, as the most promising means
of simultaneously solving environmental pollution and energy demand. The passivation
of the perovskite layer is mainly used to improve the PCE and the long–term stability of
PSCs. g–C3N4 can be added in different solutions to prepare efficient PSCs with long–term
stability, which have the potential to compete with other conventional silicon cells in the
future. Meanwhile, g–C3N4 shows great promise in solving external and internal concerns,
including packaging, additional technology, and reducing charge recombination. Thus,
the g–C3N4 can increase the grain size of perovskite and passivate the interface defect,
making it more conducive to charge extraction. However, the development of the g–C3N4
nanostructure is still in its early stages. Additional methods for improving the efficiency
and stability of PSCs require further exploration. We expect to develop new additives
exhibiting eco–friendliness, long–term stability, and compatibility with flexible substrates,
as well as other new strategies to improve the performance of perovskite. This effort should
be closely connected to application of dedicated defect passivation strategies to produce
high–performance and enduring stable PSCs.



Nanomaterials 2022, 12, 3625 9 of 14

Table 1. Recent development of g–C3N4 based PSCs photovoltaic performance.

Structure PCE (%) Voc (V) Jsc (mA·cm−2) FF (%) Ref. Year

ITO/PTAA/NO3-g-C3N4:CsFAMAPbI3−xBrx/PCBM/BCP/Ag 20.08 1.11 22.84 79.20 [41] 2019
FTO/c-TiO2/g-C3N4:MAPbI3/spiro-OMeTAD /MoO3/Ag 19.49 1.07 24.31 74.0 [63] 2018
FTO/c-TiO2/g-C3N4:MAPbI3/spiro-OMeTAD /Au 21.10 1.16 23.00 79.0 [64] 2019
FTO/c-TiO2/m-TiO2/g-C3N4:CsPbBr3/carbon 8.00 1.277 7.80 80.32 [66] 2021
FTO/c-TiO2/m-TiO2/Al2O3/g-C3N4:MAPbI3/carbon 14.34 1.00 23.80 60.1 [68] 2019
PDMS/hc-PEDOT:PSS/PEDOT:PSS/g-C3N4:FASnI3/C60/BCP/Ag 8.56 0.621 20.68 66.68 [72] 2021
FTO/TiO2/G-CNI:CsFAMAPbI3−xBrx/spiro-OMeTAD/Au 18.28 1.07 22.97 74.0 [76] 2019
FTO/c-TiO2/U-g-C3N4:MAPbI3/spiro-OMeTAD/Au 15.80 1.10 23.20 62.0 [82] 2019
ITO/CNQDs:SnO2/CsFAMAPbI3−xBrx/Spiro-MeOTAD/Au 22.13 1.18 24.03 78.3 [86] 2020
FTO/SnO2/CNQDs/(FA/MA/Cs)PbI3−(x+y)BrxCly/spiro-OMeTAD/Au 21.23 1.14 23.39 79.6 [91] 2020
FTO/SnO2/g-C3N4/MAPbI3/g-C3N4/Sspiro-OMeTAD/Au 19.67 1.14 21.45 80.7 [95] 2020
FTO/c-TiO2/m-TiO2/g-C3N4 nanosheets/MAPbI3/ Carbon 11.37 1.02 16.91 66 [97] 2021
FTO/c-TiO2/g-C3N4/MAPbI3/spiro-OMeTAD/Ag 19.55 1.11 23.69 74.0 [98] 2021
ITO/g-C3N4:SnO2/FA0.85MA0.11Cs0.04PbI2.67Br0.33·xPbI2/spiro-MeOTAD/Au 21.54 1.19 23.21 78 [99] 2021
ITO/PTAA/MAPbI3/PC60BM/CMB-vTA/AZO/Ag 17.15 1.09 20.17 78.03 [100] 2019
FTO/TiO2/thiazole-C3N4/(FAPbI3)0.875(CsPbBr3)0.125/spiro-OMeTAD/Ag 19.23 1.11 22.50 77 [101] 2021
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