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Abstract: Organic surfactants have been utilized with different nanoparticles in enhanced oil recovery
(EOR) operations due to the synergic mechanisms of nanofluid stabilization, wettability alteration,
and oil-water interfacial tension reduction. However, investment and environmental issues are the
main concerns to make the operation more practical. The present study introduces a natural and
cost-effective surfactant named Azarboo for modifying the surface traits of silica nanoparticles for
more efficient EOR. Surface-modified nanoparticles were synthesized by conjugating negatively
charged Azarboo surfactant on positively charged amino-treated silica nanoparticles. The effect of the
hybrid application of the natural surfactant and amine-modified silica nanoparticles was investigated
by analysis of wettability alteration. Amine-surfactant-functionalized silica nanoparticles were found
to be more effective than typical nanoparticles. Amott cell experiments showed maximum imbibition
oil recovery after nine days of treatment with amine-surfactant-modified nanoparticles and fifteen
days of treatment with amine-modified nanoparticles. This finding confirmed the superior potential
of amine-surfactant-modified silica nanoparticles compared to amine-modified silica nanoparticles.
Modeling showed that amine surfactant-treated SiO2 could change wettability from strongly oil-wet
to almost strongly water-wet. In the case of amine-treated silica nanoparticles, a strongly water-wet
condition was not achieved. Oil displacement experiments confirmed the better performance of amine-
surfactant-treated SiO2 nanoparticles compared to amine-treated SiO2 by improving oil recovery by 15%.
Overall, a synergistic effect between Azarboo surfactant and amine-modified silica nanoparticles led to
wettability alteration and higher oil recovery.

Keywords: natural surfactant; nanoparticles; spontaneous imbibition; mathematical modeling;
enhanced oil recovery

1. Introduction

Oil recoveries have declined in many oil fields worldwide [1]. Different chemical and
physical techniques have improved oil recovery [2,3]. Wettability alteration is an effective
mechanism that results in higher oil recovery [4,5]. Nanoparticles are proposed as efficient
wettability modifiers during oil extraction [6]. Destabilization under harsh conditions of
reservoirs has led researchers to modify nanoparticles with different surfactant agents [7].

Even though the role of surfactants in oil reservoirs is mainly to modify the wetting
condition of oil-wet rocks and reduce the interfacial tension (IFT), they can also disperse
or stabilize nanoparticles [8]. Nwidee et al. [9] showed that the functional ZrO2 nanopar-
ticles facilitated wettability alteration by adsorption on the rock surface, confirmed by
microscopic images and contact angle measurements. Imbibition tests revealed a fast water
imbibition process for the rock samples coated with the surfactant-modified nanofluid. Rezk
and Allam [10] unveiled the synergetic effect of sodium dodecylbenzene sulfonate (SDBS)
anionic surfactant and zinc oxide (ZnO) nanoparticles on interfacial tension, wettability,

Nanomaterials 2022, 12, 3563. https://doi.org/10.3390/nano12203563 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12203563
https://doi.org/10.3390/nano12203563
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0003-2295-0616
https://orcid.org/0000-0003-4600-6670
https://doi.org/10.3390/nano12203563
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12203563?type=check_update&version=1


Nanomaterials 2022, 12, 3563 2 of 19

and oil productivity. A remarkable decrease in the interfacial tension was observed upon
adding ZnO nanoparticles into the surfactant solution and attributed to the nanoparticles’
low polydispersity and uniformity. The ZnO-based nanofluid, overcoming the capillary
pressure, altered wettability to further water wet state and improved oil recovery by 8%.
Zhao et al. [11] combined a nonionic surfactant and SiO2 nanoparticles for EOR applica-
tions. Imbibition studies showed higher oil recovery than the standalone application of
nanofluid or surfactant. Soleimani et al. [12] synthesized ZnO nanoparticles via the sol-gel
method and dispersed them in the aqueous phase using sodium dodecyl sulfate (SDS).
The highest oil recovery was observed at 3000 ppm ZnO due to interfacial tension and
wettability alteration. Divandari et al. [13] coated magnetic nanoparticles with a surfactant
and proved better wettability alteration and lower precipitation.

Cetyltrimethylammonium bromide (CTAB) is a typical cationic surfactant with long-
chain carbons, which bears positive charges on the polar portion of fluids [14]. Ma et al. [15]
studied surface modification of silica nanoparticles with CTAB nanoparticles at different
temperatures and concentrations. Due to the positive charges of CTAB and negative charges
of SiO2, the CTAB could be absorbed on the surface of nanoparticles and improve the
dispersal state of the nanoparticles. Using sand column experiments, Liu et al. [16] observed
better transport and retention of graphene oxide nanosheets dispersed in CTAB and SDBS.
Panahpoori et al. [17] improved CTAB foam stability at harsh reservoir conditions using
TiO2 nanoparticles. Pereira et al. [18] modified the surface of Fe3O4 nanoparticles using
CTAB. The resultant nanoparticles were stable even in divalent cations and more capable
of altering the rock wettability. Joshi et al. [19] investigated using SiO2 with polymers
and CTAB surfactants to increase the oil recovery from oil reservoirs. The stability of
nanofluids was improved when surfactant agents were utilized. Synergistic effects of
polymer, nanoparticle, and surfactant contributed to IFT reduction, wettability alteration,
and viscosity enhancement. Hethnawi et al. [20] studied the interfacial behavior of CTAB-
grafted faujasite-based nanoparticles under various conditions. The developed nanofluid
showed a considerable improvement in IFT and viscoelasticity.

The published EOR studies have focused on nanofluids combined with synthetic
surfactants like CTAB, SDBS, and SDS, which are known to be toxic aquatic organisms [21].
Recent international regulations prohibit using non-biodegradable and toxic chemicals [22],
which contributes to phasing out some surfactant agents. To address this challenge, re-
searchers’ focus has shifted to new non-toxic alternatives for petrochemical surfactants.
Nowrouzi et al. [23] prepared a non-petrochemical surfactant from powder leaves of
Myrtus communis, a source of natural surfactants. The surfactant increased oil recovery
by 14.3% and reduced IFT to 0.86 mN/m and had low adsorption on the rock surface.
Khayati et al. [24] found pure saponin very effective for IFT reduction and wettability
alteration to hydrophilicity. Emadi et al. [25] investigated the impact of foam generated by
Cedr extract on mobility control and introduced it as an advisable chemical agent for EOR.
Pa et al. [26] fabricated sunflower Gemini surfactants, leading to stable emulsions, ultralow
IFT, and great foamability. Traiwiriyawong et al. [27] extracted a benign surfactant from
palm kernel oil and used it in wettability studies. It showed the least adsorption compared
to commercial surfactants of SDS and CTAB.

Recently, amine molecules have been used for surface modification of nanoparti-
cles rather than chemical surfactants. Wang et al. [28] aminated SiO2 nanoparticles with
tris(hydroxymethyl)aminomethane and steric acid to increase hydrophobicity. The con-
tact angle of SiO2 was initially around 18◦ due to several hydroxyl groups on the SiO2
surface, but it increased by almost 100◦ after amination, implying high hydrophilicity of an-
imated nanoparticles. Habibi et al. [29] utilized amines and organsiloxane for homogenized
dispersibility and surface modification of SiO2 nanoparticles. The surface modification
remarkably improved wettability and surface activity, resulting in higher oil recovery in
micromodel floodings. In another study [30], aminobutanol was utilized to improve the
surface activity of SiO2 nanoparticles by amination. The reactivity of the nanoparticles was
increased and enabled them to be grafted more easily to carboxylic acids.



Nanomaterials 2022, 12, 3563 3 of 19

This study amins to aminate SiO2 nanoparticles and combine them with a new green
natural surfactant from bio-sources called Azarboo (Chooback). Hence, SiO2 nanoparticles
are first modified with positively charged amine groups to become ready to absorb Azarboo
anionic surfactant (Figure 1). The performance of this new chemical is experimentally
studied in this work. The experimental results are then analyzed using the capillary
number and validated by the analytical approach by Mattax and Kyte [31], Ma et al. [32],
and Aronofsky et al. [33].
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Figure 1. Amine and surfactant modification of silica nanoparticles using Azarboo and amine molecules.

2. Experimental Section
2.1. Materials

The natural surfactant powder of Azarboo (Chooback) was utilized in this study. This
green surfactant was extracted from hard and bony roots of Acanthophyllum, which has a
bitter taste and yellow color. Due to having hydrophilic and hydrophobic parts at the same
time, it can create thick and stable foams [34].

Hydrophilic colloidal silicon oxide nanoparticles were utilized in this investigation
with a purity of >99.9 wt.%. The mean particle size of the nanomaterials was between
5 and 15 nm. Different chemical and physical characteristics of the nanoparticles are shown
in Table 1.

Table 1. The physical and chemical properties of the silica nanoparticles.

Nanoparticle Color Shape Average Size pH Density (g/cc) Surface Area (m2/g)

SiO2 White Spherical 5–15 3.7–4.7 5 × 10−2 200

Carbonate core samples of 3.8 cm in diameter and 6.5 cm in length were utilized in
wettability alteration and core flooding experiments. Table 2 shows the properties of core
samples. Two slices with 3 mm thickness were cut from one of the core plugs and polished
to be smooth enough for contact angle experiments.

Table 2. The physical characteristics of the carbonate samples utilized in this survey.

Core No. Permeability Porosity Diameter Length Pore Volume Swir (Irreducible
Water Saturation)

1 48.3 mD 21.6% 3.82 cm 6.72 cm 16.6 cc 29.5
2 52.7 mD 19.2% 3.87 cm 6.39 cm 14.4 cc 28.3
3 54.7 mD 19.8% 3.81 cm 6.48 cm 14.6 cc 26.3
4 49.3 mD 18.5% 3.85 cm 6.53 cm 14.1 cc 30.1
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Ethanol (99%) and 3-aminopropyltriethoxysilanec (APTS) were from Merck Company
(Darmstadt, Germany). The chemical composition and properties of the degassed oil used
in this study are also listed in Table 3.

Table 3. The oil properties and composition at 14.7 psi and 60◦ F.

Chemical Properties Value

C1 0.08 mole%
C2 0.14 mole%
C3 1.48 mole%
iC4 1.06 mole%
nC4 4.65 mole%
iC5 2.69 mole%
nC5 1.29 mole%
C6 8.23 mole%
C7+ 80.38 mole%

Gravity 36.8◦ API
Density 0.823 g/cc

Viscosity 23.9 cp

2.2. Methodology
2.2.1. Amine Functionalization

Amine functionalized silica nanoparticles were prepared using the reaction of silica
nanoparticles and APTS at room temperature. 1 mL APTS was dissolved into 200 mL
ethanol in a beaker on a stirrer. Then, 10 g silica nanoparticle was added to the beaker
and sonicated for 1 h. It was followed by adding 150 mL distilled water to the mixture
and sonication for half an hour. The mixture was centrifuged under 15,000 rpm for almost
20 min, and the precipitated part was collected and washed with ethanol. Amino-modified
silica nanoparticles (Si-NH2) were obtained by gently heating the gel-like precipitation at
50 ◦C for 6 h [35].

2.2.2. Natural Surfactant Extraction and Optimization

The maceration procedure [36] was used to get the Acanthophyllum plant extract. The
bony roots of this plant were dried at ambient temperature and pulverized using an electric
mortar and pestle. Then, almost 400 g of the dried plant powder was combined with
distilled and kept in a sealed Erlenmeyer flask for at least three days. The Erlenmeyer flask
was shaken using an orbital shaker to mix the powder with water continually. The flask’s
contents were then filtrated and transferred into a digital rotary evaporator flask (DLAB)
for about five hours to obtain a dry extract powder (Figure 2).
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stirrer for 10 min. Then, electrical conductivity and IFT were measured to find the surfac-
tant’s critical micelle concentration (CMC). The IFT and conductivity values were recorded
versus concentration (Figure 3), and CMC was found at 1200 ppm. No further tests were
done beyond this threshold, as the IFT does not change after the CMC value [37,38].
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Measurements showed an almost 39% decrease in IFT (Figure 3), which confirmed a
very good influence of the natural surfactant on emulsification and IFT reduction, which is
considered as effective EOR mechanisms.

2.2.3. Surfactant/Nanofluid Preparation

It has been proven that nanoparticles can penetrate the micron-sized pores and throats
of the reservoir rocks and improve oil recovery afterward [39,40]. The nanoparticles can
unfavorably affect fluid flow in the porous media if the nanofluid concentration exceeds a
certain amount due to entrapment [41,42]. Hence, a concentration of 500 ppm of the Si-NH2
nanoparticles was selected and applied to prepare Azarboo/nanofluid. The concentration
had been introduced by extensive research for various nanoparticles [43,44]. The Azar-
boo/nanofluid was prepared by dispersing 500 ppm of the modified nanoparticles into
the surfactant solution (1200 ppm surfactant with 180,000 ppm NaCl). To better evaluate
the properties of the developed nanofluid, samples without the natural surfactant (pure
silica and Si-NH2) were also prepared. The nanofluids were softly stirred for two hours
(one hour with an ultrasonic probe and one hour inside an ultrasonic bath) at 20 kHz.
The objective was to utterly suspend the nanoparticles into the dispersion medium and
prevent aggregation.

2.2.4. Surfactant Characterizations

Fourier transform infrared (FT-IR) spectrum of Azarboo was recorded on a PerkinElmer
Spectrum™ 3 FT-IR spectrometer (Waltham, MA, USA) and compared with those of amine-
treated and surfactant-modified nanoparticles for functional analysis. The proton nuclear
magnetic resonance (H-NMR) spectroscopy was done using Bruker 500 MHz EPR (Billerica,
MA, USA), to determine the structure of Azarboo molecules. The natural surfactant was
thermally studied by thermogravimetric analysis (TGA). TGA, which was performed using
TGA-Q600 SDT (Milford, CT, USA) is a technique to detect how materials behave when
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subjected to heat. Three milligrams of natural surfactant were poured into a crucible and
heated to almost 350 ◦C at a rate of 10 ◦C/min under a nitrogen atmosphere [45].

The particle size distribution was measured using a dynamic light scattering (DLS)
instrument from Malvern Company (Worcestershire, United Kingdom). The Brunauer-
Emmett-Teller (BET) technique was utilized to measure the surface areas of silica nanopar-
ticles before and after modification through gas adsorption analysis by a Miraesi KICT-SPA
3000 Instrument (Miraesi, Korea). Scanning electron microscopy (SEM) images were cap-
tured using an electron microscope (HITACHI, model SU7000, Tokyo, Japan) to study
nanoparticles’ morphology. The average zeta potential values of the nanoparticles were
measured using a zeta potential analyzer (ZEECOM ZC2000ML Microtec Company, Brixen,
Italy) at 25 ◦C. The zeta potential values were recorded by averaging three zeta potential
measurements for each sample based on previous studies [46,47]

2.2.5. Oil-Wet Procedure

All samples were saturated and soaked in crude oil at 50 ◦C for three weeks to be
oil-wet before imbibition experiments. After aging, they were found entirely oil-wet due to
having contact angles lower than almost 150◦ and color change from gray to dark brown
(Figure 4).
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2.2.6. Spontaneous Imbibition

The spontaneous imbibition test [48] was used to assess the wetting condition of the
rocks qualitatively. Two core plugs (No. 1 and 2) with induced oleophilic wettability were
drenched in the prepared nanofluids for 24 h at room temperature. Each sample was
taken out and dried at 40 ◦C for one day. They were saturated with oil and placed inside
brine-filled Amott cells at 50 ◦C. The volume of oil expelled was measured by monitoring
the graduation of the cell [49]. Another imbibition test was conducted with an oil-wet
sample without treatment with nanofluids.

Mattax and Kyte [31] proposed a scaling group for imbibition oil recovery from
strongly water-wet systems with distinct rock and fluid characteristics as

tD = (
0.00031415

LC2

√
k
ϕ

σow√
µoµw

)t (1)

where tD is a dimensionless time, LC is a characteristic length (cm), k is permeability (mD),
ϕ is porosity, σow is oil-water interfacial tension (dyne/cm), µo is oil viscosity (cp), µw is
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water viscosity (cp), and t is the imbibition time (hr.). Ma et al. [32] developed a single-
parameter model, which was a simplified form of the Aronofsky et al. [33] model as

R
RMax

= 1− e−αtD (2)

where R is imbibition oil recovery, RMax is ultimate oil recovery by free imbibition, and α is
the decline constant of oil production.

2.2.7. Core Flooding Experiments

Displacement experiments were performed using a core flood apparatus shown in
Figure 5. Cores No. 3 and 4, previously aged to become oil-wet, were selected for this
section. The core plugs were washed and cleaned with toluene, methanol, and distilled
water using the Soxhlet extractor to remove any dirt. Then they were heated in a furnace at
almost 100 ◦C for 24 h to be dried [50]. The cores were saturated by a brine of 180,000 ppm
NaCl. Oil was injected until no additional brine was expelled from the cores and irreducible
water saturation was established. After that, the synthetic brine was flooded into the cores
to mimic the secondary oil recovery. One pore volume of pure Si-NH2 and Si-NH2 modified
with Azarboo was then injected into the core plugs as the tertiary oil recovery stage. The
injection was stopped, and the core was soaked in the nanofluids for 24 h to alter the pores’
wettability [51]. After the shut-in treatment, the cores were fully saturated with the brine
and then with the oil until the irreducible water saturation was established. This stage
aimed to monitor oil recovery after the nanofluid treatment. In the flooding tests, the
temperature was 50 ◦C, the flow rate was 0.1 cc/min, and the radial confining pressure was
almost 500 psi higher than the injection pressure.
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3. Results and Discussions
3.1. Characterization Results
3.1.1. Natural Surfactant

The functional groups and chemical compositions of the natural surfactant were
studied by FT-IR, H-NMR, and TGA analyses. In the FT-IR spectrum shown in Figure 6a, the
peak at 1057 cm−1 is associated with C–O stretching vibration, and the peak at 1323 cm−1

corresponds to the –OH bond [52]. The peak at 1625 cm−1 in the carbonyl stretching
region was mainly due to a covalent bond between two carbon atoms (C=C) [34]. Also,
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the peak around 2900 cm−1 was linked to C–H aliphatic sapogenin saponin graft [53].
Commonly, intense broadband at 3000–3600 cm−1 area can be seen in the IR spectrum
of polysaccharides [54]. This strong band, which represents the stretching vibration of
multiple hydroxyl groups (–OH) in polysaccharides, was observed at 3418 cm−1. These
characteristic functional groups exist in the structure of Azarboo surfactant.
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In the 1H-NMR spectrum, different chemical peaks were observed as shown in
Figure 6b. The peak at about 4 ppm corresponds to the hydroxylic group (-OH). The
chemical shifts from 2.8 to 3.8 ppm are related to the saponin oligosaccharide functional
group, and those between 1.5 and 2.5 ppm are attributed to the glycoside-free aglycone
section of the saponin [34]. These results were consistent with the presence of the FT-IR
bands at 1057 cm−1, 2900 cm−1, and 3418 cm−1, as discussed above.

TGA analysis for Azarboo surfactant was performed under a nitrogen atmosphere. As
illustrated in Figure 6c, the natural surfactant was thermally fully stable up to about 75 ◦C,
beyond which the weight loss initiated and steadily continued to 160 ◦C. A probable reason
for that weight loss is water evaporation from molecules and particles [55]. The thermal
stability of the surfactant followed the decreasing trend more steeply, reaching 300 ◦C,
where only less than 1% of the natural surfactant remained unchanged. This heavyweight
loss, which is due to carbon bond breakdown at high temperatures [56], reveals that
Azarboo is natural and extracted from plants [57]. In conclusion, TGA analysis confirms
the thermal usability of the Azarboo surfactant for harsh-temperature EOR operations due
to great mass maintenance at temperatures below 100 ◦C.

3.1.2. Aminated Silica Nanoparticles

FT-IR analysis was used to indicate amine modifications on SiO2 nanoparticles.
Figure 7 shows the IR spectrum of silica nanoparticles before and after modification.
Looking at the FT-IR spectroscopy of silica nanoparticles (Figure 7, red line), the bands
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at 779 and 1097 cm−1 are attributed to bending vibration or asymmetric stretching vibra-
tion of Si–O–Si bonds [58]. The absorption bands at 1583 and 3490 cm−1 are assigned to
O–H stretching [59]. The Si-NH2 nanoparticles were detected through new peaks in IR
spectra (Figure 7, blue line). The new bands at 1562 and 1716 cm−1 originate from amine
groups’ N–H bending vibration [58]. Also, the broad and strong band at 3477 cm−1 may
be attributed to the substitution of –OH stretching with the N–H stretch of amine [60].
All these observations represent that amine-functionalized silica nanoparticles have been
synthesized successfully.
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Figure 7. FT-IR spectrums of bare and amine-modified SiO2 nanoparticles.

The zeta potential of bare and Si-NH2 nanoparticles was measured to confirm the N–H
conjugation on the surface. Bare SiO2 nanoparticles were quantified as a control, which
indicated a negative zeta potential (−25 mV). Contrarily, the zeta potential for Si-NH2
nanoparticles was positive (+21 mV). As silica nanoparticles are filled with negative charges,
and amino groups are replete with positive ones, it is evident that amine functionalization
has been done efficiently (see Figure 1).

3.1.3. Amino-Surfactant-Modified Silica Nanoparticles

The linkage of Azarboo surfactant to Si-NH2 nanoparticles was investigated by FT-IR
spectroscopy. The IR spectrum of the surfactant was measured as a control (Figure 6a) to
identify new functional groups in amino surfactant nanocomposite (Si–NH2-surfactant)
after surfactant modification (Figure 8a). The results showed that all functional groups ob-
served in Azarboo surfactant molecules appeared in IR spectroscopy of Si–NH2-surfactant.
In addition, a weak peak at 792 cm−1 showed the bending vibration of Si–O–Si bonds, and
a sharp peak at 1723 cm−1 represented the vibration of N–H. As evidenced in Figure 8, it is
proven that Azarboo surfactants are linked to Si-NH2 nanoparticles.
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The zeta potential of Si-NH2-surfactant nanoparticles was also recorded. The zeta
potential reached a negative value (−17 mV) from a positive value (+21 mV). It confirmed
surfactant conjugation on positively charged aminated silica nanoparticles (see Figure 1).
In addition, the hydrodynamic diameter of the particles in the nanofluid was measured
at a constant concentration of 500 ppm Si-NH2 nanoparticles with and without 1200 ppm
Azarboo surfactant in distilled water. The results demonstrated two narrow bell-shaped
size distributions ranging from 20 nm to 140 nm (Figure 8b). The average size of 57 nm
was measured for Si-NH2, being higher than that of bare SiO2. The size was increased
by about 5 nm and reached 62 nm after treatment with surfactant. The size change is
due to the linkage of the Azarboo surfactant. Taking negative charges on the Azarboo
surfactant into account, it could be conjugated on the surface of positively charged Si-NH2
nanoparticles using electrostatic forces. Thus, Si-NH2-surfactant nanoparticles would have
a larger particle size, which is consistent with other studies [59].

The presence of Chooback surfactant in the structure of SiO2 nanoparticles was further
studied by measuring the BET surface area before and after treatment with amine and
surfactant. As shown in Figure 8c, bare SiO2 nanoparticles had a higher BET surface area
than aminated and surfactant-modified nanoparticles (541 m2/g versus 519 m2/g and
425 m2/g). Chooback molecules could be adsorbed on SiO2 nanoparticles and modify
their surfaces [15,61]. This result was confirmed using SEM images with a scale of 10 nm
(Figure 9). SiO2 nanoparticles before treatment were round and spherical, with an average
size of almost 5–10 nm (Figure 9a). However, after treatment with Chooback, they became
foamy, whiter, and larger (Figure 9c), which confirms the surface modification. In contrast,
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no sensible change was observed in the form of SiO2 nanoparticles after amination, and
they became only a bit whiter (Figure 9b).
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3.2. The Effect of the Nanoparticle on Wettability

The natural surfactant of Azarboo and amine molecules were utilized for the surface
modification of SiO2 nanoparticles. The modification was proven using different character-
ization tests. Herein, the performance of the developed nanofluid is studied for wettability
alteration using spontaneous imbibition and surface imaging technique.

3.2.1. Spontaneous Imbibition

Spontaneous imbibition occurs when a wetting fluid displaces a non-wetting fluid
in porous media without external forces [62,63]. Three oil-wet carbonate samples were
employed to know how Si-NH2 and Si-NH2-surfactant would affect the spontaneous
imbibition oil recovery. Figure 10 demonstrates the oil recovery results for the samples
after almost two months. As can be seen, the oil-wet sample had the lowest imbibition
with an oil recovery of 14%, proving its oil-wet tendency. The amount of oil produced after
modification with Si-NH2 was around 23%, and after treatment with Si-NH2-surfactant was
about 28%. It was evident that almost 14% and 9% of the oil recovered should have been
due to Si-NH2-surfactant and Si-NH2 nanoparticles. Even though the rate of oil production
was noticeably higher when Si-NH2-surfactant was applied. So, this test is evidence of
wettability alteration by the modified chemicals.
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3.2.2. Surface Imaging

In the previous section, both Si-NH2-surfactant and Si-NH2 nanoparticles were hy-
drophilic, but different oil recoveries were obtained. A surface imaging technique was
employed to visualize the alterations originating from nanoparticle obstruction. Each of
the core plugs was cut horizontally and split in two. Then, SEM photographs were taken
before and after exposure to Si-NH2-surfactant and Si-NH2 nanofluids (Figure 11).
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Figure 11. SEM images of the rock samples, (a) soaked in crude oil, (b) treated with Si-NH2, and
(c) drenched in Si-NH2-surfactant.

Figure 11a illustrates the morphology of the oleophilic media before treatment with
nanofluid, and Figure 11b,c shows the oil-wet slice morphology after treatment with Si-NH2
and Si-NH2-surfactant, respectively. The rock sample soaked in oil (Figure 11a) has rough-
ened a little after exposure to Si-NH2 nanofluid, as shown in Figure 11b. This roughness is
because of the low-affinity adsorption of Si-NH2 nanoparticles on the carbonate surface.
In contrast, Figure 11a,c showed that Si-NH2-surfactant nanoparticles had substantially
adsorbed over the cleaned porous medium. Compared to treatment with Si-NH2, the open
and visible pores had become closed and invisible, offering Si-NH2-surfactant nanoparticles
further interacting with the oil-wet carbonate samples.

Surface roughness is a critical factor that affects wettability. Contact angles were also
measured to confirm the nanoparticles’ adsorption. Angles were recorded after aging rock
surfaces in oil, Si-NH2, and Si-NH2-surfactant nanofluids (Figure 12a). The contact angle for
the oil-wet rock chip was 147◦, confirming an initial oleophilic condition. Contact angles for
Si-NH2-surfactant and Si-NH2 nanofluids were changed to 36◦ and 85◦, respectively. Hence,
amine-treated nanoparticles changed the wetting state to neutral-wet and surfactant-treated
nanoparticles to strongly water-wet.

Rostami [64] stated the hydrophilic property of silica nanoparticles as the reason
for changing the wetting condition to water-wetness. Khoramian et al. [65,66] showed
the amphiphilic nature of graphene oxide nanosheets for restoring wettability to mixed-
wetness. Thus, wettability alteration to a more water-wet state and change in surface
roughness are because of the attraction between heavy oil compositions deposited on the
rock surface and the hydrophobic tail of the natural surfactant in the Si-NH2-surfactant
(Figure 12b). It, in turn, contributed to higher adsorption of Si-NH2-surfactant nanoparticles
and water-wet wettability alteration.

The scaling approach was utilized to magnify the difference in imbibition oil recovery
data [67]. Figure 13 is re-plotted where RD = R(t)

RT
and R(t) is oil recovery at different

times, and RT is the final oil recovery. Hence, the x-axis shows imbibition duration, and
the y-axis presents the normalized imbibition oil recovery of the core samples. From
the results, the surfactant-treated sample (green line) exhibited a very swift imbibition
process and reached maximum oil recovery after only nine days due to its hydrophilic
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nature (θ = 36◦). In contrast, the non-treated oleophilic sample (black line) showed the
slowest imbibition rate within twenty-eight days and the highest imbibition resistance.
Capillary forces prevent the non-wetting fluid from imbibing in an oil-wet sample, slowing
down the imbibition rate [68,69]. The Si-NH2 treatment could also restore the original
wettability and increase the speed of spontaneous imbibition. However, Si-NH2 treatment
permitted a considerable restoration of the rock sample wettability (θ = 85◦). The results
demonstrated the better effectiveness of the Si-NH2-surfactant in modifying the wettability
and accelerating the process to reach the maximum recovery, nine days versus fifteen days.
The results can be clarified more sensibly when they are made dimensionless using the
spontaneous imbibition scaling parameters [70,71].
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Herein, the scaling group of Mattax and Kyte [31] was utilized to calculate tD based
on the parameters listed in Table 4 for analytical comparisons of the results.

Table 4. The characteristics of the carbonate samples and fluids used in spontaneous imbibition
experiments.

Parameter Oil-Wet Sample Aminated Sample Surfactant-Amine-Treated Sample

Permeability (mD) 52.7 48.3 52.7
Porosity (%) 19.2 21.6 19.2
Length (cm) 6.39 6.72 6.39

Water Viscosity (cp) 0.97 1.07 1.03
Oil Viscosity (cp) 23.9 23.9 23.9

Interfacial Tension (dyne/cm) 32 20 30

tD = ( 0.00031415
LC2

√
k
ϕ

σow√
µoµw

)t tD = 0.051 t (hr.) tD = 0.025 t (hr.) tD = 0.046 t (hr.)

To estimate α, dimensionless imbibition oil recovery was plotted versus dimensionless
time for all tests based on the model developed by Ma et al. [32] (Figure 14). Mattax and
Kyte [31] showed that a constant production decline of 0.05 is devoted to strongly water-wet
systems. If α < 0.05, then the system becomes less water wet. In our study, the oil-wet
sample α is 0.002, which means the least water-wet condition, as expected. The imbibition
results of the rock sample treated with Si-NH2 nanoparticles were fitted with α = 0.006,
which showed a partially water-wet condition. Results of the case of the Si-NH2-surfactant
nanoparticles matched the decline constant of 0.03, which shows a strongly water-wet
porous media [72].
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Figure 14. Imbibition oil recovery versus dimensionless time for the oil-wet sample and samples
treated with Si-NH2-surfactant and Si-NH2 nanofluids. All tests are based on the model developed
by Ma et al. 1997.

Three different alpha values indicated three different imbibition rates and wettability
types. A not strongly water-wet system (Si-NH2) exhibited spontaneous imbibition but with
lower imbibition rates. The rate of wettability alteration for surfactant-treated nanofluid
was faster, and the process happened sooner. In conclusion, the proposed natural surfactant-
based nanofluid can be promising for EOR operations due to higher and faster recovery
rates. Thus, it was used for oil displacement and present core flooding.
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3.3. Core Flooding

Samples 3 and 4 were soaked in oil and made oleophilic for core flooding experiments.
The secondary water flooding was done by injecting six pore volumes of brine with
180,000 NaCl. As shown in Figure 15, only 42 and 45% of the oil was recovered by water
flooding. In other words, more than half of the original oil in place was left intact inside
the core samples. This low and unfavorable oil recovery was anticipated to the oil-wetness
of the rock samples. It was persuasive enough to inject a one-pore volume of Si-NH2-
surfactant and Si-NH2 nanofluids into cores No. 3 and 4 and allow them to be exposed to
the nanoparticles for 24 h. This treatment was done to modify the wettability of the cores
toward less oil-wetness. The cores were then saturated with oil until Swir was attained.
When the 24-h nano treatment was finished, the second brine flooding was conducted, and
the volume of oil recovered was recorded (Figure 15). The second flooding resulted in an oil
recovery of 59% for Si-NH2-surfactant treatment and 49% for Si-NH2 treatment, showing a
surpassing effect of Si-NH2-surfactant nanoparticles on enhancing oil recovery compared
with Si-NH2. The improvements in oil recovery is due to the wettability restoration and IFT
reduction caused by the nanoparticles. The presence of surfactant-treated nanoparticles in
the base fluid led to a decrease in interfacial tension from 32 to 20 dyne/cm. This result,
which is in a good agreement with previous studies [73], is due to the connection between
the hydrophobic head of Azarboo surfactant and crude oil molecules [74].
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The primary water flooding was run when capillary pressure was negatively high due
to the oil-wet inclination of the porous media. Therefore, only wide pores were depleted
by water, and a considerable value of oil was trapped inside narrow pores. Aging by the
nanoparticles led to the moderate and strong adsorption of Si-NH2 and Si-NH2-surfactant
on the carbonate media pores and throats, restoring the wettability and decreasing the
negative capillary pressure. It, in turn, reinforced water suction into the narrow and small
pores and promoted oil recovery to different degrees.

4. Conclusions

A non-toxic anionic surfactant, Azarboo, was obtained from the bony roots of Acan-
thophyllum for possible EOR applications. It was conjugated to positively charged amine-
treated SiO2 nanoparticles and characterized using FT-IR, Zeta potential, DLS, BET, and
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SEM analyses. Then, the effects of Si-NH2 and Si-NH2-surfactant nanoparticles on the
spontaneous imbibition of strongly oil-wet carbonate rocks were experimentally and theo-
retically examined.

Imbibition results proved the active role of Si-NH2 and Si-NH2-surfactant nanoparti-
cles. Maximum oil recovery for treatment with Si-NH2-surfactant and Si-NH2 was achieved
after nine and fifteen days, respectively, while this result for an oil-wet sample was obtained
after twenty-eight days. The rate of wettability alteration was found faster by silica and
surfactant together, which was supported by SEM images.

The spontaneous imbibition data were scaled using an analytical model. A decline
production constant of 0.006 for the Si-NH2 imbibition test confirmed that it acted like a par-
tially water-wet system. In contrast, the Si-NH2-surfactant imbibition test proved a nearly
strongly water-wet system with a decline production constant of 0.03. The hydrophobic
tails of the natural surfactant could link to oil compositions deposited on porous media
and speed up oil production by more wettability alteration and IFT reduction.

The results of core flooding experiments showed the effectiveness of Si-NH2 and
Si-NH2-surfactant nanoparticles for EOR purposes. The oil production rate experienced an
increase of about 15% for Si-NH2-surfactant nanofluid and almost 7% for Si-NH2 nanofluid.
Overall, the hybrid application of the natural surfactant and silica nanoparticles could
improve oil production more than the nano-treatment with anime molecules.
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