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Abstract: Precise prediction of mechanical behavior of thin films at the nanoscale requires techniques
that consider size effects and fabrication-related issues. Here, we propose a test methodology to
estimate the Young’s modulus of nanometer-thick films using micromachined bilayer cantilevers. The
bilayer cantilevers which comprise a well-known reference layer and a tested film deflect due to the
relief of the residual stresses generated during the fabrication process. The mechanical relationship
between the measured residual stresses and the corresponding deflections was used to characterize
the tested film. Residual stresses and deflections were related using analytical and finite element
models that consider intrinsic stress gradients and the use of adherence layers. The proposed
methodology was applied to low pressure chemical vapor deposited silicon nitride tested films
with thicknesses ranging from 46 nm to 288 nm. The estimated Young’s modulus values varying
between 213.9 GPa and 288.3 GPa were consistent with nanoindentation and alternative residual
stress-driven techniques. In addition, the dependence of the results on the thickness and the intrinsic
stress gradient of the materials was confirmed. The proposed methodology is simple and can be used
to characterize diverse materials deposited under different fabrication conditions.

Keywords: bilayer cantilever; deflections; thin films; residual stresses; young’s modulus

1. Introduction

Accurate values of the Young’s modulus are essential to correctly quantify the stiffness
of the structures under different loading conditions. A comprehensive understanding of
this mechanical property in very thin films is critical to the proper design of small-scale
micromachined devices. The Young’s modulus of materials with nanometric dimensions
(especially below 100 nm) can vary due to the effect of small size [1] and the fabrication
process [2]. Therefore, its correct estimation is an area of great interest in many fields such
as microelectronics, protective coatings, and nanoelectromechanical systems (NEMS). At
this level, the determination of the Young’s modulus requires very different procedures
to the traditional uniaxial tensile tests of bulk samples. Several techniques, including
nanoindentation [3–5], bulge test [6–8], electrostatic pull-in experiments [9,10], or resonant-
based methods [11,12] have been developed for this purpose. However, they often require
complex experimental setups and extraction procedures that complicate the replicability of
the experimental results. The main difficulty of these tests lies in the need to apply external
loads that can eventually disturb the samples and produce noise in the measurements.
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The residual stresses of materials deposited by surface micromachining processes
can be used as a means of actuation to extract the Young’s modulus of thin films without
external manipulation of the samples. An example is the on-chip nanomechanical testing
laboratory developed to apply a uniaxial load to the tested films using the internal stress
present in a well-characterized reference material [13]. The test methodology is simple,
which allows the study of the stress-strain response of a wide range of materials. Thus,
different properties such as Young’s modulus, yield stress or fracture stress, fracture strain,
and strain hardening can be estimated. In addition, this procedure can also be implemented
in a semiconductor device production line [14]. Although ultrathin films can be evaluated
with this technique, long actuator beams are needed to provide accurate measurements and
large strains. This is an important challenge because of the difficulty of fabricating structures
with high aspect ratios (length/thickness). Another proposal consists of combining the
measurement of the internal stress after film deposition with the measurement of the
corresponding internal elastic strain of freestanding beams [15]. This method is simple and
easy to implement but is limited to thin films that have high internal stresses. Furthermore,
the accuracy of the strain measurement requires long beams that can suffer from stiction
in the release steps. Recently, the deflections of residual stress-driven bilayer cantilevers
integrated by a tested film and a well-characterized reference layer have been used to
study the elastic properties of ultrathin films [16,17]. In these cases, the parameters that
are evaluated are both Young’s modulus and mismatch strain of the tested film. Due to
these reasons, several cantilevers with different thickness ratios between the tested film
and the reference layer must be fabricated. Thus, the intersection of the corresponding
stress-deflection curves gives the solution under the assumption that the mismatch strain
is the same in all specimens. Accurate measurements can be achieved by applying this
method on tested films with thicknesses less than 100 nm due to the large curvatures of the
deflected cantilevers. However, the control of thickness in the micromachining process is a
critical issue that could limit the reproducibility of the results and hinder the evaluation of
materials with high etching rates. Moreover, the presence of intrinsic stress gradients and
the use of an adherence layer seriously influence the precision of the results.

In this work, we propose the use of residual stress-driven bilayer cantilevers to estimate
the Young’s modulus of thin films with nanometer thicknesses. Our proposal is motivated
by the large curvature variations of fully released cantilevers, resulting in increased sensitiv-
ity to tested film characteristics. However, we consider wafer-level measurement of residual
stresses in both the reference layer and the tested film in comparison to the investigations
reported in previous reports [16,17]. The in-situ measurement of these residual stresses
allows the characterization of the elastic mismatch strain. Therefore, it is not required to
vary the thickness ratio among the fabricated cantilevers, since the Young’s modulus of
the tested film is the only parameter to evaluate. Fabricating cantilevers with common
thicknesses eliminates the impact that changes in material sizes have on the results and
simplifies thickness control in the fabrication process. The tested film is characterized by re-
lating the measured residual stresses to the corresponding deflections. For this, we propose
analytical and finite element models from a static analysis of the cantilever. The models
consider the effects of intrinsic stress gradients through the thickness of the materials and
the possible use of an adhered layer to strengthen the bond between the reference layer and
the tested film. The consideration of these effects is relevant for the correct estimation of the
elastic properties of the thin films. The results of our methodology are in good agreement
with experimental data reported in the literature.

2. Estimation Methodology

Bilayer cantilevers deflect when released from their base substrate due to the difference
in the residual stresses in the materials used to fabricate them. The magnitude of the
deflection depends on the elastic properties of the materials and the intensity of the residual
stresses stored during the fabrication process. Therefore, the Young’s modulus of the tested
film can be deduced if the mechanical properties of the reference layer are known and
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both deflections and residual stresses are measured. Occasionally, an additional layer is
deposited to promote adhesion between the reference layer and the tested film. In such
cases, it is also necessary to know the residual stresses and the mechanical properties of
this adherence layer to correctly characterize the tested film. The mechanical relationship
between deflections and residual stresses was found through analytical and finite element
models. The analytical model was developed from a large deflection analysis of the flexible
structure, while the finite element model (FEM) was carried out in the ANSYS® Workbench
software using nonlinear static structural analysis.

2.1. Analytical Modeling

The relaxation of the residual stresses stored in the materials during the fabrication
process causes an internal bending moment that deflects the cantilever to an equilibrium
position. The radius of curvature R of the deflected cantilever can be related to the internal
bending moment M from the Euler–Bernoulli beam equation [18,19]:

1
R

=
M

(EI)e
, (1)

where (EI)e is the equivalent bending rigidity of the cantilever.
The horizontal (a) and vertical (b) deflections of the cantilever are determined as shown

in Figure 1a:

a = R sin
(

L
R

)
, (2)

b = R
[

1 − cos
(

L
R

)]
, (3)

where L is the length of the cantilever.
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Figure 1. Schematic representation of the residual stress-driven cantilever. (a) Deflection profile after
released. θ is the angular deflection of the cantilever. (b) Geometrical parameters of the cross-section.
The reference layer is supposed to be the material located at the bottom of the structure.

2.1.1. Bending Rigidity of the Cantilever

The equivalent bending rigidity of the cantilever (EI)e is given as reported in a previous
report [20]:

(EI)e = Er[Ir + zr Ar(zr − zN)] + E f

[
I f + z f A f

(
z f − zN

)]
+ Ea[Ia + za Aa(za − zN)], (4)
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where zr,f,a is the distance between the neutral axis of each material and the bottom of the
cantilever. The subscripts r, f, a denote the reference layer, the thin film, and the adherence
layer, respectively. In case of homogeneous cross sections, zr, zf, and za are calculated as
shown in Figure 1b:

zr =
hr

2
, (5)

za = hr +
ha

2
, (6)

z f = hr + ha +
h f

2
, (7)

where hr,f,a is the thickness of each individual material.
Considering rectangular cross-sections, the cross-sectional area (Ar,f,a) and moment of

inertia (Ir,f,a) of the three materials are determined as:

Ar, f ,a = whr, f ,a, (8)

Ir, f ,a =
1

12
wh3

r, f ,a, (9)

where w is the width of the cantilever. The moment of inertia of each individual mate-
rial is calculated with respect to its own neutral axis, that is, passing through its center
of symmetry.

The position of the neutral axis of the entire structure (zN) is obtained as mentioned in
previous reports [20]:

zN =
zrEr Ar + z f E f A f + zaEa Aa

Er Ar + E f A f + Ea Aa
(10)

The biaxial Young’s modulus of each material (Er,f,a) is:

Er, f ,a =
Er, f ,a

1 − vr, f ,a
, (11)

where Er,f,a and νr,f,a are the Young’s modulus and the Poisson ratio, respectively.

2.1.2. Internal Bending Moment

The residual stresses in each material (Figure 2a) can be divided into a uniform
component and an intrinsic stress gradient (Figure 2b). Uniform residual stresses are
positive if they cause compression in the materials once the cantilever is released from its
base substrate. On the other hand, intrinsic stress gradients are positive if they produce
out-of-plane deflection towards the positive z-axis. The uniform stress and the intrinsic
stress gradient can be represented as an axial force and a moment load, respectively, both
acting uniformly over the material cross-section (Figure 2c). By the moment equilibrium
around zN,

M = Fa(za − zN) + Ff

(
z f − zN

)
+ Fr(zr − zN) + Ma + Mr + M f , (12)

where M is the internal bending moment that deflects the fully released cantilever. The
axial force of each material Fr,f,a expressed in terms of the uniform stress σr,f,a is given by:

Fr, f ,a = σr, f ,a Ar, f ,a (13)

Generally, σr,f,a is determined using the Stoney formula by the measurement of the
radius of curvature of the base substrate before and after deposition of each material [21].
Changes in substrate curvatures can be accurately measured using mechanical, capacitive,
or optical methods [21]. This technique is quick and practical for the estimation of the
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uniform residual stresses of wafer-level thin films. However, it has the limitation of being
accurate only if the deposited material produces substantial changes in the initial curvature.
Curvature changes are practically imperceptible when the thickness of the deposited
material is extremely small compared to that of the substrate. In such cases, alternative
experimental techniques, such as X-ray diffraction, ultrasound, or Raman spectroscopy
should be considered [21,22].
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Figure 2. (a) Residual stresses stored in the materials during the fabrication process of the cantilever.
(b) Uniform stresses and intrinsic stress gradients that form the total residual stresses. (c) Equivalent
system of axial forces and moments.

The moment load of the individual materials Mr,f,a can be experimentally estimated by
applying Equation (1) in corresponding freestanding monolayer beams. Monolayer beams
can be fabricated alongside bilayer cantilevers over the same base substrate following a
single fabrication process. Then,

Mr, f ,a =
Er, f ,a Ir, f ,a

Rr, f ,a
, (14)

where Rr,f,a is the radius of curvature of each monolayer beam. The radii of curvature
of the cantilevers (R and Rr,f,a) are estimated from the deflection profile using the Taubin
method [23]. Nevertheless, Equations (2) and (3) can be used to estimate each radius of
curvature in the cases in which only the horizontal or vertical deflections of the cantilever
tip are measured.

2.1.3. Solution and Simplification Procedures

The Young’s modulus of the tested film Ef is obtained by numerically solving the
system of linear equations composed of Equations (1) and (4)–(14). However, the analytical
model can be reduced to a single expression:

k =
−6C1 + hrErC2

hrEr

[
m4

aλ2
a + 4m3

aλa

(
m f λ f + 1

)
+ 6m2

a

(
m2

f λaλ f + 2m f λ f + λa

)
+ 4ma

(
m3

f λaλ f + 3m2
f λ f + 3m f λ f + λa

)]
+ hrErC3

, (15)

where,

C1 =
[
mam f

(
ma + m f

)(
λ f σa − λaσf

)]
+ [ma(ma + 1)(λaσr − σa)] +

[
m f

(
m f + 2ma + 1

)(
λ f σr − σf

)]
, (16)

C2 =
(

kam3
aλa + k f m3

f λ f + kr

)(
maλa + m f λ f + 1

)
, (17)

C3 = 1 + m f λ f

(
4 + 6m f + 4m2

f

)
+ m4

f λ2
f , (18)

where λf = Ef/Er is the biaxial modulus ratio of the tested film and the reference layer,
and λa = Ea/Er is the biaxial modulus ratio of the adherence layer and the reference layer.
mf = hf/hr is the thickness ratio of the tested film and the reference layer, and ma = ha/hr
is the thickness ratio of the adherence layer and the reference layer. k = 1/R, kr = 1/Rr,
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kf = 1/Rf and ka = 1/Ra are defined as the curvature of the bilayer cantilever, reference layer,
tested film, and adherence layer, respectively.

The terms related to the adherence layer are overridden in the analytical model if the
deposition of this material is not required during the fabrication process. In those cases,
Equation (15) can be simplified as:

k =

[
−6m f

(
m f + 1

)(
λ f σr − σf

)]
+
[

hrEr

(
m f λ f + 1

)(
k f m3

f λ f + kr

)]
hrEr

[
1 + m f λ f

(
4 + 6m f + 4m2

f

)
+ m4

f λ2
f

] (19)

Equation (19) can be further simplified if the reference layer and the tested film do not
develop intrinsic stress gradients (Mr,f = 0):

k =

−6m f

(
λ f σr − σf

)
hrEr


(

m f + 1
)

1 + m f λ f

(
4 + 6m f + 4m2

f

)
+ m4

f λ2
f

(20)

Equation (20) can be also expressed in terms of the uniform residual strain of the
reference layer (er) and the tested film (ef) using the Hooke’s law (σr,f = er,f Er, f ):

k =

−6λ f m f

(
er − e f

)
hr


(

m f + 1
)

1 + m f λ f

(
4 + 6m f + 4m2

f

)
+ m4

f λ2
f

(21)

This expression is the generalization of the Stoney formula for uniform mismatch strain
in the tested film [24]. It was used in the aforementioned bilayer cantilever-based methods
to extract the Young modulus of ultrathin films [16,17]. However, Equation (21) can be
only used in the cases where the contribution of the intrinsic stress gradients to the internal
bending moment is very small compared to that from the uniform stress components.

Finally, if the stiffness of the reference layer is much larger than the tested film (hr � hf)
such that it does not develop uniform residual stresses (i.e., σr = 0), the second part of
Equation (20) is simplified, obtaining the classical Stoney formula:

k =
6m f σf

hrEr
=

6h f σf

h2
r Er

(22)

2.2. Finite Element Modeling

The cantilever is modeled by grouping the materials into a multibody solid that is
then fixed at one end (Figure 3a). Each material is split into two symmetrical sections over
its thickness. The symmetry of the structure in the yz-plane is exploited to simplify the
model to half the width. All parts are connected using shared topologies rather than contact
regions to have a continuous mesh across the model. The model is meshed with SOLID186
higher-order 3D 20-node hexagonal elements that exhibit quadratic displacement behavior.

Deflections are induced in the model by applying a uniform temperature gradient ∆T
to the multilayer material of the solid body. The application of the uniform temperature
gradient produces thermal strains in the sections according to the following expression:

e1(r, f ,a) = α1(r, f ,a)∆T, (23)

e2(r, f ,a) = α2(r, f ,a)∆T, (24)

where e1(r,f,a) and e2(r,f,a) are the thermal strain of the bottom and top sections of each material,
respectively. α1(r,f,a) and α2(r,f,a) are the specific thermal expansion coefficients of the bottom
and top sections of each material, respectively.
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Figure 3. Finite element model of the bilayer cantilever. (a) 3D multibody solid meshed with
hexagonal elements. (b) The thermal strains applied to the two sections of each material produce
axial forces due to the interaction between the parts. (c) The combined action of the two axial forces
in each material produces the uniform stresses and intrinsic stress gradients.

Thermal strains produce axial forces in the sections due to the interaction between the
parts (Figure 3b). The values of the thermal strains expressed in terms of their respective
axial forces are:

e1(r, f ,a) =
F1(r, f ,a)

Er, f ,a Ar, f ,a
, (25)

e2(r, f ,a) =
F2(r, f ,a)

Er, f ,a Ar, f ,a
, (26)

where F1(r,f,a) and F2(r,f,a) are the axial forces in the bottom and top sections of each material,
respectively.

The required axial forces are determined by applying the following two boundary
conditions to each material. First, the sum of the axial forces of the material must be equal
to the equivalent force produced by the uniform residual stress (Figure 3c):

F1(r, f ,a) + F2(r, f ,a) = −Fr, f ,a (27)

Second, the sum of the moments around the neutral axis of the material must be equal
to the moment load produced by the intrinsic stress gradient (Figure 3c):

F2(r, f ,a) − F1(r, f ,a) =
−4Mr, f ,a

hr, f ,a
(28)

The minus sign appears in Equations (27) and (28) due to the relaxation of positive and
negative uniform stresses produce compression and tension in the materials, respectively.

Once the values of the thermal strains are estimated using Equations (25)–(28), the
thermal expansion coefficients are specified through Equations (23) and (24) by setting the
∆T value. Negative thermal expansion coefficients or with a value of zero can be required to
perform the simulations correctly. If a material does not develop intrinsic stress gradients,
it is not mandatory to split it into two sections, since its respective thermal expansion
coefficients will have the same value. The combined action of all axial forces causes the
deflection of the cantilever until an equilibrium position is reached.
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The Young’s modulus of the tested film (Ef) is found by varying its magnitude in the
model until the simulated deflections coincide with those experimentally measured. The
simulated deflection profile is extracted from the plane of symmetry of the structure and
can be quantified in terms of a, b, or R (Figure 1a).

2.3. Accuracy of the Proposed Models

The results of the analytical model may differ from those obtained using FEM if the
deflection of the cantilever becomes extremely large. To illustrate this, the deflections of
three different residual stress-driven cantilevers (S1, S2, and S3) are considered as examples.
The geometric dimensions of the cantilevers, the elastic properties of the materials, the
curvatures of the monolayer beams, and the uniform residual stresses are indicated in
Tables 1 and 2. The parameters indicated in Table 1 are common in the examples, whereas
the parameters indicated in Table 2 vary according to the cantilever. The uniform residual
stress of the tested film is varied in each example to cover a broad range of deflections
in the analysis. The cantilevers exhibit similar deflections with the indicated parameters.
The examples include the use of adherence layers and the development of intrinsic stress
gradients in the materials.

Table 1. Common parameters in the analyzed examples.

Parameter Value

Cantilever width, w 12 µm
Cantilever length, L 150 µm

Thickness of the adherence layer, ha 30 nm
Thickness of the tested film, hf 60 nm

Biaxial Young’s modulus of the reference layer, Er 250 GPa
Biaxial Young’s modulus of the adherence layer, Ea 125 GPa

Young’s modulus of the tested film, Ef 160 GPa
Poisson ratio of the tested film, vf 0.2

Curvature of the reference layer beam, kr −890 m−1

Curvature of the adherence layer beam, ka 0
Curvature of the tested film beam, kf 1790 m−1

Uniform residual stress of the reference layer, σr −50 MPa
Uniform residual stress of the adherence layer, σa 0

Table 2. Parameters for cantilevers S1, S2 and S3.

Parameter S1 S2 S3

Thickness of the reference layer, hr [nm] 120 240 480
Uniform residual stress of the tested film, σf [MPa] 40–200 100–500 300–1500

First, the given parameters are used to calculate the deflection of the cantilevers
through the proposed models. In these calculations, the Young’s modulus of the tested
film has been considered as an input value. The evolution of the normalized curvature (k*)
with respect the normalized internal bending moment (M*) in each cantilever is shown in
Figure 4. The expressions for k* and M* are derived following the normalization procedure
proposed in previous report [16]:

M∗ =
M

1 × 10−8[N · m]

w2(
hr + ha + h f

)2 , (29)

k∗ = k
w2

hr + ha + h f
, (30)
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where M and k are the internal bending moment and the curvature of each bilayer cantilever,
respectively. The analytical model solutions indicate that curvatures are directly propor-
tional to the internal bending moments. However, the results estimated by FEM show that
the relationship between the two parameters evolves nonlinearly as the deflections increase
beyond their initial values. Nonlinearity can be attributed to stress hardening (which usu-
ally appears in structures with very low bending stiffness) and shear deformations. These
effects are not considered in the analytical model as it is derived from the Euler-Bernoulli
beam theory (Equation (1)). Nevertheless, it is observed that the nonlinear effects drop
considerably as the total thickness of the structures increases (results for cantilever S3).
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Figure 4. Normalized curvature k* vs. normalized internal bending moment M* for the cantilevers S1,
S2, and S3. The dotted curve with circular markers corresponds to the results estimated by FEM. The
dashed line represents the results obtained by the analytical model (Equation (15)). The dash-dotted
line shows the results obtained by the analytical model if the parameters related to the adherence
layer and intrinsic stress gradients are not considered (Equation (20)).

Nonlinear deflection of cantilevers can have a significant impact on the accuracy of
the analytical model. The Young’s modulus of the tested film (Ef) is calculated from the
curvatures obtained by FEM using Equation (15). Figure 5a shows the calculated Ef values
with respect to the curvatures exhibited in each cantilever (k). As expected, the analytical
model solutions deviate from the real value of Ef as the deflections increase. However, it is
confirmed that the errors produced by nonlinear effects are greater on the cantilevers with
smaller thickness (cantilever S1). In other words, for cantilevers with very thin tested films
and adherence layers, the accuracy of the analytical model improves with higher hr values.
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The vertical axis on the right side of the graphs represents the error of the results with respect to the
real value of Ef (indicated in Table 1).
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The accuracy of the analytical model also decreases when the effects of adherence
layers and intrinsic stress gradients are neglected. If the parameters related to these
characteristics are not considered in the calculations, Equation (20) can be used to obtain
the results. Based on this mathematical expression, the slope of the curves M* versus k* are
greater than those obtained using Equation (15) (Figure 4). As a result, the values calculated
for the Young’s modulus of the tested films from the curvatures obtained by FEM are
unrealistic, especially at small deflections (Figure 5b). A comparative analysis of Equations
(15) and (20) shows that the effects of the adherence layer can be omitted in the analyzed
examples if ha is equal to or less than 3 nm, 6 nm, and 3 nm of the cantilevers S1, S2, and
S3, respectively. Likewise, it can be determined that the effects of intrinsic stress gradients
can be neglected when the relative difference between the internal bending moment (M)
and the moment produced by the uniform stresses and is less than 2%. However, this last
condition is satisfied only if σf is greater than 360 MPa, 1300 MPa, and 5100 MPa of the
cantilevers S1, S2, and S3, respectively. These values of uniform residual stresses of the
tested film are very far from those indicated in Table 2.

It is difficult to establish the validity range of the analytical model proposed in this
work due to the large number of variables involved in the equations. However, good
results were observed for cantilevers with normalized curvatures below 1.7 (k* ≤ 1.7).
This condition is generally fulfilled in cantilevers with angular deflections (Figure 1a)
less than ninety degrees (θ < 90◦) and with a reference layer of thickness greater than or
equal to four hundred nanometers (hr ≥ 400 nm). Finite element models are generally
more accurate because they consider the nonlinear response of the cantilevers when they
experience very large deflections. However, some effects that can limit the accuracy of the
results are excessive etching of materials and non-homogeneous deposition of the thin films.
Furthermore, it is important to note that the models consider initially straight cantilevers
with linearly elastic and inextensible materials.

3. Results and Discussions

We use the methodology proposed in this work to estimate the Young’s modulus
of previously reported silicon nitride (Si3N4) tested films in two different cases. In the
first case, the bilayer cantilever comprises a reference layer of silicon oxide (SiO2) [25]. In
the second case, the reference layer is made of silicon (Si) [16]. Originally, the research
reported by Laconte et al. in [25] aimed to estimate the residual stresses generated in
materials during the fabrication process. On the other hand, in the report reported by
Favache et al. [16], the bilayer cantilevers were also used to determine the Young’s modulus
of Si3N4 by applying a different procedure. In both reports, the samples were fabricated in
the WINFAB (Wallonia Infrastructure Nano Fabrication) cleanroom facilities at Université
catholique de Louvain, Louvain-la-Neuve, Belgium (https://sites.uclouvain.be/winfab/
NEW_website/. Retrieved 30 November 2021) under similar conditions using different
substrates. The results are validated with those previously obtained in the same laboratory
using alternative techniques.

3.1. Case 1: SiO2/Si3N4 Bilayer Cantilever

The fabrication process of the SiO2/Si3N4 bilayer cantilever started with the growth
of a thermal SiO2 layer on a silicon substrate at 1000 ◦C under a mixed O2/H2 atmosphere.
Afterward, Si3N4 was deposited over the thermal SiO2 at 800 ◦C by low pressure chemical
vapor deposition (LPCVD) with a stoichiometric mixture of dichlorosilane with an ammonia
(SiH2Cl2/NH3) ratio of 1:3. Individual layers of SiO2 and Si3N4 were separately deposited
on two different silicon wafers to obtain the monolayer beams. After growing the thin
layers, the structures were defined by photolithography and patterned using a plasma
etching for the silicon nitride and hydrofluoric acid (HF) for the thermal silicon oxide.
The thick silicon wafers were etched in 20% tetramethyl ammonium hydroxide (TMAH)
solution at 90 ◦C for one hour to release the cantilevers and then rinsed in de-ionized water
and dried in methanol to avoid structural damage. The deposition of an adherence layer

https://sites.uclouvain.be/winfab/NEW_website/
https://sites.uclouvain.be/winfab/NEW_website/
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was not considered in the fabrication process because the materials showed high adhesion.
A schematic diagram of the fabrication steps is shown in Figure 6.
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Corresponding uniform components of the residual stresses were measured using 
the Stoney formula by wafer curvature measurements [21]. The thicknesses of the depos-
ited materials were verified by ellipsometry while the in-plane dimensions of the cantile-
vers were measured by SEM. Figure 7 shows the SEM views of the fabricated cantilevers 
after being released from the Si substrate. The vertical deflection for 100 μm length and 10 
μm wide cantilevers was measured using an optical microscope comparing the focus on 
both ends. 
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Figure 6. Schematic representation of the main fabrication steps for the case 1. (a) SiO2/Si3N4 bilayer
cantilever: thermal growth of the SiO2 layer, deposition of the Si3N4 layer, patterning of the deposited
layers and release from the Si substrate. (b) SiO2 beam: growth and patterning of the SiO2 layer and
release from the Si substrate. (c) Si3N4 beam: deposition and patterning of the Si3N4 film and release
from the Si substrate.

Corresponding uniform components of the residual stresses were measured using the
Stoney formula by wafer curvature measurements [21]. The thicknesses of the deposited
materials were verified by ellipsometry while the in-plane dimensions of the cantilevers
were measured by SEM. Figure 7 shows the SEM views of the fabricated cantilevers
after being released from the Si substrate. The vertical deflection for 100 µm length and
10 µm wide cantilevers was measured using an optical microscope comparing the focus on
both ends.
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Figure 7. SEM views of the released cantilevers in case 1 (longest showed cantilevers are 150 µm
long). (a) SiO2/Si3N4 Bilayer Cantilever. (b) SiO2 beam. Deflection reveals the presence of strain
gradients over film thickness. (c) Si3N4 beam. Some stiction appeared after rinsing with water and
drying in methanol. Reprinted with permission from [25]. Copyright©2006, Springer Nature.

Monolayer SiO2 beams exhibited a notable vertical deflection that revealed the pres-
ence of intrinsic stress gradients in this material (Figure 7b). In contrast, the tested film
appears to be free of the intrinsic stress gradients as their respective freestanding beams
remained straight after being released (Figure 7c). The Young’s modulus and the Poisson
ratio of the SiO2 reference layer and the Poisson ratio of the tested Si3N4 material were
reported in the literature [25]. The dimensions of the structures, the uniform residual
stresses, the vertical deflections of the cantilevers, and the elastic properties of the materials
are indicated in Table 3.
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Table 3. Parameters for case 1 (SiO2/Si3N4 bilayer cantilever).

Parameter Value Measurement Technique

Cantilever width, w 10 µm SEM
Cantilever length, L 100 µm SEM

Thickness SiO2 layer, hr 433 nm Ellipsometry
Thickness Si3N4 film, hf 288 nm Ellipsometry

Vertical deflection bilayer cantilever, b 50.51 µm Optical microscopy
Vertical deflection SiO2 beam, br 12 µm Optical microscopy
Vertical deflection Si3N4 beam, bf ≈0 Optical microscopy

Young’s modulus SiO2, Er 70 GPa Reported in [25]
Poisson ratio SiO2, vr 0.2 Reported in [25]
Poisson ratio Si3N4, vf 0.27 Reported in [25]

Uniform residual stress SiO2 layer, σr −281 MPa Wafer curvature measurement and Stoney formula
Uniform residual stress Si3N4 film, σf 914 MPa Wafer curvature measurement and Stoney formula

The analytical solution was estimated using Equation (19) since the SiO2 layer de-
veloped intrinsic stress gradients during the fabrication process. The radii of curvature
of the bilayer cantilever and the monolayer beams were calculated from their respective
vertical deflections using Equation (3). For the FEM solution, the 3D model was meshed
with 250 elements over the length, 15 elements over the half width, 1 element over the
thickness of the two sections of the SiO2 layer, and 1 element over the thickness of the
Si3N4 film. The silicon nitride tested film was not split into two symmetrical sections since
it was free of intrinsic stress gradients. Several simulations were conducted varying the Ef
value from 284 to 292 GPa to obtain different Young’s Modulus versus deflection responses.
Subsequently, a linear regression was performed on the recorded data to approximate the
relationship between the two variables (Figure 8). Then, the correct value of Ef was obtained
by evaluating the experimentally measured bilayer cantilever deflection on the fitted linear
function. Both silicon oxide and silicon nitride were considered isotropic materials [25].
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Figure 8. Estimated Young’s modulus of the Si3N4 tested films for case 1 (SiO2/Si3N4 bilayer
cantilever). The colored dots indicate the FEM results for different values of Ef from which linear
fits (dashed lines) are made. The correct value of Ef is found by evaluating the measured vertical
deflection on the fitted linear function. The incidence of the intrinsic gradient of the SiO2 layer on the
results is evidenced in the lower values of the Young’s modulus of the Si3N4 when it is assumed that
Mr = 0.

The Young’s modulus values of the 288 nm thick Si3N4 tested films found through the
models proposed in this work are listed in Table 4. The results of the analytical model agree
well with those obtained by FEM. The incidence of the intrinsic gradient of the SiO2 layer
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has on the results was studied by repeating the calculations with Mr = 0. The elimination of
Mr leads to an underestimation of 4.9 and 5.7% in the Ef values estimated by the analytical
and FEM models, respectively.

Table 4. Estimated values of the Young’s modulus of the Si3N4 tested films for case 1 (SiO2/Si3N4

bilayer cantilever).

Result Analytical Model FEM Relative Difference

Ef [GPa] 299.3 1 288.3 3.8%
Ef (Mr = 0) [GPa] 284.7 2 271.9 4.7%

1 Equation (19). 2 Equation (20).

The results of the Young’s modulus of the Si3N4 films for case 1 are slightly above
the upper range of the reported values for the same lab (summarized in Table 5). The
lack of resolution in the optical microscope and the ineffectiveness of the strategy used to
estimate vertical deflection may be the reason. Furthermore, edge effects at the free end of
the cantilevers can cause miscalculation of the respective radii of curvature. Nevertheless,
it is worth mentioning that Young’s modulus of the silicon nitride can vary from 193 GPa
to 338.5 GPa according to the review of existing data reported in the previous report [16].

Table 5. Young’s modulus of silicon nitride thin films deposited in the WINFAB laboratory.

Method Thickness (nm) Value (GPa) Reference

Nanoindentation 250 235 ± 10 [13]
Stoney and freestanding beams 301 233 [15]

Nanoindentation 301 241 [15]
Bilayer cantilever 55 270 ± 20 [16]

This work (case 1) 288 288.3 –

This work (case 2)

46 242.9 –
63 236.2
102 222.4 –
133 213.9 –

3.2. Case 2: Si/Si3N4 Bilayer Cantilever

In this case, the structures were fabricated on a silicon-on-insulator (SOI) wafer follow-
ing the process shown in Figure 9. The first step was the patterning of the upper Si layer of
the SOI wafer by reactive ion etching (RIE) with a sulfur hexafluoride (SF6)-based plasma.
The Si3N4 film was then deposited at 790 ◦C through LPCVD and then patterned by RIE
using a mixture of sulfur hexafluoride and silicon tetrachloride (SF6/SiCl4)-based plasma.
At this point, the wafer was cut into four samples (G1, G2, G3, and G4) before releasing
the structures by the etching of the SiO2 sacrificial layer using HF (73 vol.%). Since HF
also etches Si3N4 at a slower rate than SiO2, the release time was varied in each sample
to expect obtain bilayer cantilevers with different tested film thicknesses hf (Table 6). The
fabrication process allows the production of Si/Si3N4 bilayer cantilevers and freestanding
monolayer Si and Si3N4 beams of several lengths.

Table 6. Thicknesses and Curvatures of the Si/Si3N4 bilayer cantilevers.

Dimension G1 G2 G3 G4

Thickness Si layer [nm], hr 400 400 400 400
Thickness Si3N4 film [nm], hf 46 63 102 133

Curvature bilayer cantilever [m−1], k 5479 6250 7143 7407
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Figure 9. Schematic representation of the main fabrication steps for the case 2 (Si/Si3N4 bilayer
cantilever). (a) SOI wafer; (b) patterning of the top Si; (c) deposition of Si3N4; (d) patterning of Si3N4;
(e) etching of the SiO2 sacrificial layer.

The thickness of the Si reference layer was obtained from the SOI wafer specifications,
whereas the thickness of the Si3N4 films was measured by ellipsometry using the Cauchi
model [26]. On the other hand, the deflection profile shown by the bilayer cantilevers after
being released (Figure 10) was measured using SEM and interferometry. Subsequently,
the respective radii of curvature were estimated by interpolating a circle on the deformed
shape applying the Taubin method [23].
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Figure 10. SEM view of the fully released Si/Si3N4 (sample G1) bilayer cantilevers. Reprinted with
permission from [16]. Copyright©2016, AIP Publishing.

Freestanding monolayer Si and Si3N4 beams did not exhibit perceptible deflections,
indicating the absence of intrinsic stress gradients. Therefore, the in-plane deformations
were used to estimate the uniform residual strains. The residual strains of the Si3N4 and Si
beams were ef = 0.0032 and er ≈ 0 (indicating the absence of uniform residual stresses at the
top of the Si layer of the SOI wafer), respectively. The measured thicknesses and curvatures
of the Si/Si3N4 bilayer cantilevers are given in Table 6, while the geometrical and elastic
properties required in the models are indicated in Table 7.

Table 7. Dimensions and elastic properties for case 2 (Si/Si3N4 bilayer cantilever).

Parameter Value Measurement Technique

Cantilever width, w 10 µm Optical microscopy
Cantilever length, L 200 µm Optical microscopy

Poisson ratio Si3N4 film, vf 0.27 reported in [16]
Uniform residual strain Si layer, er ≈0 SEM

Uniform residual strain Si3N4 film, ef 0.0032 SEM
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The analytical solution was estimated from the uniform residual strains using
Equation (21) since the materials were free of intrinsic stress gradients. The FEM solu-
tion was found following the same extraction methodology of case 1 (Figure 11). The model
was meshed with 160 elements over the length, 15 elements over the half width, and 1
element over the thickness of the Si layer and the Si3N4 film. The materials were not split
into two symmetrical sections as they did not develop intrinsic stress gradients during the
fabrication process. Experimentally, it was observed that the radius of curvature does not
have significant changes in the bilayer cantilevers with lengths ranging between 100 µm
and 1.9 mm. Therefore, a length of 200 µm is appropriate to perform the simulations with
better results. The thermal expansion coefficients of the materials were calculated from the
uniform residual strains using Equations (23) or (24). The simulated deflection profile was
extracted in the range of 10 µm to 190 µm across the long axis to avoid edge effects.
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Figure 11. Estimated Young’s modulus of the Si3N4 tested films for case 2 (Si/Si3N4 bilayer cantilever).

In the solutions, Si3N4 was considered isotropic while Si was considered orthotropic [16].
According to the global coordinate system of Figure 3, the elastic constants of the orthotropic
silicon are [27]: [

Ex, Ey, Ez
]
= [169, 169, 130] [GPa][

vxy, vyz, vzx
]
= [0.064, 0.36, 0.28][

Gxy, Gyz, Gzx
]
= [50.9, 79.6, 79.6] [GPa]

(31)

where E, v, and G refer to Young’s modulus, Poisson’s ratio, and shear modulus, respectively.
For the analytical solution, the biaxial Young’s modulus of silicon was taken from the elastic
constants in the xy–plane:

Er =
Ex

1−vxy
=

Ey
1−vxy

= 180.55 [MPa] (32)

Table 8 presents the Young’s modulus values of the Si3N4 tested films for each of the
four samples. The results are in good agreement with those values obtained in silicon
nitride films fabricated under similar experimental conditions (Table 5).

Table 8. Estimated values of the Young’s modulus of the Si3N4 tested films for case 2 (Si/Si3N4

bilayer cantilever).

Sample Analytical Model [GPa] 1 FEM [GPa] Relative Difference

G1 228.5 242.9 5.9%
G2 218.3 236.2 7.6%
G3 197.1 222.4 11.4%
G4 184.7 213.9 13.7%

1 Equation (21).
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The values obtained using the analytical models agree well with those obtained by
FEM, but the relative difference between them increases with higher tested film thickness
hf. The increase of hf has more incidence on the internal bending moment M than on the
bending rigidity (EI)e due to the high magnitude of σf. Nonproportional increase in the
values of M and (EI)e results in larger deflections of the bilayer cantilever. Under large
deflections, the curvature k does not vary linearly with the internal bending moment M
and the accuracy of the analytical model decreases (as explained in Section 2.3).

The dependence of the results on the size of the tested film is seen in the Ef versus hf
plot shown in Figure 12. Specifically, it is noticed that the Young’s modulus of the Si3N4
tested film increases as its thickness decreases. The estimated Young’s modulus of Si3N4
tested film with a thickness of 40 nm (sample G1) is about 14% higher than that of Si3N4
tested film with a thickness of 133 nm (sample G4). Nevertheless, it should be considered
that the estimation of the Young’s modulus of ultrathin layered materials can be influenced
by defects in the test material or by internal factors such as roughness. The study of the
influence of these internal parameters on the results is not part of the objectives of this work.
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Finally, it was found that the Si3N4 films tested in case 1 (SiO2/Si3N4 bilayer can-
tilever) have a higher Young’s modulus than Si3N4 films tested in case 2 (Si/Si3N4 bilayer
cantilever). This may be because the structural properties of the Si3N4 deposited on SiO2
can be different from the structural properties of the Si3N4 deposited on Si [25]. In addition,
some specific parameters of the fabrication process, such as deposition time, etching time,
or etch solutions (which are different in the two investigated cases) can alter the properties
of the tested films.

4. Conclusions

A methodology to predict the Young’s modulus of nanometer-thick films using resid-
ual stress-driven bilayer cantilevers was reported. The bilayer cantilever consists of a
well-known reference layer and a tested film that store residual stresses during the fabri-
cation process. The fully released cantilever deflects due to the difference in the residual
stresses of the two materials. The measured deflections and residual stresses are related
using analytical or finite element models to calculate the Young’s modulus of the tested film.
The proposed models include the intrinsic stress gradients and the use of adherence layers.
Our methodology was applied to previously reported silicon nitride (Si3N4)-tested films
deposited on silicon oxide (SiO2) and silicon (Si) reference layers. The estimated Young’s
modulus for the 288 nm thick Si3N4 tested films deposited on SiO2 was 288.3 GPa. On the
other hand, the estimated Young’s modulus for the Si3N4 tested films deposited on Si with
thicknesses ranging between 43 and 133 nm varied from 242.9 GPa to 213.9 GPa. The results
obtained in this work were in good agreement with reported literature data of Si3N4 films
fabricated under similar conditions. This methodology can be easily used for thin films of
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different materials. However, it is limited by the resolution of the techniques employed
to estimate the residual stresses, deflections, and in-plane dimensions. Future research
will focus on estimating the Young’s modulus of thin films using residual stress-driven
structures but reducing the dependence of the methodology on the Poisson’s ratio of the
tested film and the elastic properties of the reference layer.
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5. Nagy, P.; Rohbeck, N.; Hegedűs, Z.; Michler, J.; Pethö, L.; Lábár, J.L.; Gubicza, J. Microstructure, Hardness, and Elastic Modulus of

a Multibeam-Sputtered Nanocrystalline Co-Cr-Fe-Ni Compositional Complex Alloy Film. Materials. 2021, 14, 3357. [CrossRef]
6. Vlassak, J.J.; Nix, W.D. A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films. J.

Mater. Res. 1992, 7, 3242–3249. [CrossRef]
7. Österlund, E.; Kinnunen, J.; Rontu, V.; Torkkeli, A.; Paulasto-Kröckel, M. Mechanical properties and reliability of aluminum

nitride thin films. J. Alloys Compd. 2019, 772, 306–313. [CrossRef]
8. Hensel, A.; Schröter, C.J.; Schlicke, H.; Schulz, N.; Riekeberg, S.; Trieu, H.K.; Stierle, A.; Noei, H.; Weller, H.; Vossmeyer, T.

Elasticity of Cross-Linked Titania Nanocrystal Assemblies Probed by AFM-Bulge Tests. Nanomaterials 2019, 9, 1230. [CrossRef]
9. Poelma, R.H.; Sadeghian, H.; Noijen, S.P.M.; Zaal, J.J.M.; Zhang, G.Q. A numerical experimental approach for characterizing the

elastic properties of thin films: Application of nanocantilevers. J. Micromechanics Microengineering 2011, 21, 65003. [CrossRef]
10. Chuang, W.-C.; Hu, Y.-C.; Chang, P.-Z. CMOS-MEMS Test-Key for Extracting Wafer-Level Mechanical Properties. Sensors 2012, 12,

17094–17111. [CrossRef]
11. Guo, X.-G.; Zhou, Z.-F.; Sun, C.; Li, W.-H.; Huang, Q.-A. A Simple Extraction Method of Young’s Modulus for Multilayer Films in

MEMS Applications. Micromachines 2017, 8, 201. [CrossRef]
12. Behera, A.R.; Shaik, H.; Rao, G.M.; Pratap, R. A Technique for Estimation of Residual Stress and Young’s Modulus of Compres-

sively Stressed Thin Films Using Microfabricated Beams. J. Microelectromechanical Syst. 2019, 28, 1039–1054. [CrossRef]
13. Gravier, S.; Coulombier, M.; Safi, A.; Andre, N.; BoÉ, A.; Raskin, J.-P.; Pardoen, T. New On-Chip Nanomechanical Testing

Laboratory—Applications to Aluminum and Polysilicon Thin Films. J. Microelectromechanical Syst. 2009, 18, 555–569. [CrossRef]
14. Cuddalorepatta, G.K.; Li, H.; Pantuso, D.; Vlassak, J.J. Measurement of the stress-strain behavior of freestanding ultra-thin films.

Materialia 2020, 9, 100502. [CrossRef]
15. Boé, A.; Safi, A.; Coulombier, M.; Pardoen, T.; Raskin, J.-P. Internal stress relaxation based method for elastic stiffness characteriza-

tion of very thin films. Thin Solid Films 2009, 518, 260–264. [CrossRef]
16. Favache, A.; Ryelandt, S.; Melchior, M.; Zeb, G.; Carbonnelle, P.; Raskin, J.-P.; Pardoen, T. A generic “micro-Stoney” method for

the measurement of internal stress and elastic modulus of ultrathin films. Rev. Sci. Instrum. 2016, 87, 15002. [CrossRef]
17. Cuddalorepatta, G.K.; Sim, G.-D.; Li, H.; Pantuso, D.; Vlassak, J.J. Residual stress–driven test technique for freestanding ultrathin

films: Elastic behavior and residual strain. J. Mater. Res. 2019, 34, 3474–3482. [CrossRef]
18. Timoshenko, S.P. Strength of materials Part 1. In Elementary Theory and Problems; D. Van Nostrand Company, Inc.: New York, NY,

USA, 1955; pp. 88–97.

http://doi.org/10.1063/1.3152772
http://doi.org/10.1016/j.msea.2006.07.015
http://doi.org/10.3390/coatings10070621
http://doi.org/10.3390/coatings10050476
http://doi.org/10.3390/ma14123357
http://doi.org/10.1557/JMR.1992.3242
http://doi.org/10.1016/j.jallcom.2018.09.062
http://doi.org/10.3390/nano9091230
http://doi.org/10.1088/0960-1317/21/6/065003
http://doi.org/10.3390/s121217094
http://doi.org/10.3390/mi8070201
http://doi.org/10.1109/JMEMS.2019.2948016
http://doi.org/10.1109/JMEMS.2009.2020380
http://doi.org/10.1016/j.mtla.2019.100502
http://doi.org/10.1016/j.tsf.2009.06.062
http://doi.org/10.1063/1.4939912
http://doi.org/10.1557/jmr.2019.278


Nanomaterials 2022, 12, 265 18 of 18

19. Howell, L.L. Compliant Mechanisms; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001; pp. 43–45.
20. Lobontiu, N.; Garcia, E. Mechanics of Microelectromechanical Systems; Springer: Boston, MA, USA, 2004; pp. 43–46.
21. Freund, L.B.; Suresh, S. Thin Film Materials: Stress, Defect Formation and Surface Evolution; Cambridge University Press: Cambridge,

UK, 2004.
22. Huang, X.; Liu, Z.; Xie, H. Recent progress in residual stress measurement techniques. Acta Mech. Solida Sin. 2013, 26, 570–583.

[CrossRef]
23. Taubin, G. Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to

edge and range image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 1115–1138. [CrossRef]
24. Freund, L.B.; Floro, J.A.; Chason, E. Extensions of the Stoney formula for substrate curvature to configurations with thin substrates

or large deformations. Appl. Phys. Lett. 1999, 74, 1987–1989. [CrossRef]
25. Thin dielectric films stress extraction. In Micromachined Thin-Film Sensors for SOI-CMOS Co-Integration; Springer: Boston, MA,

USA, 2006.
26. Fujiwara, H. Spectroscopic Ellipsometry: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007; p. 170.
27. Hopcroft, M.A.; Nix, W.D.; Kenny, T.W. What is the Young’s Modulus of Silicon? J. Microelectromechanical Syst. 2010, 19, 229–238.

[CrossRef]

http://doi.org/10.1016/S0894-9166(14)60002-1
http://doi.org/10.1109/34.103273
http://doi.org/10.1063/1.123722
http://doi.org/10.1109/JMEMS.2009.2039697

	Introduction 
	Estimation Methodology 
	Analytical Modeling 
	Bending Rigidity of the Cantilever 
	Internal Bending Moment 
	Solution and Simplification Procedures 

	Finite Element Modeling 
	Accuracy of the Proposed Models 

	Results and Discussions 
	Case 1: SiO2/Si3N4 Bilayer Cantilever 
	Case 2: Si/Si3N4 Bilayer Cantilever 

	Conclusions 
	References

