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Abstract: Gold nanoclusters have revealed great potential as nanoantibiotics due to their supe-
rior chemical and physical characteristics. In this study, a peptide with 83 amino acids derived
from haptoglobin was utilized as a surface ligand to synthesize gold nanoclusters via a facile hy-
drothermal approach. Characterization of the structural and optical properties demonstrated the
successful synthesis of derived haptoglobin-conjugated gold nanoclusters. The spherical derived
haptoglobin-conjugated gold nanoclusters exhibited a (111) plane of cubic gold and an ultra-small
size of 3.6 ± 0.1 nm. The optical properties such as ultraviolet-visible absorption spectra, X-ray
photoelectron spectroscopy spectra, fluorescence spectra, and Fourier transform infrared spectra
also validated the successful conjugation between the derived haptoglobin peptide and the gold
nanoclusters surface. The antibacterial activity, reactive oxygen species production, and antibacterial
mechanisms of derived haptoglobin-conjugated gold nanoclusters were confirmed by culturing the
bacterium Escherichia coli with hemoglobin to simulate bacteremia. The surface ligand of the derived
haptoglobin peptide of derived haptoglobin-conjugated gold nanoclusters was able to conjugate
with hemoglobin to inhibit the growth of Escherichia coli. The derived haptoglobin-conjugated gold
nanoclusters with an ultra-small size also induced reactive oxygen species production, which resulted
in the death of Escherichia coli. The superior antibacterial activity of derived haptoglobin-conjugated
gold nanoclusters can be attributed to the synergistic effect of the surface ligand of the derived hap-
toglobin peptide and the ultra-small size. Our work demonstrated derived haptoglobin-conjugated
gold nanoclusters as a promising nanoantibiotic for combating bacteremia.

Keywords: gold nanoclusters; nanoantibiotics; haptoglobin; reactive oxygen species; antibacterial
activity; hemoglobin; bacteremia
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1. Introduction

Bacteremia is an infection of the blood by viable bacteria [1–3]. Asymptomatic bac-
teremia can be caused by normal daily behaviors such as conducting oral hygiene and after
minor medical treatments [4]. Clinically benign infections in some people are temporary
and have no significant sequelae. However, because of dysfunctional or overwhelmed
immune responses, bacteremia can evolve into a bloodstream infection with serious clinical
symptoms, including systemic inflammatory response syndrome, sepsis, septic shock, and
multiple organ dysfunction syndrome [5–11]. With high mortality rates after the progres-
sion to sepsis, bacteremia requires urgent treatment via appropriate antibiotics. Bacteremia
patients need administration of empiric antibiotic coverage to decrease morbidity and
mortality [12–17]. In most cases, antibiotic therapy should be continued for 7~14 days [18].
Although antibiotic therapy is a common clinical treatment for bacteremia, developing
alternative approaches to treat bacteremia is still an urgent task due to antibiotic resistance.

Recent developments in nanomaterials as nanoantibiotics have been validated to fight
bacterial infections due to their extraordinary structural and optical properties [19–27]. Var-
ious types of nanomaterials, including metal/metal oxides, semiconductors, and polymers,
have been explored as nanoantibiotics against bacteria [28–35]. For example, gold (Au)
nanobipyramids with a (111) plane exhibited better photothermal performance than that of
Au nanorods with a (100) plane for the effective photothermal killing of bacteria [36]. The
metallic phase of 1T-MoS2 nanoflowers revealed photodynamic antibacterial activity due to
their photoinduced reactive oxygen species (ROS) [37]. Under sunlight and near-infrared
(NIR) irradiation, CuS nanosheets and CuS nanoparticles (NPs) produce photoinduced
electrons which then react with atmospheric moisture to generate hydroxide and superox-
ide anion radicals and heat, resulting in antibacterial activity [38]. Gelatin-capped silver
NPs were utilized as anti-infective therapeutics of Staphylococcus aureus-induced keratitis
due to their strong ability to cripple the bacterial membrane potential and destroy bacterial
membranes [39]. Great efforts have been devoted to developing versatile nanomaterials
as nanoantibiotics for antibacterial applications. The in vitro and in vivo antibacterial ac-
tivities of nanomaterials have shown promising potential for practical applications in the
near future.

Among various nanomaterials, ultra-small metal nanoclusters (NCs) have been inten-
sively demonstrated as nanoantibiotics to treat bacterial infections because of their physical
and chemical characteristics [40–45]. Metal NCs with various metallic cores and surface
ligands have been designed and proven to have antibacterial applications [46–50]. For
instance, after being metabolized by Escherichia coli, cysteine-conjugated AuNCs generated
significant intracellular ROS that induced the death of E. coli [51]. AuNCs conjugated
with 6-mercaptohexanoic acid exhibited wide-spectrum antimicrobial activities for both
gram-positive and gram-negative bacteria owing to their ultra-small size [52]. Metallic
NCs such as Ag, Au, and Cu NCs modified with the surface ligand of bacitracin revealed
robust bacteria-killing efficiencies because of their distinctive damage to bacterial mem-
branes [53]. In real-time observations by liquid cell transmission electron microscopy
(TEM), glutathione-capped AuNCs first attached to bacterial membranes and then pen-
etrated into bacteria by internalization to cause destruction to the bacterial membranes,
which led to the eventual death of the bacteria. Using combinations of metallic cores and
surface ligands, metal NCs showed promising potential as nanoantibiotics based on their
unique properties, including facile synthesis, easy surface modification, ultra-small size,
and superior antibacterial activities.

A cell-free hemoglobin (Hb)-binding protein, haptoglobin (Hp), is an acute-phase
protein in the blood that responds to bacterial infections and inflammation [54]. Hp plays
an important role in protecting against bacterial infections due to its enhancement of
bacterial growth by cell-free Hb [55]. Hp is currently being utilized as a therapeutic protein
for bacteremia [56]. Herein, we cloned an anti-infection and anti-inflammatory multiple-
functional peptide (MFP) with 83 amino acids derived from Hp that was applied as an
antibacterial ligand to synthesize AuNCs (d-Hp-AuNCs), which were synthesized by a
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simple hydrothermal approach. The morphological and optical properties of d-Hp-AuNCs
were investigated via TEM, high-resolution (HR)-TEM, energy-dispersive X-ray (EDX)
spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, fluorescence spectroscopy, X-ray
photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy.
To simulate bacteremia, the E. coli bacterium was cultured with Hb. To evaluate the
antibacterial activity against bacteremia, the bacterial growth curve of E. coli incubated
with d-Hp-AuNCs was examined. ROS generation by d-Hp-AuNCs incubated with E. coli
was measured to investigate the antibacterial mechanism against bacteremia.

2. Materials and Methods
2.1. Materials

Sodium hydroxide (NaOH, 98%) and endotoxin removal spin columns were purchased
from Thermo Fisher Scientific (Waltham, MA, USA). Tetrachloroauric(III) acid trihydrate
(HAuCl4•3H2O, 99%) was purchased from Alfa Aesar (Haverhill, MA, USA). Tryptone,
yeast extract, sodium chloride (NaCl), kanamycin, isopropyl β-D-1-thiogalactopyranoside
(IPTG), DNase I, lysozyme, and ampicillin were purchased from BioShop (Burlington,
ON, Canada). The proteinase inhibitor and Ni-NTA resin column were purchased from
Sigma-Aldrich (St. Louis, MO, USA). Coomassie R-250 dye was purchased from AMRESCO
(Solon, OH, USA). Amicon® Ultra centrifugal filters (3K MWCO) were purchased from
Merck Millipore (Burlington, MA, USA).

2.2. Synthesis of D-Hp-AuNCs via a Facile Hydrothermal Approach

d-Hp-AuNCs were synthesized by a facile hydrothermal approach according to the
previous literature with some modifications [51]. An NaOH aqueous solution (1 M at
150 µL) was added to 1 mL of an HAuCl4 aqueous solution (25 mM). Afterward, 1 mL of
the derived Hp peptide (3.014 mg/mL in phosphate-buffered saline (PBS) at pH 8.0) was
introduced into the mixture containing NaOH and HAuCl4 and then stirred at 300 rpm and
room temperature in a dark environment for 48 h. After 48 h, d-Hp-AuNCs had formed
as a yellow-colored solution. The d-Hp-AuNC solution was then stored at 4 ◦C in a dark
environment for further experiments.

2.3. Expression of the Derived Hp Peptide

The derived Hp peptide was expressed in E. coli BL21 with minor modifications.
Herein, the pUC57-Amp vector was utilized to produce derived Hp peptide (Figure S1).
Escherichia coli was cultured in 25 g of lysogeny broth (LB). LB was prepared by adding 10 g
of tryptone, 5 g of yeast extract, 10 g of NaCl, and 50 mg of kanamycin to 1 L of distilled
water under stirring at 180 rpm and 37 ◦C for 12 h. Afterward, the bacterial solution was
re-inoculated with fresh culture medium and then incubated at 180 rpm and 37 ◦C for 4 h.
After incubation, the optical density (OD) of the bacterial solution at 600 nm (OD600) was
measured to be ~0.6. Expression of the derived Hp peptide was induced by adding 1 mM
of IPTG at 16 ◦C for 16 h. Bacteria were harvested by centrifugation at 4 ◦C and 4000× g
for 30 min, and then the bacterial pellet was stored at −20 ◦C for purification.

2.4. Purification of the Derived Hp Peptide

Bacterial pellets were re-suspended in 100 mL of lysis buffer (one tablet of proteinase
inhibitor, 2 µg/mL DNase I, and 50 mg/mL lysozyme) under sonication at 4 ◦C. After
sonication, lysates were centrifuged at 12,000× g and 4 ◦C for 30 min. Supernatants
were filtered (through a pore size of 0.45 µm), and an Ni-NTA resin column (Sigma-
Aldrich) was further used to purify the derived Hp peptide. Before purification, the
Ni-NTA resin column was equilibrated with 10 mM of imidazole/PBS. After bonding
to the Ni-NTA resin, the derived Hp peptide was eluted by a linear gradient of a 20 to
500 mM imidazole/PBS program. The eluted peptide was directly analyzed by sodium
dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) and stained with Coomassie
R-250 dye, as shown in the Supporting Information (Figure S2). The 3D structure of the
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derived Hp peptide is shown as Figure S3 in the Supporting Information. The derived Hp
peptide was concentrated with Amicon® Ultra-centrifugal filters (3K MWCO) and then
dialyzed with PBS (at pH 8.0). After dialysis, the derived Hp peptide was immediately
processed with endotoxin-removal spin columns and sterile filtration (0.22 µm) and stored
at 4 ◦C for subsequent experiments.

2.5. Bacterial Growth Curve and Agar Plate Counts

The ampicillin-resistant E. coli (BL21DE3 strain) were applied for bacterial experiments.
The E. coli culture medium was composed of 6 mL of LB medium and 100 µg/mL ampicillin.
Escherichia coli was cultured in LB medium at 37 ◦C and 180 rpm for 16 h. After culturing for
16 h and to determine the bacterial curve, 1 µL of bacterial solution, 100 µL of LB medium,
and 280 µg of Hb were first added to 96-well plates. Afterward, 5 µg of kanamycin, 50 µg
of the derived Hp peptide, and 50 µg of d-Hp-AuNCs were added to each well, and then
the 96-well plate was cultured at 37 ◦C in a shaker at 180 rpm. OD600 values of the wells
were measured every 1 h for 8 h. The absorbance at 600 nm for each group of bacterial
solution at 0 h was measured and set as 0. Afterward, the absorbance of each bacterial
solution at 600 nm was measured every 1 h. To calculate the change in OD600 value, the
absorbance of bacterial solution at 600 nm and 0 h was subtracted from the absorbance at
600 nm and different culture time. After incubation for 8 h, 10 µL of the suspension from
each well was diluted by 104-fold with LB medium. The diluted suspension (10 µL) was
evenly spread onto an LB agar plate (LB with 15 g/L agar) and further incubated at 37 ◦C.
After culturing for 24 h, colonies on the LB agar plate were counted.

2.6. Evaluation of ROS Production

2′,7′-Dichlorodihydrofluorescein diacetate (DCFDA) dye was applied to measure
ROS generation. DCFDA can react with ROS to form 2′,7′-dichlorofluorescein (DCF).
Thereafter, the DCF fluorescence at a wavelength of 525 nm as excited by a wavelength
of 488 nm can be utilized to evaluate ROS generation. Furthermore, Hoechst 33342 dye
with excitation/emission at 350/461 nm was used to calculate the total amount of E. coli.
In this study, four different bacterial solutions were, respectively, prepared to measure
ROS generation, including (i) E. coli, (ii) E. coli + Hb, (iii) E. coli + Hb + the derived Hp,
and (iv) E. coli + Hb + d-Hp-AuNCs. The OD600 value of the E. coli solution was 0.3.
Concentrations of Hb, derived Hp, and d-Hp-AuNCs were 2.8, 500, and 500 mg/mL,
respectively. The four different bacterial solutions were incubated at 180 rpm and 37 ◦C for
4 h. After incubation for 4 h, DCFDA (10 µM) and Hoechst 33342 (1 µg/mL) were added to
the four different bacterial solutions, and the solutions were incubated at 180 rpm and 37 ◦C
for 30 min in the dark. Afterward, the four bacterial solutions were centrifuged at 104 rpm
for 2 min. Supernatants were carefully removed, and pellets were re-dissolved in 600 µL
of sterilized water with vortexing. The fluorescence intensities of DCF and Hoechst 33342
were measured using a microplate reader. ROS production was calibrated with the total
number of E. coli. Relative ROS levels of the experiments were systematically calculated
compared to the ROS level of the control E. coli solution. For the control, the ROS level of
E. coli incubated with sterilized water was set to 1.0.

2.7. Statistical Analysis

All experimental results were repeated four times. All the data and one-way ANOVA
on Prism 9 (GraphPad Software, San Diego, CA, USA) were used to analyze the differences
in significance between control and experimental groups. The numeric data are presented as
the means ± standard deviation. A value of p < 0.05 was considered statistically significant.

3. Results and Discussion
3.1. Morphological Characteristics of D-Hp-AuNCs

To examine the morphology, d-Hp-AuNCs were characterized by TEM and HR-TEM.
As shown in Figure 1a, d-Hp-AuNCs were homogeneously spread on a copper grid due
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to their conjugation with the derived Hp peptide to avoid aggregation. Furthermore,
d-Hp-AuNCs revealed a roughly spherical shape. In the HR-TEM image of Figure 1b,
d-Hp-AuNCs exhibited a (111) plane of cubic gold with an interplanar distance of 0.23 nm.
To calculate the average size, size distributions of d-Hp-AuNCs were measured according
to 100 NCs in Figure 1a, and the histogram is shown in Figure 1c. Based on the histogram
of Figure 1c, the Gaussian fitting curve was simulated to obtain the average size of ultra-
small d-Hp-AuNCs (3.6 ± 0.1 nm). Moreover, as shown in Figure 1d, the EDX analysis of
d-Hp-AuNCs indicated that d-Hp-AuNCs were constituted of gold (51.42 wt%), oxygen
(22.64 wt%), carbon (19.43 wt%), nitrogen (6.15 wt%), and sulfur (0.36 wt%). EDX measure-
ments validated the composition of d-Hp-AuNCs with gold and the derived Hp peptide.
To sum up, morphological characterizations demonstrated the successful preparation of
d-Hp-AuNCs.
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Figure 1. (a) TEM image of the derived haptoglobin peptide-conjugated gold nanoclusters (d-Hp-
AuNCs), (b) HR-TEM image of d-Hp-AuNCs, (c) Histogram of the size distributions of d-Hp-AuNCs
and the Gaussian fitting curve, and (d) EDX analysis of d-Hp-AuNCs.

3.2. Optical Properties of D-Hp-AuNCs

The absorption of d-Hp-AuNCs was first characterized by UV-Vis spectroscopy. In
Figure 2a, the absorption of d-Hp-AuNCs exhibited no surface plasmon absorption of Au
NPs at 520 nm [57]. The disappearance of surface plasmon absorption of Au NPs could be
ascribed to the gold cores of d-Hp-AuNCs exhibiting high oxidation states, which resulted
in a lack of free electrons to generate coherent oscillations [58]. To further demonstrate
the high oxidation states of the gold cores, XPS was utilized to examine d-Hp-AuNCs. As
shown in Figure 2b, the XPS spectrum of d-Hp-AuNCs indicated that the binding energies
of Au 4F5/2 and Au 4F7/2 of d-Hp-AuNCs were 88.3 and 84.6 eV, respectively. The binding
energies of simulated curves of Au 4F5/2 and Au 4F7/2 were also, respectively, located at
88.3 and 84.6 eV. On the other hand, the binding energies of Au 4F5/2 and Au 4F7/2 of bulk
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gold were separately revealed to be 87.4 and 84.0 eV. Compared to bulk gold, the higher
binding energies of Au 4F5/2 and Au 4F7/2 of d-Hp-AuNCs indicated that the gold cores
of d-Hp-AuNCs were composed of gold with high oxidation states, corresponding to the
disappearance of surface plasmon absorption. Moreover, optical properties of d-Hp-AuNCs
were examined via fluorescence spectroscopy. As shown in Figure 2c, under an excitation
wavelength of 329 nm, the fluorescence spectrum of the derived Hp peptide exhibited a
maximum fluorescence intensity at ~402 nm. For d-Hp-AuNCs, the maximum intensity
was at ~415 nm. Compared to the fluorescence spectrum of the derived Hp peptide, the
fluorescence of d-Hp-AuNCs was attributed to fluorescence coming from the conjugation
of the derived Hp peptide. Overall, the optical properties, including the UV-Vis absorption
spectra, XPS spectra, and fluorescence spectra validated the successful conjugation of
d-Hp-AuNCs by a facile hydrothermal approach.
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To further examine the conjugation between the derived Hp peptide and AuNCs,
FTIR spectroscopy was applied to measure the IR bands of amide I and amide II of the
derived Hp peptide and d-Hp-AuNCs. For the amide I band, the characteristic peak
between 1600 and 1700 cm−1 was attributed to stretching vibrations of CO in the peptide.
The characteristic peak of the amide II band between 1500 and 1600 cm−1 was attributed
to NH bending and CN stretching vibrations within the peptide. In the FTIR spectra
of Figure 3, the derived Hp peptide, respectively, revealed characteristic amide I and
amide II peaks at 1644 and 1535 cm−1. d-Hp-AuNCs exhibited characteristic amide I and
amide II peaks at 1644 and 1547 cm−1, respectively. Compared to the FTIR spectra of the
derived Hp peptide and d-Hp-AuNCs, the amide I bands exhibited no significant change.
However, the maximum absorption of the amide II band of d-Hp-AuNCs increased from
1535 to 1547cm−1 compared to that of the derived Hp peptide. The previous literature
proved that the increase in the peak position of the amide II band can be ascribed to the
formation of conjugation of the derived Hp peptide and AuNCs [59,60]. Overall, the
optical properties, including the UV-Vis absorption spectra, XPS spectra, fluorescence
spectra, and FTIR spectra validated the successful conjugation of d-Hp-AuNCs by a facile
hydrothermal approach.
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Figure 3. FTIR spectra of the derived haptoglobin (Hp) peptide and derived Hp-conjugated gold
nanoclusters (d-Hp-AuNCs).

3.3. Antibacterial Activity of D-Hp-AuNCs

To evaluate the antibacterial activities, five different bacterial solutions were prepared,
including (i) E. coli, (ii) E. coli + Hb, (iii) E. coli + Hb + kanamycin, (iv) E. coli + Hb + derived
Hp, and (v) E. coli + Hb + d-Hp-AuNCs. Escherichia coli was first cultured with Hb to
simulate bacteremia. As shown in Figure 4, changes in the OD600 values of E. coli cultured
with Hb were higher than those of E. coli cultured without Hb. Herein, Hb facilitated the
growth of E. coli. The bactericidal antibiotic property of kanamycin was also applied to
treat E. coli cultured with Hb. Kanamycin exhibited excellent antibacterial activity due
to its suppression of bacteria synthesizing vital proteins [61]. Furthermore, compared to
E. coli cultured with Hb, after incubation for 4 h, the OD600 value of E. coli cultured with
Hb and the derived Hp decreased from 2.94 to 1.86. The antibacterial activity of the derived
Hp can be attributed to its conjugation with Hb, which resulted in inhibition of bacterial
growth [62]. Moreover, after incubation with d-Hp-AuNCs, growth of E. coli cultured with
Hb was inhibited. Most importantly, the change in the OD600 value of E. coli cultured with
Hb revealed no significant increase after incubation with d-Hp-AuNCs for 3 h. The result of
antibacterial activity of d-Hp-AuNCs can be supposed by two hypotheses. First, the derived
Hp peptide on the surface of d-Hp-AuNCs conjugated with Hb inhibited the growth of
E. coli. Second, the ultra-small d-Hp-AuNCs induced ROS generation which caused the
death of E. coli. With the synergistic effect of the surface ligand of the derived Hp peptide
and ultra-small size, the d-Hp-AuNCs were demonstrated to be a promising nanoantibiotic.
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Figure 4. Growth curves of Escherichia coli incubated with various solutions, including (i) E. coli,
(ii) E. coli + hemoglobin (Hb), (iii) E. coli + Hb + kanamycin, (iv) E. coli + Hb + derived haptoglobin
(d-Hp), and (v) E. coli + Hb + d-Hp-gold nanoclusters (AuNCs). The results are presented as the
mean ± SD of n = 4 independent experiments. Asterisks indicate significant differences (*** p < 0.001).
*** p < 0.001 compared to E. coli.
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To evaluate the antibacterial activity, the five bacterial solutions, including (i) E. coli,
(ii) E. coli + Hb, (iii) E. coli + Hb + kanamycin, (iv) E. coli + Hb + derived Hp, and
(v) E. coli + Hb + d-Hp-AuNCs were investigated by agar plate counts after incubation for
4 h. As shown in Figure 5, colonies of (i) E. coli, (ii) E. coli + Hb, (iii) E. coli + Hb + kanamycin,
(iv) E. coli + Hb + derived Hp, and (v) E. coli + Hb + d-Hp-AuNCs were, respectively, found
to be 3.5 × 109, 5.6 × 109, 106, 9.2 × 108, and 0 colony-forming units (CFU)/mL. Further-
more, in the control experiment, the viability of (i) the E. coli solution was set to 100%.
Viabilities of (ii) E. coli + Hb, (iii) E. coli + Hb + kanamycin, (iv) E. coli + Hb + derived Hp,
and (v) E. coli + Hb + d-Hp-AuNCs were separately calculated to be 160%, 0.028%, 26%,
and 0%. According to the results of agar plate counts, d-Hp-AuNCs exhibited outstanding
antibacterial activity against E. coli. Overall, with the surface modification of the derived
Hp peptide, the outstanding antibacterial activity of d-Hp-AuNCs was attributed to the
synergistic effect of the derived Hp peptide and the ultra-small size.
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Figure 5. Photographs of the growth of Escherichia coli in five different bacterial solutions, including
(i) E. coli, (ii) E. coli + hemoglobin (Hb), (iii) E. coli + Hb + kanamycin, (iv) E. coli + Hb + derived
haptoglobin (d-Hp), and (v) E. coli + Hb + d-Hp-gold nanoclusters (AuNCs).

3.4. ROS Generation by D-Hp-AuNCs

A DCFDA assay was utilized to further investigate ROS generation by bacteria. Relative
ROS levels of the four bacterial solutions of (i) E. coli, (ii) E. coli + Hb, (iii) E. coli + Hb + derived
Hp, and (iv) E. coli + Hb + d-Hp-AuNCs were, respectively, 1.00-, 7.22-, 8.07-, and 36.53-fold
higher, as shown in Figure 6. For solutions of (ii) E. coli + Hb and (iii) E. coli + Hb + derived
Hp, there was only slight ROS production, corresponding to their bacterial growth curves.
However, with incubation of Hb and d-Hp-AuNCs, the solution of E. coli exhibited re-
markable ROS production. ROS generation induced by d-Hp-AuNCs can be attributed to
the ultra-small size of the AuNCs because of better interactions with bacteria. With better
interactions, ultra-small AuNCs could easily penetrate into bacteria, resulting in increased
ROS that eventually killed the bacteria. Overall, the results of ROS measurements indicated
that ultra-small d-Hp-AuNCs with superior antibacterial activity revealed great potential
as a nanoantibiotic to treat bacteremia in the near future.
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Figure 6. ROS levels measured with various solutions, including (i) Escherichia coli,
(ii) E. coli + hemoglobin (Hb), (iii) E. coli + Hb + derived haptoglobin (d-Hp), and
(iv) E. coli + Hb + d-Hp-gold nanoclusters (AuNCs). For the control, the ROS level of E. coli
was set to 1.0. The results are presented as the mean ± SD of n = 4 independent experiments.
Asterisks indicate significant differences (*** p < 0.001). *** p < 0.001 compared to E. coli.

4. Conclusions

The derived Hp peptide was utilized as a surface ligand to synthesize d-Hp-AuNCs
by a hydrothermal approach. The structural and optical characterizations, including TEM
images, HR-TEM images, EDX analysis, UV-Vis spectra, XPS spectra, fluorescence spectra,
and FTIR spectra, demonstrated the successful preparation of d-Hp-AuNCs. Bacterial
growth curves, agar plate counts, and ROS production were investigated to demonstrate
the antibacterial activity and mechanisms of d-Hp-AuNCs against E. coli cultured with
Hb. The antibacterial activity of d-Hp-AuNCs was confirmed because the derived Hp
peptide on the surface of the d-Hp-AuNCs was conjugated with Hb to inhibit the growth
of E. coli, and the ultra-small d-Hp-AuNCs induced ROS generation to cause the death of
E. coli [63]. Furthermore, smaller d-Hp-AuNCs (average size of ~3.6 nm) induced higher
ROS production compared to that of bigger cysteine-conjugated gold nanoclusters (average
size of ~4.1 nm) [51]. Based on the synergistic effect of the surface ligand of the derived
Hp peptide and ultra-small size, the d-Hp-AuNCs exhibited excellent antibacterial activity
against bacteremia. Our findings demonstrated that d-Hp-AuNCs could be developed as a
potential nanoantibiotic for combating bacteremia.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12203596/s1, Figure S1. The plasmid map of pUC57-Amp
vector. Figure S2. The SDS-PAGE showed the fraction of purified MFP. Figure S3. The 3D structure of
the derived Hp peptide.
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