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Abstract: The electrodes of two-dimensional (2D) titanium dioxide (TiO2) nanosheet arrays were
successfully fabricated for microRNA-155 detection. The (001) highly active crystal face was exposed
to catalyze signaling molecules ascorbic acid (AA). Zero-dimensional (0D) titanium carbide quantum
dots (Ti3C2Tx QDs) were modified to the electrode as co-catalysts and reduced the recombination
rate of the charge carriers. Spectroscopic methods were used to determine the band structure of TiO2

and Ti3C2Tx QDs, showing that a type II heterojunction was built between TiO2 and Ti3C2Tx QDs.
Benefiting the advantages of materials, the sensing platform achieved excellent detection performance
with a wide liner range, from 0.1 pM to 10 nM, and a low limit of detection of 25 fM (S/N = 3).

Keywords: PEC biosensor; Ti3C2Tx MXene QDs; TiO2 nanosheet arrays; type II heterojunction;
microRNA-155 detection

1. Introduction

The ultrasensitive, rapid, and accurate detection of microRNA is very meaningful for
the early diagnosis and prevention of disease [1]. Research has shown that the aberrant
expression of microRNA-155 in the human body can be regarded as a critical detection
index for some diseases, such as B-cell lymphoma [2] and breast cancer [3]. However,
microRNA-155 is expressed only at the DNA level and not at the protein level; therefore,
detecting microRNA-155 by traditional methods for early warning is very difficult [4]. Pho-
toelectrochemical (PEC) biosensing is now attracting extensive attention for sensing nucleic
acid and other diagnostic markers because of its inherently low limit of detection and high
sensitivity. Generally speaking, there are two important parts in PEC biosensing [5]: (i) the
PEC biosensing active species (catalytic signaling molecule to generate the detection signal)
and (ii) the biological recognition elements (which are in contact with the active species).
Therefore, active materials are very important for photoelectrochemical biosensing.

TiO2 is one of the most charming candidates for PEC biosensing due to its outstanding
chemical stability, biocompatibility, and accessibility [6]. Titanium dioxide nanomaterials
have been widely used in biological monitoring [7,8]. Sadly, pristine TiO2 suffers from
a high carrier recombination rate, which significantly hinders the signal generation and
collection of PEC sensors [9]. Coupling TiO2 with other semiconductors can achieve
spatial separation of the photogenerated charges [10]. Proper band alignment and electron
trapping would increase the concentration and lifetime of the photogenerated charges,
thereby improving the catalytic ability of the material [11–13]. For this purpose, the interface
between the two materials needs to be rationally designed. In principle, the morphology
and contacting pattern of active species have to be rationally considered to maximize the
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contact area while reducing the interfacial defects caused by lattice mismatch between the
two phases. On the one hand, the optoelectronic properties of composite materials are
closely related to the configuration between the materials. For instance, compared with
other forms of allotropes (such as graphene and carbon nanotubes), 0D carbon materials
(such as carbon quantum dots) exhibit unique optoelectronic properties when combined
with TiO2. On the other hand, the charge behavior of the materials is different when the
heterojunction is built on different exposed crystal planes because (i) the generation rates
of the photogenerated carriers on different crystal planes are different, and (ii) different
work functions of different crystal planes can change the direction of electron flow between
the heterojunctions [14].

Since their discovery in 2011, MXene materials have come into the spotlight due
to their chemical stability, rapid charge-transfer kinetics, and tight interfacial coupling.
Quantum dots derived from 2D materials exhibit excellent properties as compared to their
2D counterparts, such as more abundant active edge sites, bandgap widening, and tunable
physicochemical properties [15]. In addition, compared with the other QDs, Ti3C2Tx QDs
possess more abundant surface hydrophilic groups (–O and –OH), making them connect
tightly with photoactive supporters. Hence, the Ti3C2Tx QDs could be a good co-catalyst
for boosting the performance of the PEC biosensor. Song et al. employed Ti3C2Tx QDs as a
photoactive material to promote the performance of TiO2-based PEC sensing.

Herein, a PEC biosensing platform was fabricated for microRNA-155 detection. Two-
dimensional TiO2 NS arrays were selected as the sensing active substrate. The exposed
(001) crystal face of TiO2 enables the material to have higher catalytic performance. The
Ti3C2Tx QDs were used as a co-catalyst for the photocatalysis of ascorbic acid (AA) and to
suppress the recombination of the charge carriers inside the electrode. Their appropriate
energy-band structure enables them to form a type II heterojunction with TiO2 to achieve
efficient separation of electrons and holes. The S9.6 antibody was used as the microRNA
recognition unit to identify DNA–RNA hybrid duplexes, and alkaline phosphatase (ALP)
served as the catalytic signal generation unit. With reasonable material selection and
interface design, excellent sensing performance can be expected.

2. Experimental Section
2.1. Synthesis of Ti3C2Tx MXene QDs

An amount of 1 g Ti3AlC2 was slowly added into 10 mL concentrated hydrofluoric
acid solution (40 wt%). The mixture was stirred for 12 h to fully etch the aluminum atomic
layer in Ti3AlC2. Afterward, the mixture was centrifuged until the pH was near neutral.
After vacuum filtration, the sample was vacuum dried at 200 ◦C overnight. Then, 0.1 g of
Ti3C2 powder was added to 10 mL of tetramethylammonium hydroxide (TMAOH, 1 wt%)
and stirred for 12 h. The TMAOH-intercalated Ti3C2 powder was centrifuged at 8000 rpm,
vacuum filtered, and vacuum dried at 200 ◦C. Finally, 50 mg of the sample was added to
10 mL solution of TMAOH (2.5 wt%). The suspension was refluxed at 110 ◦C for a whole
day, centrifuged at 12,000 rpm, and vacuum dried at 200 ◦C.

2.2. Synthesis of Ti3C2Tx QDs/(001) TiO2/FTO Electrode

Initially, 10 mL of concentrated hydrochloric acid was mixed with equal amounts of
deionized water to configure a dilute solution. Then, 385 µL of tetrabutyl titanate and
0.158 g of ammonium fluorotitanate were added into the mixture with constant stirring
until a transparent color solution formed. The fluorine-doped tin oxide (FTO) substrates
were ultrasonically cleaned with a glass cleaner and poured into a Teflon reaction kettle
with a perforated Teflon base. After heating at 170 ◦C for 12 h, the FTO substrates were
rinsed with water. The (001) exposed TiO2 NSs arrays were prepared after annealing in an
air atmosphere at 450 ◦C for 3 h. Subsequently, Ti3C2Tx QDs (20 mg) were dispersed in
20 mL of water. In order to carry out the self-assembly process, the substrates were dropped
vertically into the solution. The solution was placed in an oven at 50 ºC overnight. The
Ti3C2Tx QDs slowly self–Organized onto the surface of TiO2 NSs with the volatilization of
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water. Finally, the Ti3C2Tx QDs/(001) TiO2/FTO electrodes were washed with ultra-pure
water to remove the unconnected Ti3C2Tx QDs.

2.3. PEC Detection of microRNA-155

To immobilize DNA, 20 µL of Au NPs (0.05 mg/mL) was added dropwise onto the
Ti3C2Tx QDs/(001) TiO2/FTO surface. An amount of 20 µL of 0.5 µM probe DNA immobi-
lization buffer was cast onto the Ti3C2Tx QDs/(001) TiO2/FTO electrode and incubated
under humid condition for 12 h at 25 ºC. The electrode was denoted as DNA/Ti3C2Tx
QDs/(001) TiO2/FTO electrode. The electrode was washed with a washing buffer and
incubated with 20 µL of mercaptohexanol (MCH, 0.1 mM) for 1 h. Then, the DNA/Ti3C2Tx
QDs/(001) TiO2/FTO electrode was incubated with 20 µL of different concentrations of
microRNA-155 for 2 h. The RNA-DNA/Ti3C2Tx QDs/(001) TiO2/FTO electrode was
washed with 0.1×SSC hybridization buffer to eliminate the unhybridized microRNA-155.
Subsequently, 20 µL of the S9.6 antibody (20 µg/mL) was further incubated with the elec-
trode for 1 h at 25 ºC in a humid cell. The S9.6-RNA-DNA/Ti3C2Tx QDs/(001) TiO2/FTO
electrode was then washed with a buffer. Then, the electrode was incubated with 20 µL
of IgG-ALP (25 µg/mL) at 37 ◦C for 1 h and keeping the surface moist. Finally, the PEC
response of the ALP-IgG/antibody/RNA-DNA/Ti3C2Tx QDs/(001) TiO2/FTO electrode
was recorded in the detection buffer at 0V.

3. Results and Discussion
3.1. Electrode Construction and Sensing Mechanism of PEC Sensor

As shown in Figure 1A, layered Ti3C2Tx MXene were fabricated by a top-down method
by etching the Al atomic layer in Ti3AlC2 with HF. The Ti3C2Tx QDs were prepared by the
reflux hydrothermal method with TMAOH as the intercalating agent. Using ammonium
fluorotitanate as a seed, (001) TiO2 NSs were grown on FTO glass through the hydrolysis
of titanate in an acidic solution (Figure 1B). Ti3C2Tx QDs and (001) TiO2 NSs were joined
together by a self-assembly process. The microRNA-155 detection process is shown in
Figure 1C. Au NPs served as the reagent of the immobilization matrix for the thiol modified
probe DNA. MCH was used for end capping of the electrode surface. After probe DNA
hybridization with target RNA, rigid DNA:RNA double helix hybrids were combined with
the S9.6 antibody. Afterward, the immunoreaction between the IgG and S9.6 antibody
would lead to alkaline phosphatase immobilization. The alkaline phosphatase on the
electrode surface could catalyze phosphorylated ascorbic acid in the detection solution to
generate electron donor ascorbic acid, thereby increasing the electrode photocurrent and
realizing the quantitative analysis of target microRNA-155.

3.2. Morphology Characterization of Ti3C2Tx QDs/(001) TiO2/FTO Electrode

Atomic force microscopy was used to observe the topography and size of the quantum
dots. From Figure S1, the average thickness of Ti3C2Tx QDs was about ~1.0 nm, indicating
that they were mostly single layer. FESEM was used to study the morphology of the (001)
TiO2 NSs. The TiO2 NSs with a side length of about 2 µm and a thickness of about 150 nm
uniformly grew on the surface of FTO glass (Figure S2). The FESEM images of the Ti3C2Tx
QDs/(001) TiO2 composite are provided in Figure 2a,b. Compared with pure TiO2 NSs,
there were no significant changes in the morphology of the composite electrodes after
loading with Ti3C2Tx QDs. Transmission electron microscopy (TEM) images were provided
to characterize the crystal information of TiO2 NSs. The HRTEM image (Figure 2c insert,
middle part) revealed (200) and (020) atomic planes with a lattice spacing of 0.19 nm and an
interfacial angle of 90◦. The bright, periodically arranged diffraction spots in selected-area
electron diffraction (SAED, Figure 2c insert, top right-hand corner) patterns indicated that
the TiO2 NSs prepared were a single crystal with excellent crystallinity [16]. Proofread with
standard PDF cards, the main exposed crystal plane of TiO2 nanosheets was (001) [17]. The
introduction of Ti3C2Tx QDs was further identified by TEM images. Compared with pure
TiO2 NSs, many small scales (~10 nm) appeared on the Ti3C2Tx QDs/(001) TiO2 composite
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(Figure 2d). The HRTEM image of the Ti3C2Tx QDs/(001) TiO2 composite is presented
in Figure 2e. The lattice fringes with widths of 0.19 and 0.21 nm can be assigned to the
(200) plane of TiO2 and the (100) plane of Ti3C2Tx QDs. The elemental mapping dots of
the Ti3C2Tx QDs/(001) TiO2 composite for Ti and O were dense and apparent (Figure 2f–i)
because TiO2 was dominant in this composite, whereas those for C were relatively scarce
and primarily found around the sheet edges, indicating that Ti3C2Tx QDs successfully
combined with the (001) crystal plane of TiO2 NSs.

3.3. Composition Characterization of Ti3C2Tx QDs/(001) TiO2/FTO Electrode

XRD pattern, Fourier transform infrared (FTIR) spectroscopy, and XPS analyses were
performed for electrode composition characterization. The XRD results in Figure 3a in-
dicated that FTO had peaks at 26.58◦, 33.77◦, 37.77◦, 51.76◦, and 65.19◦, consistent with
SnO2 (JCPDS No. 46-1088) [18]. Meanwhile, the TiO2 NS arrays had diffraction peaks at
25.28◦, 37.80◦, 48.05◦, and 55.06◦, assigned to the anatase TiO2 diffraction peaks (JCPDS
No. 21-1276). No distinct characteristic diffraction peak of Ti3C2Tx QDs was found in the
Ti3C2Tx QDs/(001) TiO2 sample, which was due to the low crystallinity and low content of
the Ti3C2Tx QDs in the composites [19]. To further determine the functional group informa-
tion of Ti3C2Tx QDs and TiO2, the Fourier transform infrared spectroscopy (FTIR) spectra
of TiO2 NSs, Ti3C2Tx QDs, and Ti3C2Tx QDs/(001) TiO2 were presented in Figure S3. The
(001) TiO2 composite film had some characteristic peaks at 3439, 1633, 1380, and 1110 cm−1,
which were assigned to surface hydroxyl groups and adsorbed oxygen. Compared with
pure TiO2, two new peaks emerged at 561 and 613 cm−1 after self-assembly, and they can
be assigned to Ti-C and Ti–O, respectively [20].
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The chemical bonding and functional groups of (001) TiO2 and Ti3C2Tx QDs/(001)
TiO2 composite were also investigated by XPS spectrum. In Figure 3b, the high-resolution
spectrum of Ti 2p of (001) TiO2 revealed two peak components at 458.8 eV (2p3/2) and
464.4 eV (2p1/2). After loading Ti3C2Tx QDs, the peak components of Ti 2p3/2 and 2p1/2
centered from low binding energy to high binding energy were attributed to the Ti-C, Ti-X
from substoichiometric TiCx (x < 1) or Ti3AlC2, Ti2+ ions and Ti4+ ions, respectively [21].
The spectrum of O 1s had two peaks located at 530.98 and 529.83 eV (Figure 3c), which
were assigned to the Ti–OH species and the lattice oxygen [Ti–O6] species. As for the O
1s XPS spectra after Ti3C2Tx QDs were loaded, two new peaks were found at 531.78 and
533.58 eV, ascribed to the Ti-C–OH and Ti-C–O species, demonstrating the surface groups
of Ti3C2Tx QDs were O and −OH [22]. The C 1s of (001) TiO2 can be divided into three
characteristic peak components located at 288.4 eV, 286.5 eV, and 284.7 eV, which can be
assigned to O-C=O, C=O, and C-C. Compared with pure TiO2, the introduction of Ti3C2Tx
QDs led to the appearance of two new characteristic peaks. The characteristic peak at 282.3
can be assigned to the Ti-C inside the Ti3C2Tx QDs. Interestingly, compared with (001) TiO2
composite, a new component appeared at 283.03 eV after the self-assembly process, which
could be assigned to the C−Ti−Ox bonding at the interfaces between Ti3C2Tx QDs and
(001) TiO2 (Figure 3d) [23]. We believe that the O and –OH on the surface of Ti3C2Tx may
act as rivet sites to connect to the five coordinated titanium atoms in (001) of TiO2 and form
an atomic-scale interfacial heterojunction between 0D Ti3C2Tx QDs and 2D TiO2 NSs.

3.4. PEC Performance Characterization of Ti3C2Tx QDs/(001) TiO2/FTO Electrode

To evaluate the catalytic ability of the materials to catalyze AA, time-resolved current
response curves were obtained in an aqueous O2-saturated PBS solution containing AA
(0.1 M) under light irradiation (365 nm). In Figure 4a, the photoelectric response of TiO2
NSs significantly improved after loading Ti3C2Tx QDs. To explain the enhanced catalytic
ability, the photoelectric properties of the catalysts were evaluated. Photoluminescence (PL)
spectra were also obtained to reveal the recombination efficiency of the carriers. In general,
fluorescence emission at 420 nm represents the recombination of free excitons inside a
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material, whereas fluorescence emission at 480 nm represents surface state-trapping recom-
bination [18]. Compared with TiO2 NSs, the emission intensity of Ti3C2Tx QDs/(001) TiO2
electrodes significantly decreased in both ranges (Figure 4b). The reduced recombination
rate of photogenerated carriers could supply sufficient holes to activate –OH on Ti3C2Tx
QDs, thereby significantly promoting the formation of reactive species (·OH) during the
photocatalytic redox reaction. Time-resolved photoluminescence (TRPL) spectroscopy was
performed to survey the lifetime of the electrons in (001) TiO2 and Ti3C2Tx QDs/(001)
TiO2 electrodes. The average lifetime (τave) for the (001) TiO2 and Ti3C2Tx QDs/(001) TiO2
electrodes was 2.14 ns and 3.73 ns (Figure 4c). The carrier density of the electrodes was also
investigated by the Mott–Schottky Equation (1) [23].

1
C2 =

2
ε0εeND

[
(US −UFB)−

kBT
e

]
(1)

The carrier density ND can be obtained from the slope of the linear region of the
Mott–Schottky plots (Figure 4d) on the basis of Equation (2).

ND = −
(

2
eεε0

)(
d
(
1/C2)

d(US)

)−1

(2)

where ND is the electron density, e is the element charge value, ε is the dielectric constant
(48 for anatase), ε0 is the vacuum permittivity, C is the space charge capacitance, and US is
the applied potential. The calculated ND for the (001) TiO2 and Ti3C2Tx QDs/(001) TiO2
electrodes were 4.04 × 1018 and 8.18 × 1018, respectively. The photoelectric property tests
implied that the introduction of Ti3C2Tx QDs could reduce the recombination rate, prolong
the lifetime, and increase the density of the carriers in the electrode, thereby improving the
catalytic ability of the electrode.
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3.5. Electron Transfer Mechanism of Ti3C2Tx QDs/(001) TiO2/FTO Electrode

Ultraviolet–visible diffuse reflection spectrum (UV-vis DRS) and ultraviolet photoelec-
tron spectroscopy (UPS) were combined to study the band structure and interface electron
states of Ti3C2Tx QDs and (001) TiO2 (Figure 5a–d). Figure S4 depicts the optical bandgap
(Eg) of the (001) TiO2 and Ti3C2Tx QDs, as derived from the Tauc Equation (3).

(αhν)n = A(hν− Eg) (3)

where α is the absorption coefficient, h is the Planck constant, ν is the photon frequency,
n = 1/2 is the indirect bandgap semiconductors, A is a constant, and Eg is the bandgap. The
bandgaps of (001) TiO2, Ti3C2Tx QDs were obtained as 3.16 and 2.91 eV, respectively. The
cutoff energies (Ecut off) of (001) TiO2 and Ti3C2Tx QDs were obtained as 16.67 (Figure 5b)
and 17.05 eV (Figure 5d) from the UPS spectra. Their work functions (W) were calculated
to be 4.55 and 4.15 eV, respectively. The valence band maximum (VBM) of (001) TiO2
and Ti3C2Tx QDs were determined from the binding energy onset as 2.49 (Figure 5a) and
1.93 eV (Figure 5c), which were−7.04 and−6.08 eV. The conduction band minimum (CBM)
positions were -3.88 and −2.77 eV, which is the VBM plus the optical bandgap.

The band structures and schematic of electrode electron transfer of (001) TiO2 and
Ti3C2Tx QDs are shown in Figure 5e,f. A type II heterojunction was built between TiO2 and
Ti3C2Tx QDs (Figure 5e). Because the CBM and VBM of Ti3C2Tx QDs were more positive
than those of (001) TiO2, the photogenerated electrons from the conduction band (CB)
of Ti3C2Tx QDs flowed to the CB of (001) TiO2 due to the lower energy level (Figure 5f).
Given that the single crystalline (001) TiO2 were grown in situ on conductive substrate, the
photogenerated electrons on the (001) plane were rapidly transferred to the FTO electrode.
These electrons would flow to the counter electrode. As for the hole in the valance band (VB)
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of (001) TiO2, it will be injected to the VB of Ti3C2Tx QDs to oxidize the (–OH) groups
on the Ti3C2Tx QD surface into ·OH free radicals (–OH+ h+ (hv)→·OH). These surface
hydroxyl radicals can be regarded as the active species, thereby greatly improving the
photocatalytic ability of the material. When the recognition process is completed, the ALP
on the electrode surface converts Ascorbic acid-2-phosphate (AAP) into electron donor AA,
and these active species can catalyze the oxidation of AA to generate dehydroascorbic acid
(DHA) and generate photocurrent at the same time.
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3.6. MicroRNA-155 Analytical Performance

The PEC response current of stepwise modified electrodes was presented to corrobo-
rate the electrode modification process. In Figure 6a, a stable PEC response was obtained
after Ti3C2Tx QDs were coated on the (001) TiO2 NSs substrate (curve a). Afterward, the
PEC response was further raised after Au NPs were loaded, probably due to the good con-
ductivity of Au NPs (curve b). The PEC response current of electrodes dropped gradually
with the introduction of probe DNA, MCH, microRNA-155, and S9.6 antibody (curve c-f).
This may be due to the poor electrical conductivity of nucleic acid and protein structures.
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However, when IgG-ALP was introduced into the system, the photoelectric response cur-
rent of the electrode greatly improved (curve g). This is because the alkaline phosphatase
can catalyze AAP to generate electron donor AA to enhance the photoelectric response.
Figure 6b illustrates the EIS spectra of stepwise modified electrodes. The Ti3C2Tx QDs/(001)
TiO2 electrode shows a semicircle (curve a) in the high-frequency region relating to the
electron transfer resistance. Then, the electron transfer resistance decreased significantly
when AuNPs were loaded (curve b). However, the electron transfer resistance increased
continuously after probe DNA immobilization (curve c), MCH blocking (curve d), and
hybridization with microRNA-155 (curve e). This could be due to the electrostatic repulsion
between the negative ions (phosphate and acetate) and the redox probe of Fe(CN)6

3−/4−.
Electron transfer resistance further successively increased after the electrodes were incu-
bated with S9.6 (curve f) and IgG-ALP (curve g) because of the insulativity of the protein
structure. To explore the impact of the concentration of S9.6 and ALP-IgG, a concentration
parameter adjustment experiment was performed in Figure 6c,d. It can be seen that the
change of the response current also increases with the increase in the concentration. When
the concentration of S9.6 reaches 20 µg/mL, and the concentration of ALP-IgG reaches
25 µg/mL, the current change reaches the maximum.

The response currents of the PEC platform with various microRNA-155 concentrations
were tested (Figure 7a). The response current (I) showed a logarithmic relationship with
the microRNA-155 concentrations (c), and the regression equation was I = 1.25lgc + 8.05
(R2 = 0.9964) (Figure 7b). Moreover, according to the literature [13], the LOD was calculated
as 3.0×σ/S = 0.025 pM, where σ is the standard deviation of five times blank tests, and S is
the sensitivity. The stability of the PEC platform was studied by continuous scanning under
periodic light irradiation. Based on the relative standard deviation (RSD = 0.59%) of the
response current in Figure 7c, the detection platform we built is very stable. Furthermore,
the selectivity of the PEC platform was investigated by performing an anti-interference
test with 1 nM microRNA-141, microRNA-121, and microRNA-21 as interferents. It can be
seen that the response current of the detection platform to the interference is much smaller
than that of the target, indicating that the detection platform has good anti-interference
performance (Figure 7d). The performance of the detection platform is compared with the
reported articles in Table 1.
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Figure 6. (a) Photocurrent response in detection buffer and (b) EIS plot in 5.0 mM Fe(CN)6
3−/4−

solution of different electrodes: curve a, Ti3C2Tx QDs/(001) TiO2/FTO; curve b, after dropping
AuNPs; curve c, after probe DNA loading; curve d, after incubation with MCH; curve e, after
incubation with 1 nM microRNA-155; curve f, after incubation with antibody; curve g, incubation
with IgG-ALP, (c) the change of the response current with different concentrations of S9.6 and (d) the
change of the response current with different concentrations of IgG-ALP.
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Table 1. Analytical performance of several microRNA-155 biosensors.

Biosensors Dynamic Range (M) Detection Limit (M) References

CV 5.6 × 10−12–5.6 × 10−5 1.87 × 10−12 [24]
ECL 1 × 10−12–1 × 10−5 6.7 × 10−13 [25]
ECL 1 × 10−14–1 × 10−5 1.6 × 10−10 [26]
PEC 1 × 10−11–2 × 10−8 5 × 10−12 [27]
PEC 1 × 10−13–1 × 10−8 3.3 × 10−13 [28]
PEC 1 × 10−13–1 × 10−8 2.5 × 10−13 This work

4. Conclusions

In this article, arrays of titanium dioxide nanosheets with a highly active (001) crystal
plane were successfully prepared for microRNA-155 PEC detection. Zero-dimensional
Ti3C2Tx QDs were successfully synthesized and used in titanium dioxide. The excellent
performance was related to the higher surface energy due to the exposed (001) facet on
TiO2 nanosheets. The better separation ability of the photogenerated carriers was due to the
Ti3C2Tx QDs/TiO2 type II heterostructure being able to reduce the loss of electron transfer
inside the electrode. The faster electron transport caused by the 0D/2D nanostructure
and lattice connection at the interface between Ti3C2Tx and TiO2 allowed the electrons
generated by the detection to be collected more smoothly. The PEC sensor comprising the
Ti3C2Tx QDs/(001) TiO2 electrode exhibited high stability, sensitivity, and selectivity for
microRNA-155 detection.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano12203557/s1, Table S1. Specific oligonucleotide sequence. Figure S1. Atomic force
microscopy (AFM) image of Ti3C2Tx QDs. Figure S2. FESEM of (001) TiO2 NSs. Figure S3. FTIR
spectra of TiO2 NSs, Ti3C2Tx QDs, and Ti3C2Tx QDs/(001) TiO2 composite. Figure S4. UV−vis DRS
of (001) TiO2 and Ti3C2Tx QDs.
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