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Abstract: Synthesis of copper oxide (CuO) nanostructures via biological approach has gained atten-
tion to reduce the harmful effects of chemical synthesis. The CuO nanostructures were synthesized
through a green approach using the Garcinia mangostana L. leaf extract and copper (II) nitrate tri-
hydrate as a precursor at varying calcination temperatures (200–600 ◦C). The effect of calcination
temperatures on the structural, morphological and optical properties of CuO nanostructures was
studied. The red shifting of the green-synthesized CuO nanoparticles’ absorption peak was observed
in UV-visible spectrum, and the optical energy bandgap was found to decrease from 3.41 eV to
3.19 eV as the calcination temperatures increased. The PL analysis shown that synthesized CuO NPs
calcinated at 500 ◦C has the maximum charge carriers separation. A peak located at 504–536 cm−1

was shown in FTIR spectrum that indicated the presence of a copper-oxygen vibration band and
become sharper and more intense when increasing the calcination temperature. The XRD studies
revealed that the CuO nanoparticles’ crystalline size was found to increase from 12.78 nm to 28.17 nm,
and dislocation density decreased from 61.26 × 1014 cm−1 to 12.60 × 1014 cm−1, while micro strain
decreased from 3.40 × 10−4 to 1.26 × 10–4. From the XPS measurement, only CuO single phase
without impurities was detected for the green-mediated NPs calcinated at 500 ◦C. The morphologies
of CuO nanostructures were examined using FESEM and became more spherical in shape at elevated
calcination temperature. More or less spherical nanostructure of green-mediated CuO calcinated at
500 ◦C were also observed using TEM. The purity of the green-synthesized CuO nanoparticles was
evaluated by EDX analysis, and results showed that increasing calcination temperature increases the
purity of CuO nanoparticles.

Keywords: calcination; copper oxide; Garcinia mangostana L.; green synthesis; nanoparticles

1. Introduction

Semiconductor metal oxide nanostructures, such as zinc oxide, titanium dioxide,
nickel oxide, copper oxide (CuO) etc. play a vital role in various areas [1–3]. They are the
building blocks of next generation technology with many industrial sectors as they have

Nanomaterials 2022, 12, 3589. https://doi.org/10.3390/nano12203589 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12203589
https://doi.org/10.3390/nano12203589
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0001-8669-1479
https://orcid.org/0000-0002-7891-6321
https://orcid.org/0000-0002-7274-8283
https://doi.org/10.3390/nano12203589
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12203589?type=check_update&version=2


Nanomaterials 2022, 12, 3589 2 of 19

wide range of morphology, size and structures with unique physicochemical and biological
properties [4,5]. Compared to pure metal, metal oxide is more complex as it has bonding
varying from nearly ionic to highly covalent and even metallic bond in nature; it comes
in different forms with each posing unique compositions, morphologies, structures and
physicochemical properties [6]. Different from their bulk form, nanoparticles (NPs) are able
to provide a new and promising solution, using their unique features as they have high
surface area-to-volume ratio with unique physicochemical properties [7–12] widely applied
in electronic and solar energy devices, medicinal, environmental remediation, consumer
products and catalysis [13–17]. Among the metal oxide NPs, synthesis of CuO NPs are
promising as they are cheaper than other Nobel metals [18,19] and can be easily mixed
with polymers due to their stability [20]. They are a p-type semiconductor in monoclinic
structure with the narrow bandgap of 1.2–2.0 eV [21,22]. The CuO NPs exhibit excellent
electrical, optical, magnetic phase, antioxidant and antimicrobial properties [2,3,20], which
is useful in anti-cancer, biomedical imaging, drug and cellular deliveries, wound healing,
and disease treatment, and they act as a heterogeneous catalysis [3,18,23,24]. In recent
development, CuO NPs have great potential in various field of applications, which include
advanced photocatalytic processes [25], environmental and energy conversion [26], green
production of hydrogen, photoelectrochemical water splitting [27], organic pollutants’
photodegradation, generation of solar fuel and photovoltaic devices [28].

The conventional methods in synthesizing CuO NPs include vapor deposition, thermal
deposition, radiolysis reduction, thermal decomposition, chemical reduction, hydrother-
mal, chemical precipitation, solid-state thermal conversion of precursors, electrochemical
method, microwave irradiation, sol-gel method, microemulsion, sonochemical process
and other combining methods [21,23]; these have been reported by researchers and have
resulted in different morphologies, compositions and sizes [14,15,17,29]. Compared with
physical and chemical synthesis which have low materials conversion and reaction rates,
require high energy, are tedious, non-ecofriendly, technically complex, extremely costly
and trendier [6,20,30,31] in process, green synthesis offers a lower-cost, more eco-friendly,
simpler, lower energy consuming and minimal chemical using [32–36] way to synthesis
NPs. The green-synthesized NPs have longer lifespan compared to conventionally syn-
thesized NPs and can be scaled up easily [20,32,37,38], offering interesting applications in
biomedical and related fields [14,15,39]. Green mediated approaches towards the synthe-
sis of CuO nanomaterials by using Aloe barbadensis (leaf) [2], Carica papaya L. (peel) [22],
Stachys lavandulifolia [40], Muntingia calabura (leaf) [41], Cedrus deodara [42] and Bougainvillea
(flower) [43] were reported recently. The literature survey unveils that there is no report
existing on the green synthesis of cupric oxide nanostructures using the plant Garcinia
mangostana L. Morphology, composition, size, shape and the presence of capping agents
in NPs produced are the main challenges in green synthesis as those factors control the
NPs’ application in industrial and biomedical purposes [32,44]. Consequently, numerous
processing routes should be studied which include the precursors concentrations, reac-
tion conditions (plant extract concentrations, calcination temperatures, calcination times,
solvents, etc.) to synthesis CuO NPs in controlling shapes, dimensional morphological
features, crystalline and dimensional size with different properties. However, very little is
known about the effect of calcination temperatures on morphology, composition, size and
shape of CuO nanostructures derived from plant extracts [13,23,45,46].

G. mangostana L., commonly called mangosteen, is an endemic evergreen tree species
which is native to tropical countries such as Thailand, Indonesia and Malaysia. It be-
longs to the Clusiacae family [47,48], and mangosteen has been described as the “fruit
queen” due to its incomparable flavor and aroma [49–51]. The mangosteen contains large
amounts of phenolics and antioxidants [52–55]. Mangosteen leaves especially contain
large amounts of 1,5,8-trihydroxy-3-methoxy-2-(3-methylbut-2-enyl) xanthone and 1, 6-
dihydroxy-3-methoxy-2-(3-methyl-2-buthenyl)-xanthone [56]. Therefore, mangosteen is
reported as having various different medical benefits, such as antioxidant, antifungal, anti-
inflammatory, antibacterial, anti-tumor, anti-diabetic, anti-plasmodial, immunity increas-
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ing, hepatoprotective functioning, anti-cancer, anti-allergic and anti-leukemic [53–55,57,58]
properties. The presence of polyphenolic compounds plays an important role in capping,
stabilizing and reducing agents in green synthesizing NPs. Herein, we describe a facile and
environmentally benign approach for the synthesis of CuO nanoparticles using aqueous
extract of G. mangostana (mangosteen) leaf as a reducing agent as well as a capping agent.
The effect of the calcination temperature (200 ◦C, 300 ◦C, 400 ◦C, 500 ◦C and 600 ◦C) on
the structure, morphology and optical properties of the green-synthesized CuO NPs was
investigated.

2. Materials and Methods
2.1. Materials

The mangosteen leaves were collected from a neighborhood in Kampar, Malaysia.
Copper (II) nitrate trihydrate [Cu(NO3)2.3H2O] was purchased from HmbG (Hamburg,
Germany) and used without further purification. All glassware was washed with deionized
water and dried in an oven before use.

2.2. Preparation of Mangosteen Leaf Extract

Freshly plucked mangosteen leaves were washed several times with tap water to expel
debris and particulate and allowed to dry in an oven at 60 ◦C for 72 h. Once dried, the
leaves were ground into fine powder using a grinder. Then, approximately 5 g of powder
was added to 100 mL of deionized water and allowed to heat at 80 ◦C for 20 min. Upon
cooling, leaf extract was filtered through vacuum filtration and reddish-brown filtrate was
collected in a 100 mL beaker and immediately used for the synthesis of CuO NPs.

2.3. Synthesis of CuO NPs

For the synthesis of CuO NPs, initially, 30 mL of the freshly prepared mangosteen
leaf extract was heated and stirred at 70–80 ◦C. Later, 2 g of Cu(NO3)2·3H2O was gradu-
ally added into the hot leaf extract, and a greenish-brown colored solution was formed
immediately and was continually heated at 70–80 ◦C with constant string until the for-
mation of a dark-brown paste. Subsequently, the dark-brown paste was cooled to room
temperature, transferred to a ceramic crucible and calcinated at different temperatures
(200, 300, 400, 500 and 600 ◦C) for 2 h using a temperature-controlled muffle furnace to
obtain a fine black powder of CuO. Scheme 1 illustrates mangosteen (Garcinia mangostana
L.) leaf extract-mediated green synthesis of CuO nanostructures at different calcination
temperatures.
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Nanomaterials 2022, 12, 3589 4 of 19

2.4. Characterization of Synthesized CuO NPs

Structural and morphological characterization of as-synthesized CuO NPs were an-
alyzed by various analytical techniques. The absorption spectra were recorded by an
UV−visible Spectrophotometer (Thermo Scientific GENESYS 10S). The recombination of
electron-hole pairs of the synthesized samples was investigated using photoluminance
spectroscopy (Perkin Elmer LS 55 Fluorescence Spectrometer, Waltham, MA, USA) with
excitation wavelength at 350 nm in the range 350–600 nm. FTIR studies were carried
out at room temperature in the range of 400−4000 cm−1 with resolution of 4 cm−1 by
using KBr pellets in a Perkin Elmer RX1 spectrophotometer. The X-ray powder diffraction
patterns were taken in reflection mode with Cu Kα (λ = 1.5406 Å) radiation in the 2θ range
from 10◦ to 80◦ by using a Shimadzu XRD 6000 (Kyoto, Japan) X-ray diffractometer by
continuous scanning which was operated at 40 kV/30 mA and 0.02 min−1. The X-ray pho-
toelectron spectra was obtained using Perkin Elmer PHI5600 (ULVAC-PHI, Inc, Waltham,
MA, USA). A FESEM [JEOL JSM-6710F, Kyoto, Japan combined with energy dispersive
X-ray analyzer (X-max, 150 Oxford Instruments)] and HRTEM (JEOL JEM-3010) were used
for morphological, microstructural and elemental compositional analysis of synthesized
CuO NPs.

3. Results and Discussion
3.1. Optical Analysis

Figure 1 depicts the UV-Vis spectrum of the synthesized CuO NPs at different calcina-
tion temperatures with mangosteen leaf extract and copper salt. Meanwhile, Figures 2 and 3
show the PL spectrum and energy bandgap, respectively, of synthesized CuO NPs at varied
calcination temperatures. The formation of a broad absorption peak of mangosteen leaf
aqueous extract was observed at 439 nm due to the π→ π* transition of phytochemicals,
whereas 295 nm for copper nitrate. During the synthesis of CuO NPs, the leaf extract color
change from light-brown to dark brown was observed after adding copper salt, indicating
the reduction of Cu2+ to CuO with the presence of phytochemicals in the mangosteen
leaf extract. Similar observations were reported from green to dark brown and bluish to
dark green in green synthesizing CuO NPs using Cedrus deodara leaf [42] and Bougainvillea
flower [43] extracts. The color changes before and after green synthesis of CuO NPs were
due to the surface plasmon resonance (SPR) [59–61]. The presence of phytochemicals in
plant extract generates the electrons and causes the reduction of copper salt and conversion
into CuO NPs [3]. As a result, the SPR resulted from the electron resonant oscillating at
the conduction band initiated by incident electromagnetic radiation [2,22,40,41] at specific
wavelength [62]. Thus, the absorption peak at 344–522 nm from the current study indicates
the formation of CuO NPs.
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The recombination of photogenerated electron-hole pairs of the samples was investi-
gated using PL. The PL spectrum of the samples shows a peak centered around 390 nm
which corresponds to band-edge emission [63]. This value coincides with previously re-
ported literature on copper oxide nanoparticles [64]. High intensity of PL indicates great
recombination of charge carriers, but low PL intensity suggests the maximum charge
carriers separation which is useful in photodegradation [65]. A calcination temperature-
dependent shift of the absorption peak was observed following the increase in calcination
temperature in synthesizing CuO NPs. A red shift of the absorption peak was observed
with increasing calcination temperature, suggesting the aggregation and larger size of
NPs formed at higher calcination temperature with lesser strain [66,67]. The red shift of
the absorption peak might be attributed to the capability donation of free electrons to
the copper vacant orbital facilitated by the electron transition [68] at higher calcination
temperature and resulting in a lower energy bandgap [44,66]. The broad peak extending
from 259–462 nm suggests that the distribution of particle size is large [7]. The broadest
absorption peaks were observed for synthesized CuO NPs calcinated at 600 ◦C, represent-
ing polydispersion [69] of NPs and indicating the NPs production was in various sizes [8].
Thus, the optical properties of synthesized CuO NPs are greatly affected by the temperature,
size and morphology [14].

Table 1 shows the relationship between energy bandgap (Eg) and calcination tempera-
ture. The CuO is known to be a direct-allowed semiconductor [70]. The energy band gap of
synthesized CuO NPs was expressed in eV and calculated using Tauc’s approach with the
following formula:

αhv = A
(
hv− Eg

)n (1)

where, h is Planks constant (6.626× 10−34 Js), n is exponential factor for electronic transition
(n = 1

2 , for indirect band, n = 2, for direct band) and α is absorption coefficient. Lower energy
bandgap at higher calcination temperature might be due to the interaction in xanthones’
functional group of mangosteen leaf extract with precursors in co-precipitation of CuO
NPs that resulted in increasing crystallinity. The increase in crystallinity is reported to
increase the energy of the electron and reduce the energy bandgap [23,71]. This phenomena
is called as quantum size effect [21]. The reduction in energy bandgap with increasing
calcination temperature is also due to the presence of surface dangling bonds surrounding
the crystallites. Under heating treatment, crystallization takes place and results in dangling
bonds. The crystallites break down under higher calcination temperature and cause the
increase in the number of surface dangling bonds. As a result, concentration of localized
states in the band structure and width increases gradually, thereby reducing the energy
bandgap [66]. Both reasons are proven by the red shifting of the absorption peak [63,64] and,
subsequently, the energy bandgap was reduced with the increasing calcination temperature.
The lower and decreasing trend of the energy bandgap was reported in Fumaria indica
extract mediated-CuO NPs at elevated calcination temperature (100, 300, 600 and 900 ◦C)
for 2 h [23].

Table 1. Relationship between energy bandgap and calcination temperature.

Calcination Temperature (◦C) Energy Bandgap (eV)

200 3.41
300 3.28
400 3.24
500 3.19
600 3.19

3.2. FTIR Analysis and Functional Groups Determination

FTIR spectra were recorded to determine the potential functional groups of phytochem-
icals in mangosteen leaf extract that are responsible for the formation of CuO nanostructures
and shown in Table 2. Figure 4 shows the FTIR spectra of mangosteen leaf extract and
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CuO nanostructures calcinated at different temperatures. Compared with mangosteen
leaf extract, most of the peaks were disappeared in synthesized CuO NPs, which included
2929, 1731, 1526, 1444, 1314, 1284 and 1246 cm−1 (Table 2 and Figure 3). The disappearance
of peaks in synthesized CuO NPs might be due to the fact that the phytochemicals are
mainly responsible for reducing the copper ions [32,72]. This might also be applied for
the less intense 1384 cm-1 peak for the synthesized CuO NPs calcinated under 500 ◦C. In
addition, some of the peaks were slightly shifted in synthesized CuO NPs. Compared with
mangosteen leaf extract, the peak at 3410 cm−1 was shifted to 3400–3436 cm−1, 1619 cm−1

was shifted to 1617–1636 cm−1, 1375 cm−1 was shifted to 1384 cm−1, 1203–1105 cm−1 were
shifted to 1192–1096 cm−1 and 1062 cm−1 was shifted to 1046–1048 cm−1, respectively,
in synthesized CuO NPs. The shifting of peaks indicate the involvement of mangosteen
leaf extract phytochemicals in reducing, capping and stabilizing agents [32,54,66,73,74] in
synthesized CuO NPs through electrostatic and steric stabilization [75]. Meanwhile, the
peaks remain unchanged, showing the suggested phytochemicals functional groups were
responsible for stabilizing NPs [32]. The presence of the peculiar peak at 2300–2350 cm−1 in
sample S2 might be due to the contamination from phytochemicals on the synthesized CuO
NPs surface calcinated at low calcination temperature. Nevertheless, a sharp and intense
peak located at 504–536 cm−1 only appeared in synthesized CuO NPs at higher calcina-
tion temperatures, indicating the presence of copper-oxygen bond vibration as reported
between 420–613 cm−1 in other studies [2,18,22,24,40–43]. The absorption peak of metal
oxides and hydroxides NPs are commonly located at the fingerprint region (wavenumber
below 1000 cm−1) due to interatomic vibrations [76]. Slight changes in Cu-O bond vibra-
tion at different calcination temperature are caused by the interaction with plant extract
functional groups [8].

Table 2. FTIR peak assignment of CuO nanostructures calcinated at different temperatures and
mangosteen leaf extract.

Mangosteen
Leaf Extract 200 ◦C 300 ◦C 400 ◦C 500 ◦C 600 ◦C

Functional Groups
Peaks (cm−1) Peaks (cm−1) Peaks (cm−1) Peaks (cm−1) Peaks (cm−1) Peaks (cm−1)

3410 3436 3435 3412 3434 3400 O-H stretching; N-H
stretching

2929 - - - - - C-H stretching sp3, O-H
stretching

1731 - - - - - C=O stretching

1619 1628 1633 1636, 1617 1634 1633 C=O stretching; C=C
vibration; N-H bend

1526 - - - - - C-C aromatics bond

1444 1422 - - - - CH2- bending; C-C
aromatics stretching

1375 1384 1384 1384 1384 -
C-C aromatic stretching;

N-O symmetric
stretching

1314 1317 - - - - -CH3 bending

1284 - - - - -
C-O-C stretching; C-O

stretching; C-OH
vibration

1246, 1203, 1158,
1105 1111 1190, 1126,

1096
1192, 1138,
1124, 1098 1099 1192, 1097 C-O-C stretching; C-O

stretching
1062 1046 - - - 1048 C-O ester

- 504 536 536 538 536 Cu-O bond vibration
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S3 = CuO NPs calcinated at 300 ◦C, S4 = CuO NPs calcinated at 400 ◦C, S5 = CuO NPs calcinated at
500 ◦C and S6 = CuO NPs calcinated at 600 ◦C.

3.3. Crystalline and Structural Analysis

Table 3 shows the unit cells, crystalline size, dislocation density and micro strain,
while Figure 5 shows the XRD patterns, respectively, for synthesized CuO NPs calcinated at
different temperatures. The synthesized CuO NPs were in in good agreement with ICDD 00-
045-0937. All synthesized CuO NPs were in monoclinic system which are reported in other
studies [18,22,23,40,42]. The C2/c space group in all synthesized CuO NPs were the same
as reported in the Joya et al. study in chemically synthesized CuO NPs calcinated at 650 and
800 ◦C [77]. The tenorite phase was only observed in all synthesized CuO NPs in the current
study. Tenorite is a CuO mineral that consists of copper and oxygen. Pure tenorite can be
obtained by calcining the copper minerals at high temperature [78]. However, it was only
observed in chemically synthesized CuO NPs calcinated at 550 and 1000 ◦C in the Habibi
and Karimi [70] and Ratnawulan et al. [78] studies, respectively. The well-defined, high-
intensity and narrower diffraction peaks indicated the synthesized CuO NPs were well-
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crystalline [18,22,24] as the organic materials are removed during the calcination process
in improving the crystallinity [79]. More distinct XRD peaks without any impurity peaks
show the purity of synthesized CuO NPs [41] with increasing calcination temperatures [80]
due to the decomposition of impurities [81]. This phenomena also indicates the increase
in crystalline size at higher calcination temperature [80]. The intensities of (002) and (111)
peaks were stronger than other peaks, showing that they are the preferential crystal planes
of NPs [67]. The crystalline size was calculated using Debye-Scherrer’s formula:

D =
0.94λ

βcosθ
(2)

where, D is the crystalline size of NPs, λ is X-ray wavelength, β is full width half maximum
(FWHM) of the peak and θ is Bragg angle. The crystalline size of synthesized CuO NPs in-
creased from 12.78 to 28.17 nm with increasing calcination temperatures due to the tendency
for minimization of the interfacial surface energy [80]. Additionally, the diffusion atoms
were increased at elevated calcination temperature. The increase in atom diffusion resulted
in the increasing formation of nuclei with the grain boundary separated by pores. When
the calcination temperature constantly increased, the grain boundary disappeared, and the
crystalline size increased [67,78]. Also, the agglomeration, re-crystallization, aggregation
and growth of particles at higher temperature are the reasons for the increase in crystalline
size at elevated calcination temperature [17,66]. This suggests that the stability of crystals
was improved at higher calcination temperatures [23] and shows a strong relationship
between average crystalline size of CuO NPs with calcination temperatures [80]. The
above-mentioned result was similar reported synthesized CuO NPs in other studies with
increasing calcination temperature, either using chemical [77] or green synthesis [13,23,46].
The dislocation density of the synthesized CuO NPs was calculated as follows:

δ =
1

D2 (3)

where, δ is dislocation density of NPs, and D is NPs crystalline size. The dislocation density
was found higher at lower calcinated CuO NPs as the number of interfaces in a given
volume was greater with smaller crystalline size. The same trend was reported in the
Kayani et al. study in chemically synthesized CuO NPs calcinated at 400 and 1000 ◦C [82].
The micro strain of the synthesized CuO NPs was calculated as follow:

ε =
βcosθ

4
(4)

where, ε is the micro strain of NPs, β is FWHM of the peak and θ is Bragg angle. The micro
strain is able to give information about the defects present in the lattice. Lower micro strain
was reported at higher calcinated CuO NPs due to more defects being removed at elevated
calcination temperature [66].

Table 3. Unit cells, crystalline size, dislocation density and micro strain of G. mangostana L. leaf
extract-mediated synthesized CuO calcinated at different temperatures.

Calcination
Temperature

(◦C)

Unit Cells Average
Crystalline Size

(nm)

Dislocation
Density

(1014 cm−1)

Micro Strain
(10−4)a

(Å)
b

(Å)
c

(Å)
β

(o)

200 4.6797 3.4314 5.1362 99.262 12.78 61.26 3.40
300 4.6797 3.4314 5.1362 99.262 14.04 50.70 2.64
400 4.6820 3.4240 5.1270 99.420 18.32 29.80 1.97
500 4.6853 3.4257 5.1303 99.549 19.88 25.31 1.82
600 4.6900 3.4200 5.1310 99.540 28.17 12.60 1.26
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The purity and chemical composition of the mangosteen leaf extract mediated-CuO
NPs calcinated at 500 ◦C was investigated by XPS and shown in Figure 6. As the high-
resolution XPS spectrum shows in Figure 6b, the Cu 2p core level shows two peaks at
933.56 and 953.81 eV and indicates the detection of Cu 2p3/2 and Cu 2p1/2, respectively,
which correlate to Cu2+ valency state. The 20.25 eV difference of both peaks matches with
other CuO NPs. The appearance of both satellite peaks confirms the presence of the d9

Cu2+ fingerprint caused by the relaxation circumstance of the strong alignment interaction
in the final state. The remaining peaks located at higher binding energy (941.81, 943.43
and 962.43 eV) than main spin-orbital components reveal the shake-up satellites of Cu2+

peaks. The high-resolution XPS spectrum of O 1s was shown in Figure 6c. The O2- in
Cu-O bonding was located at lower binding energy (529.43 eV) compared to adsorbed O
(531.18 eV) on the CuO surface. From the XPS measurement, therefore, the presence of
Cu2O and Cu(OH)2 were excluded in the green-synthesized CuO NPs calcinated at 500 ◦C,
as there would be no satellite peaks for Cu 2p3/2 and Cu 2p1/2 of Cu2+ [22,41]. Overall, the
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XPS measurement confirms the mangosteen leaf extract-mediated CuO NPs calcinated at
500 ◦C are in single phase without the presence of impurities.
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3.4. Morphologies and Elemental Analysis

Figure 7 shows the morphologies of G. mangostana L. leaf extract-mediated synthesized
CuO NPs at different calcination temperatures. FESEM images confirmed the nanostructure
of synthesized CuO NPs with agglomeration. The higher the calcination temperature, the
larger the particle size [77] as the mangosteen leaf extract-mediated CuO NPs average
particle size was increased from 50.0 nm to 458.3 nm at elevated calcination temperature.
The synthesized CuO NPs were agglomerated due to high surface energy, surface area,
surface tension, surface reactivity [2,9,22,74,83,84], the viscous nature of plant extract [24],
attraction among the NPs [30,74,85] and oxidation of metal oxide NPs [42]. Isotropic
aggregation usually leads to the formation of a spherical shape, and this aggregation oc-
curs at the isoelectric point region [81]. As a result, the synthesized NPs stick strongly
together with considerable affinities to form asymmetrical clusters [84], more or less in
spherical shape with rough surface [34,81]. Thus, quasi-spherical (400 ◦C) and spherical
shapes (500 ◦C) were observed in synthesized CuO NPs. The above-mentioned observa-
tions are similar to chemically synthesized CuO NPs in other studies calcinated between
300–1000 ◦C [17,77,80], respectively. Nonetheless, mixed morphology was observed in
sonochemical synthesized CuO NPs in the Saravanan and Sivasankar study calcinated
at 400 ◦C [17]. In green synthesis, spherical CuO NPs were reported using Aerva javanica
leaf [18], Punica granatum peel (24) and Stachys lavandulifolia flower [40] extracts, respec-
tively, which were similar to the current study that synthesized CuO NPs calcinated at
500 ◦C. The formation of nanoflake CuO NPs at 200 and 300 ◦C in the current study shows
the progressively forming CuO NPs [45] when calcination temperature is increasing. The
formation of bulky particles in synthesized CuO NPs calcinated at 600 ◦C was due to the
disappearance of the grain boundary area as the growing grains were disturbing and de-
creasing the crystal surface energy during the aggregation under calcination, which caused
the pore volume to decrease, leading to compact shrinkage when calcination temperature
increases [80,81]. A similar observation was reported in chemically synthesized CuO NPs
calcinated at 700 ◦C [80]. However, fairly uniform spherical shapes were observed in the
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Fardood and Ramazani study using black tea extract to synthesis CuO NPs calcinated at
600 ◦C [45]. The agglomeration of synthesized CuO NPs at 600 ◦C might be due to the
removal of carbonized materials [86] which is supported by the Fardood and Ramazani
study using coffee powder extract to synthesize CuO NPs [13]. Thus, the SEM images
revealed that the coarsening and coalescence occurred due to the changes in calcination
temperature and resulted in NP morphology alteration [23,83]. The particle morphology,
size and shape of green-mediated CuO NPs calcinated at 500 ◦C were also determined
using TEM at different magnifications as shown in Figure 8. TEM micrographs shows
that the green-mediated CuO NPs were in spherical and quasi-spherical structure with the
particle size in the range of 15.0–50.0 nm.
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Figure 9 shows the G. mangostana L. leaf extract-mediated synthesized CuO NPs EDX
spectrums at different calcination temperatures. The strong signal with high intensity of
copper and oxygen elements shown in EDX spectrums indicates the formation of CuO
NPs. At low calcination temperatures (200, 300 and 400 ◦C), a weak signal of carbon
appeared as an impurity in the synthesized CuO NPs due to the slow reduction of attached
phytochemicals [87] as reducing, stabilizing and capping agents in green synthesizing
NPs [10,59,73,82]. Also, the presence of carbon might be caused by the contamination from
environment or substrate or adsorption of phytochemicals on the surface of NPs [19,68].
A similar result was found in the Ruda et al. study in synthesizing CuO NPs using
precipitation method calcination under 100, 250 and 400 ◦C [19]. Additionally, Siddiqi
and Husen mentioned that heating at 400 ◦C causes burning of any organic matters and
should leave only soot or carbon as impurities [20]. However, this is not a major problem
as only one or two atoms remained to show less interaction [87]. Subsequently, the weak
signal of carbon disappeared and only copper and oxygen remained at high calcination
temperatures (500 and 600 ◦C), revealing that the phytochemicals on the CuO NPs eliminate
completely as CO2, H2O or nitrogen oxide (NOx). A similar result was obtained in the
Sharma et al. and Selvanathan et al. studies using Aloe barbadensis leaf [2] and Muntingia
calabura leaf [41] extracts, respectively. The absence of impurities shows that the synthesized
CuO NPs calcinated at 500 and 600 ◦C were nearly stoichiometric [88]. All the synthesized
CuO NPs had the copper atom located at 0.90, 8.05 and 8.90 keV, respectively, while the
oxygen atom was located at 0.50 keV. Nonetheless, carbon was only found as an impurity
in synthesized CuO NPs calcinated at low calcination temperatures located at 0.25 keV.
The above-mentioned locations of copper, oxygen and carbon atoms were confirmed by
the Phang et al. and Veisi et al. studies using Carcinia papaya L. peel [22] and Stachys
lavandulifolia flower [40], respectively.



Nanomaterials 2022, 12, 3589 14 of 19Nanomaterials 2022, 12, x FOR PEER REVIEW 15 of 20 
 

 

 
Figure 9. EDX spectrums of G. mangostana L. leaf extract-mediated synthesized CuO NPs calcinated 
at (a) 200 °C, (b) 300 °C, (c) 400 °C, (d) 500 °C and (e) 600 °C. 

3.5. Comparison with Other Studies 
Table 4 shows the comparison of the current study’s green-mediated CuO NPs with 

other studies at various calcination temperature using different plant aqueous extract. 
Compared with others, the current study has the largest average particle size (50.0–458.3 
nm). This might be due to the high viscosity of mangosteen leaf aqueous extract. The en-
ergy bandgap in the current study is within 3.41–3.23 eV, which is in-between the reported 
studies. Additionally, the current study CuO NPs have the smallest average crystalline 

Figure 9. EDX spectrums of G. mangostana L. leaf extract-mediated synthesized CuO NPs calcinated
at (a) 200 ◦C, (b) 300 ◦C, (c) 400 ◦C, (d) 500 ◦C and (e) 600 ◦C.

3.5. Comparison with Other Studies

Table 4 shows the comparison of the current study’s green-mediated CuO NPs with
other studies at various calcination temperature using different plant aqueous extract. Com-
pared with others, the current study has the largest average particle size (50.0–458.3 nm).
This might be due to the high viscosity of mangosteen leaf aqueous extract. The energy
bandgap in the current study is within 3.41–3.23 eV, which is in-between the reported
studies. Additionally, the current study CuO NPs have the smallest average crystalline size
(12.78–28.17 nm) compared to other studies. This shows that the phytochemical content in
mangsoteen leaf aqueous extract has better capability in capping and stabilizing CuO NPs
crystalline in nano-range.
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Table 4. Comparison of plant-mediated CuO NPs at different calcination temperatures with
other studies.

Plant Extract
Calcination

Temperature
(◦C)

Energy
Bandgap

(eV)

Average
Crystalline
Size (nm)

Average
Particle Size

(nm)
Morphology References

Coffee powder 500, 600, 700,
800 - 24.72–35.65 24.72–35.65

Fairly uniform shape
with narrow size

distribution
[13]

Fumaria indica 100, 300, 600,
900 1.82–1.46 14.90–79.29 24.59–58.92

Cracking of cluster and
forming flake at

elevated calcination
temperature

[23]

Commercial black
tea powder

500, 600, 700,
800 N/A1 22.30–38.70 22.3–38.7

Fairly uniform shape
with narrow size

distribution
[42]

Prunus amygdalus
pericarp 400, 500, 600 4.59 11.76 -

More spherical at
elevated calcination

temperature
[43]

G. mangostana L.
leaf

200, 300, 400,
500, 600 3.41–3.23 12.78–28.17 50.0–458.3

More spherical and
larger size at elevated

calcination
temperature

Current
study

4. Conclusions

The CuO nanostructures were successfully synthesized using G. mangostana L. leaf
extract and the effect of calcination temperature on the morphology, crystalline size, pu-
rity and optical properties of these nanostructures was investigated. Red shifting of the
absorption peak and decreasing in the energy bandgap of synthesized CuO NPs indicate
larger particle size was formed with increasing calcination temperature. The PL spectrum
shows that the mangosteen leaf aqueous extract-mediated CuO NPs have the greatest
charge carriers separation calcinated at 500 ◦C. The phytochemicals of G. mangostana L.
leaf extract involved in reducing, capping and stabilizing CuO NPs were shown in FTIR
spectrum. The sharper and more intense peak located at 504–536 cm−1 at elevated cal-
cination temperature indicates the presence of the copper-oxygen vibration bond. The
XRD patterns showed the tenorite phase, monoclinic system and C2/c space group in all
synthesized CuO NPs. The increase in calcination temperature increased the sharpness
and intensity of the XRD diffraction peaks, revealing that the increase in crystalline size
from 12.78 to 28.17 nm resulted in the decrement in dislocation density and micro strain.
Through XPS measurement, the mangosteen leaf extract-mediated CuO NPs calcinated at
500 ◦C is confirmed in single phase without the presence of impurities. Although calcinated
at different temperatures, the synthesized CuO NPs were more or less in spherical in
structure as observed in FESEM micrographs which is similar with the observation found
in TEM micrographs for green-synthesized CuO NPs calcinated at 500 ◦C. The presence
of copper and oxygen elements was confirmed by EDX while the carbon element only
appeared as impurity at lower calcinated CuO NPs. Conclusively, calcination temperatures
strongly influenced the crystalline size, morphology, purity, and optical properties of G.
mangostana L. leaf extract-mediated synthesized CuO nanostructures which may influence
their performance in various applications such as a photocatalyst in wastewater treatment,
antimicrobial agent in healthcare and so on.
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