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Abstract: New approaches into computational quantum chemistry can be developed through the use
of quantum computing. While universal, fault-tolerant quantum computers are still not available,
and we want to utilize today’s noisy quantum processors. One of their flagship applications is
the variational quantum eigensolver (VQE)—an algorithm for calculating the minimum energy of
a physical Hamiltonian. In this study, we investigate how various types of errors affect the VQE
and how to efficiently use the available resources to produce precise computational results. We
utilize a simulator of a noisy quantum device, an exact statevector simulator, and physical quantum
hardware to study the VQE algorithm for molecular hydrogen. We find that the optimal method of
running the hybrid classical-quantum optimization is to: (i) allow some noise in intermediate energy
evaluations, using fewer shots per step and fewer optimization iterations, but ensure a high final
readout precision; (ii) emphasize efficient problem encoding and ansatz parametrization; and (iii) run
all experiments within a short time-frame, avoiding parameter drift with time. Nevertheless, current
publicly available quantum resources are still very noisy and scarce/expensive, and even when using
them efficiently, it is quite difficult to perform trustworthy calculations of molecular energies.

Keywords: noisy quantum processors; variational quantum eigensolver; quantum chemistry

1. Introduction

Computer simulations of quantum systems constitute a crucial tool for a deeper
understanding of behavior and properties of matter at the atomic scale. However, when
investigating the electronic structure of larger molecules, we quickly encounter the limits
of classical computers. The space and time requirements for describing the states, and even
more so for performing optimizations on them, grow prohibitively. Thus, we resort to
many clever types of approximations [1–9]. Oftentimes, though, they are not good enough,
or start to scale badly.

It is natural to imagine that using one quantum mechanical system to simulate another
could be a more efficient approach. The concept of a quantum computer, based on the
laws of quantum physics, was first proposed by Richard Feynman [10]. He envisioned
that the way to deal with the exponential amount of information appropriate to study
physical systems was to use quantum systems as computers themselves. We have come a
long way since then, and today we have access to the first small, programmable quantum
chips, together with 25 years of development of quantum algorithms [11–13] and protocols
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for simulation, optimization, and many other applications in sensing, cryptography and
communication [14–17].

While fault-tolerant, universal quantum computing is still out of reach, much of
today’s development focuses on demonstrating quantum supremacy in problems without
direct applications [18–20]. Our goal here is less ambitious, but more practical, utilizing the
imperfect computers we have at hand for a practical task. We investigate one of the key
promised applications of quantum computing: the understanding of molecular structure.
While the long-term goal is to find more efficient solutions for a problem deemed intractable
on conventional computers for large problem sizes, we want to understand how well we
can do today for small test cases.

The basic task is to solve the many-body Schrödinger equation

Ĥ|ψ〉 = E |ψ〉, (1)

where Ĥ denotes the Hamiltonian operator, |ψ〉 is the system wave function and E repre-
sents the energy of the system. Finding the ground state energy of the studied system is
a difficult optimization problem. However, we now know several promising approaches
for applications in quantum chemistry [21], relying on natural quantum encodings of the
problems, and algorithms utilizing superpositions and entanglement, resulting in efficient
search and energy evaluation.

One way of approximately obtaining the minimum eigenvalue of a Hamiltonian is
to start with an initial guess and iteratively search for optimal parameters. One such
popular approach aimed at solving the many-particle problem is the hybrid classical-
quantum variational quantum eigensolver (VQE) algorithm proposed by Peruzzo et al. [22].
It is an application of the time-independent variational principle that benefits from the
cooperation of classical and quantum computers, and is suitable for use in near-term,
imperfect quantum devices. For example, in [22], the authors used a small photonic
quantum computer to calculate the He–H+ system’s ground-state energies for various
atomic distances. Next, O’Malley et al. [23] studied the properties of the H2 molecule using
Google’s digital quantum computer with superconducting qubits. The researchers used
two different methods for finding the ground-state energies of H2: the phase-estimation
algorithm (PEA) and the variational quantum eigensolver (VQE). The former method can
in principle obtain the answer with arbitrary precision, but only if there are no errors in the
process. As in practice, errors are always present, and so the VQE method works better.
However, it also has its pitfalls, which we aim to elucidate.

In this work, we want to understand the possible sources of errors in VQE calculations
when implemented on current, publicly available superconducting quantum processors.
Our goal is to provide a recipe for the efficient use of the scarce resources, as well as
practical guidance for the starting practitioner, with the aim to run quantum chemistry
computations on current devices.

If our (superconducting) qubits were a closed system, the dynamical evolution of their
state would be fully determined by their initial state and Hamiltonian. In reality, the system
is partially open, the qubits interact with their environment, their internal interactions
are not perfect, and so the overall state is not deterministic. A generalized theory of the
interactions between a quantum state and its environment was derived by Bloch [24],
manifesting as extra degrees of freedom we cannot control. These affect the state of the
system and result in a loss of coherence [25]. Noise comes from controlling the qubits (e.g.,
via pulses applied to the qubits) or reading out the final states of the qubits (there is a finite
probability that the recorded classical bit value will be flipped from the true outcome of a
measurement). We also face errors from random fluctuations of parameters coupled to our
qubits, such as (i) thermal voltage and current fluctuations in control lines or (ii) randomly
fluctuating electric and magnetic fields in the local qubit environment.

Minimizing various sources of noise and errors is a very complex and demanding
task involving materials science, fabrication engineering, electronics design, cryogenic
engineering, and qubit design. Of course, our aim is fault-tolerant quantum processing,
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which is currently out of reach due to the precision and overhead requirements [26].
Meanwhile, we often employ methods for dealing with noisy data. There are many different
approaches to correcting the noisy results (see Refs. [27–36] and references therein), based
on different techniques of noise characterization.

Finally, even hypothetical noiseless quantum processors are prone to stochastic noise.
Our calculations end with estimating the values of Pauli observables in the final state. This
can only be achieved via sampling the outcome probabilities, with a limited number of
shots. Moreover, stochastic noise comes in also through the heuristic nature of the classical
optimizer part of the VQE algorithm. The good news is that we can investigate and control
this noise, thanks to our selection of optimizer, and the parameters of the experimental
runs. We will now attempt to characterize in detail how each source of noise influences the
convergence of the VQE algorithm. We will then look at how to efficiently distribute our
resources to achieve the desired precision of the calculations, if it is possible at all.

2. Methods

There are several preparatory steps before studying molecules on real quantum devices.
We start with the molecular Hamiltonian in the second quantized form [37]. The fermionic
Hamiltonian with one- and two-electron terms (hij and hijkl) is given by

Ĥ = ∑
ij

hij a†
i aj +

1
2 ∑

ijkl
hijkl a†

i a†
j alak, (2)

where a†
i and aj are fermionic creation and annihilation operators. We then need to map this

fermionic Hamiltonian into qubit operators represented in the Pauli operator basis [38]. This
can be achieved in multiple ways, e.g., with the Bravyi–Kitaev [39] or Jordan–Wigner [40]
transformations. Here, we chose the Bravyi–Kitaev transformation [39] of the hydrogen
molecule Hamiltonian, produced using the publicly available qiskit package [41]. The code
for this and all of our following calculations are located in [42]. We also invite the reader to
read the introductory VQE tutorial [43].

Choosing the STO-3G basis set, and the distance between hydrogen atoms set to
0.725 Å, not taking into account the Coulomb repulsiom between nuclei, we arrive at
a 4-qubit Hamiltonian

ĤH2 = c0 1 + c1 Z0 + c2 Z1Z0 + c1 Z2 + c2 Z3Z2Z1 + c3 Z1 + c4 Z2Z0

+ c5 X2Z1X0 + c6 Z3X2X0 + c6 X2X0 + c5 Z3X2Z1X0 (3)

+ c7 Z3Z2Z1Z0 + c7 Z2Z1Z0 + c8 Z3Z2Z0 + c3 Z3Z1.

The Z and X terms are Pauli operators, and the coefficients ci are integrals calculated
using the qiskit.chemistry package [44]:

c0 = −0.80718, c1 = 0.17374, c2 = −0.23047,
c3 = 0.12149, c4 = 0.16940, c5 = −0.04509,
c6 = 0.04509, c7 = 0.16658, c8 = 0.17511.

(4)

Note that the Hamiltonian in Equation (4) commutes with Z1 and with Z3. Therefore,
the Hamiltonian is block-diagonal with 4 blocks, each corresponding to a particular com-
putational basis setting of qubits 1 and 3. This can be used to find a Hamiltonian with the
same ground energy expressed in 2-qubit space [44]:

ĤH2 = c0 1 + c1 Z0 + c1 Z1 + c2 Z1Z0 + c3 X1X0, (5)

with the coefficients
c0 = −1.05016, c1 = 0.40421,
c2 = 0.01135, c3 = 0.18038.

(6)
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With two equivalent formulations (both Hamiltonians have the same ground-state
energy) of the problem in hand, we were able to investigate which form is more amenable to
VQE optimization. They gave us a chance to explore various problem sizes, parametrized
state ansatzes, energy landscapes, and investigate how noise affects the procedures, as the
optimizations will involve different numbers of gates. Note that the choice of the STO-3G
basis set here was deliberately chosen to keep the studied Hamiltonian relatively small.
However, it is possible to formulate the qubit Hamiltonian of the hydrogen molecule using
another, possibly larger, basis set. This naturally leads to a larger problem size; for example,
consider the 6-31G basis set, which leads to 8-qubit Hamiltonian with 185 terms.

We could then run the VQE algorithm. Its input is a Hamiltonian expressed in terms of
qubits and its aim is to find the eigenvector with the lowest eigenvalue. For this, the VQE
iterates these four steps:

1. Quantum: prepare a parametrized quantum state on a quantum device;
2. Quantum: measure each Hamiltonian term (requires repetitions of step 1);
3. Classical: sum the expectation values of the Hamiltonian terms to estimate the energy

of the parametrized state;
4. Classical: use the energy value to update the parameters of the trial quantum state.

until we met the convergence criteria of the classical optimization method.
To minimize the expectation value of the energy, we chose the simultaneous perturba-

tion stochastic approximation (SPSA) [45–47], classical optimization method implemented
in qiskit. SPSA is a pseudo-gradient method for optimizing problems with varying num-
bers of unknown parameters. SPSA starts with the initial vector of parameters~θ0. In each
iteration, the parameter vector is simultaneously shifted twice as

~θ±k = ~θk ± ck
~∆k, (7)

where ck is a preassigned positive number, k is the iteration number and ~∆k is a randomly
generated vector (from the Bernoulli distribution). To approximate the gradient at~θk, we
utilized the gradients at~θ+k and~θ−k as

~gk(
~θk) =

〈
ψ(~θ+k )

∣∣∣H∣∣∣ψ(~θ+k )
〉
−
〈

ψ(~θ−k )
∣∣∣H∣∣∣ψ(~θ−k )

〉
2ck

~∆k. (8)

In each iteration step, we thus need to measure the energies of two quantum states,
prepared with parameter settings~θ+k and~θ−k . We then updated the underlying parameters
~θk to

~θk+1 = ~θk − ak~gk(
~θk), (9)

where ak is a preassigned positive number and ~gk(
~θk) is the approximated gradient (8) that

depends on~θ+k and~θ−k .
The optimization procedure runs for a number of iterations controlled by the maxiter

parameter (in qiskit’s implementation). We then updated the parameter vector~θk, and mea-
sured the final value of energy for the underlying optimized parameters. There is a subtlety
that influences the total number of function evaluations. Qiskit’s implementation of SPSA
includes additional initial exploration—a calibration phase that depends on the maximum
number of iterations with min{maxiter/5, 25} steps.

There are many possible choices for the quantum circuit that prepares the trial state
for simulating the molecules using VQE. We employed the hardware-inspired (easy to
implement) RyRz and Ry variational forms, accompanied by linear entanglement [48]. The
circuits consist of two main layers: (i) a layer of parametrized Ry or Ry and Rz single-
qubit rotations applied to each qubit in the quantum register, alternating with (ii) an
entanglement-creating layer of CNOT gates. We could easily alternate these two layers,
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creating circuits of varying depths, increasing the complexity of the ansatz and the number
of parameters to be optimized.

The simplest variational circuit of depth d = 1 consists of just the entanglement-
creating layer, nested between two parametrized rotation layers. The 4-qubit variational
circuits of depth d = 2 can be seen in Figure 1. For q qubits and depth d, the RyRz
variational circuit has 2q(d + 1) parameters, single-qubit rotations, while the Ry variational
circuit has q(d + 1) of them.

p
o
st
-r
o
ta
ti
o
n
s

p
o
st
-r
o
ta
ti
o
n
s

Figure 1. A scheme of the 4-qubit quantum circuits for calculations of the ground-state energy.
The circuit depth was set to 2. Dashed lines represent blocks of two layers—the entangled layer and
the rotation layer. (a) The RyRz variational circuit. (b) The Ry variational circuit.

Our qubit Hamiltonians (3) and (5) contain terms with the Pauli X operators. To esti-
mate their expectation values, we needed to measure them in a non-diagonal basis. As only
computational-basis measurements are available on the quantum processors, we needed
to utilize basis-switching single-qubit gates (post-rotations). For the Pauli operator X, we
thus used a π/2 rotation around the y axis, performed by gate Ry(π/2), and subsequently
took measurements on a computational (Z-)basis.

Let us note that we do not need to estimate all of the Pauli terms in our Hamiltonians
individually. We can save resources and reduce the number of required measurements and
state preparations by grouping the Pauli operators that require the same post-rotations in
the tensor product basis sets [27].

To access the real quantum devices, we used the publicly available cloud-based
quantum computing platform IBM Quantum [49]. We found that access to real quantum
processors is still limited for a larger systematic study of different types of errors and noise.
Therefore, we heavily relied on classical simulations of quantum processors. The simula-
tions were performed both in an ideal noise-free manner and including noise. Importantly,
we used the noise-related parameters of the IBM quantum processors, which are publicly
available (and changing) on a daily basis. Thereby, our simulations could more closely
mimic the actual gates and computations executed on a real device.

The published noise-related data include an approximate noise model consisting
of: (i) single-qubit and two-qubit gate errors—depolarizing errors followed by thermal-
relaxation errors; (ii) single-qubit readout errors on all measurements; and (iii) all errors
including gate, readout and thermal-relaxation errors. Since calibration data change fre-
quently, in noisy simulation results we used the error model from the same calibration for
most of the trials.
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Finally, in some tests involving real quantum hardware , we employed a simple error-
mitigation method. It uses least-squares fitting to obtain the error-mitigated outcome
probabilities by using a calibration matrix [50].

3. Results and Discussion

There are several possible sources of error for the energies calculated by the VQE:
first, the statistical errors in intermediate and final energy estimations, caused by the
probabilistic nature of quantum mechanics; second, Hamiltonian representation and state-
preparation ansatz errors, caused by approximations in the Hamiltonian (restricted basis
set), as well as the space of states we search over, given by our parametrized quantum
circuit; third, hardware errors present in noisy quantum devices running the quantum
part of VQE. We study these using simulators of noisy devices, as well as real quantum
processor runs. We will now investigate the influence of these errors, and discuss ways and
the costs of mitigating them. We will do this for the H2 molecular Hamiltonians from the
previous section.

Note that there are several factors which limit the number of gates/circuit repetitions
we can execute. First, we have only limited access to the quantum processors, which
severely restricts the number of shots we can use for each datapoint. Second, we do not
have unlimited time either. Third, the gates themselves are noisy, so increasing system
sizes or gate numbers will not work without serious error mitigation. Thus, simply increas-
ing the number of repetitions/circuit size is not a solution to these errors, and we must
work harder on error mitigation to obtain trustworthy results—molecular energies with
chemical precision.

3.1. Number of Quantum Computer Calls

While searching for optimal parameters, the VQE optimization requires a quantum
subroutine: prepare a candidate state and measure its energy. Even if we imagined having
a noiseless quantum processor, its probabilistic nature and impossibility of measuring
noncommuting observables simultaneously would force us to rely on averages over several
measurements, which carry stochastic noise. We thus start by studying how the number of
circuit (gate) evaluations on a quantum processor influences the convergence of the VQE
algorithm, on ideal quantum devices.

Our goal is to understand and efficiently fight the influence of stochastic errors,
inherent in VQE regardless of the quantum hardware. We want to optimally utilize a
limited number of gate executions. For this, we have two options. First, we can increase the
number of shots (controlled by the shots parameter in the programs) for each evaluation
of readout probabilities. Second, we can increase the maximum number of iterations (the
parameter maxite) allowed for the classical optimization subroutine.

Increasing the number of shots, improves the precision of the measurement outcomes
for each of the terms in (5) or (3). This makes the energy function more stable and easier for
the classical optimization routine to minimize. Meanwhile, increasing the allowed number
of iterations for the classical optimizer provides it with a better chance to get out of existing
local minima and/or to fine-tune the final output value, but again this comes at the cost
of increasing the number of times a quantum computer needs to be accessed. Intuitively,
it can be expected that increasing the number of quantum gate executions in either case
increases the precision of the output. However, presently, the number of gate executions on
a quantum computer is a limiting factor for most users—access to real quantum processors
is either restricted or quite costly [51]. Additionally, an excessive number of quantum gate
executions significantly impacts the real running time of the algorithm.

In this light, it would be interesting to find the minimum number of quantum gate
executions that result in VQE output within chemical precision of the real energy value.
In our study, we ran the algorithm for different settings of shots and maxiter parameters,
on the two-qubit hydrogen molecule Hamiltonian, using the noiseless quantum simulator.
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Each combination of the settings was run 1000 times. We present the experimental results
in detail in Table A2 (see Appendix B), and visualize it here in Figures 2 and 3.

Figure 2. VQE energy estimate improvement with number of shots. We calculated the ground-
state energy of H2 using the VQE on a two-qubit system, the SPSA optimization algorithm with
unrestricted maximum interations, and the Ry variational circuit accompanied by linear entangle-
ment. The red line represents the physical ground-state energy (−1.86712 Hartree) and the light-red
background represents the chemical accuracy regime (±0.0015 Hartree). (a) A boxplot of VQE results,
with each box representing 1000 independent runs of the algorithm. (b) A statevector simulator
calculation of the energies for the 1000 result states from (a). Note that all the energies are above the
real ground-state energy.

Figure 3. (a–d) A boxplot visualization of 1000 optimized ground-state energies for various maximum
numbers of iterations of the SPSA optimizer. We performed calculations using the Ry variational
form. The red line represents the physical ground-state energy (−1.86712 Hartree) and the light-red
background represents the chemical accuracy (±0.0015 Hartree). The shots parameter was set to:
(a) 512, (b) 1024, (c) 4096, (d) 8192.
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We visualized the data using a boxplot. The box shows the middle two quartiles of
the data (interquartile range, IQR), with a marked median. Outliers are determined using
Tukey fences [52]: a distance of 1.5 times the IQR in each direction, as in Figure 2a, or the
extremes of our data, as in Figure 2b, where all of our computed energies fall above the red
line, close to the box.

From Figure 2a, we can see that with an ideal quantum computer and unrestricted
iterations of the SPSA algorithm, VQE performs increasingly better with the increase in
the shots parameter. The limit of infinitely many shots is simulated using a statevector
simulator, which calculates the outcome probabilities directly from the laws of quantum
mechanics. It is important to note that when using a finite number of shots, the algorithm
can also output energy values lower than the actual minimum energy. Thanks to stochastic
noise, the estimates of outcome probabilities for the Pauli terms in (5), calculated from a
limited number of shots, can be non-physical. To obtain realistic final optimized energies,
one should thus invest in a precise final energy readout for the optimized state, using a
larger number of shots.

This also raises another interesting question: can the inaccuracy in outcome proba-
bilities be overcome by the SPSA algorithm? In other words, are the states discovered by
SPSA actually close to the minimum eigenvector of the Hamiltonian, and is most of the
energy spread seen in the results caused by the small number of shots? We recalculated the
energies of the discovered states in Figure 2a, using the statevector simulator. The results
(see Figure 2b) somewhat surprisingly show that indeed, most of the discovered states
have real energies within the chemical accuracy.

In the context of trying to minimize quantum computer calls, this suggests that the
VQE algorithm can be run with a small number of shots during the run of the classical
optimization function and after the optimization produces the final result, the energy of the
candidate state with minimum energy needs to be recalculated once more, using a much
larger number of shots. However, for this to work, we have to use a classical optimizer
which can deal well with noisy data. We could use Bayesian methods [53,54], which could
be quite slow, with the need to invert large matrices to guess the next points for a search.
Alternatively, we could use other optimization methods such as NEWUOA [55], which
can be adapted to work on noisy data. Note that, in the initial stages of this work, we have
used the COBYLA optimization method [56], and concluded that very large numbers of
shots were necessary for the method to converge at all. As described in the Section 2, in the
end we decided on the use of SPSA, thanks to its natural noise resilience, as it explores
random points around the current parameter vectors.

On the other hand, at least for our selected Hamiltonian, increasing the maxiter
parameter and waiting longer for convergence seems to have diminishing returns after
surpassing a value of approximately maxiter = 100. We confirm this in detail in Figure 3.
There, we simulate 1000 VQE calculations for various combinations of maxiter/shots
settings. For the same shots parameter value, increasing the maxiter parameter only
decreases the number of outliers, but the spread of the data remains almost unchanged.
Both of these observations suggest that only a small fraction of runs can benefit from the
increase in the maxiter parameter beyond 100.

To evaluate the energies more precisely after the last step, we recalculated energies
using state vector simulator for shots parameter set to 512 and 1024, with maxiter settings
50, 75 and 100. Results of this calculation can be found in Figure 4 and they suggest that the
combination of shots = 1024 and maxiter = 75 already provides the median energy in the
chemical accuracy for the 2-qubit H2 Hamiltonian.
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Figure 4. A recalculation of energies using statevector simulator for experiments with maxiter
∈ {50, 75, 100}, and (a,b) shots = 512; (c,d) shots = 1024. The red line represents the physical ground-
state energy (−1.86712 Hartree) and the light-red background represents the chemical accuracy
(±0.0015 Hartree).

3.2. Choice of Hamiltonian and State-Preparation Ansatz

In this section, we study the influence of the size and form of the quantum circuit used
in the VQE calculation. The most straightforward way to reduce the complexity of the VQE
algorithm is to find the smallest possible qubit representation of the studied Hamiltonian.
Indeed, much effort today is focused on efficient encodings of fermionic Hamiltonians
(see e.g., [57,58] and references therein), as getting rid of extra qubits (and operations on
them) decreases noise and can avoid space limitations. To highlight the importance of
finding minimal representations, we have chosen two equivalent variants of H2 molecule
Hamiltonian, one using 2 and another one using 4 qubits (see Section 2).

Once we have chosen a Hamiltonian and its qubit implementation, VQE needs a choice
of the variational circuit for state-preparation. We have a vast choice of parametrized gates,
arrayed in multiple rounds. This results in varying numbers of classical parameters to be
optimized, as well as different reachable quantum states (ansatz quality), with varying
amounts of entanglement [59–61]. Here, we focus on two types of variational circuits—the
Ry and the RyRz linear forms with a varying number of rounds, shown in Figure 1 for 4
qubits (the 2-qubit circuits are obvious simplifications).

Note that all the results in this subsection were obtained using a noiseless quantum
simulation to highlight the influence of the Hamiltonian/ansatz choice in the ideal case.
Of course, once we consider noise and statistical readout errors, the Hamiltonian/circuit
choice translates to more errors, thanks to wider circuits with a larger number of gates.

In Figure 5, we depict our results for the convergence of the VQE algorithm, depending
on the Hamiltonian choice (2- or 4-qubit), and the ansatz complexity (type and number of
rounds).

The two-qubit Hamiltonian (5) turns out to be simple enough that the depth of the
variational ansatz (number of layers) does not significantly influence the final optimized
energies. Moreover, we can see that the simpler Ry ansatz outperforms RyRz ansatz.
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This confirms the intuition that the simplest ansatz containing the solution will also have
the best performance, thanks to solution space having less parameters to optimize over.
Additionally in noisy regime, simpler ansatz requires less gates for implementation, leading
to further advantage.

On the other hand, for the 4-qubit Hamiltonian (3), both Ry and RyRz variational
forms with 1 layer are not expressive enough and the search space does not contain the
state with the lowest energy. Using two layers already alleviates this problem. Again, we
see that the Ry form performs better. Using a 12-parameter, two-level Ry ansatz achieves
better convergence than the 24-parameter, two-level RyRz ansatz. Moreover, if we allow
the Ry form with 24 parameters as well, the circuit has depth 5 and outperforms the RyRz
ansatz even more significantly. This can be partially explained by the fact that for the same
number of search space parameters, the Ry ansatz can achieve more intricately entangled
states, due to the increased number of entanglement layers.

Figure 5. Comparison of the VQE energies for H2 using the Ry and RyRz variational circuit forms.
We used a noiseless quantum simulator and 4096 shots; (a) 2-qubit Hamiltonian. (b) 4-qubit Hamilto-
nian. The red line represents the physical ground-state energy (−1.86712 Hartree) and the light-red
background represents the chemical accuracy (±0.0015 Hartree).

These results only underline the importance of an efficient choice of Hamiltonian en-
coding and ansatz parametrization. More qubits mean the need for more intricate ansatzes,
while introducing more statistical errors when estimating the energies of individual terms,
and thus affecting the overall readout precision, even in an ideal (noiseless) case. Further,
more complex Hamiltonians can cause the optimization algorithm to converge to a local
minimum, thus causing a systematic error. This is in more detail treated in Appendix A.

3.3. Imperfect Quantum Devices

So far, we studied the convergence of the VQE algorithm assuming a perfect quantum
computer available for the quantum subroutines. This analysis was possible thanks to
relative simplicity of classically simulating the few-qubit quantum circuits used during our
VQE algorithm runs. We wish to eventually scale up the calculations, and obtain results
from the hybrid classical-quantum VQE which are not available classically. For this, we
will have to rely on real quantum devices. Of course, current quantum processors are far
from perfect, so the calculations will be inherently noisy, influencing also the convergence
of VQE algorithm.

Let us group the possible errors into two basic types—gate errors and readout errors.
This is a natural divide, since the number of measurement (readout) errors scales only with
the number of qubits and can be mitigated with classical techniques. Meanwhile, the gate
errors inevitably scale with both depth of the computational ansatz and the number of
qubits, unless we use error correction/mitigation techniques.

In Figures 6 and 7, we show the convergence of the VQE using simulations of noisy
quantum processors. To obtain realistic parameters for the simulation, we used the error
characterization of the real IBM devices, obtained directly from qiskit.
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Figure 6. A comparison of VQE results with noise calibration from two different dates. We used
quantum backend ibmq_santiago. All the other parameters in the simulation were kept the same, using
4096 shots and the RyRz variational ansatz. The red line represents the physical ground-state energy
(−1.86712 Hartree) and the light-red background represents the chemical accuracy (±0.0015 Hartree).

Figure 7. The calculations of H2 energy were performed using simulator of real quantum hardware
using a 2 and a 4 qubit Hamiltonian. We used quantum processor ibmq_santiago with noise model
from December 14 2020. The number of shots was set to 4096. We minimized energy with the
SPSA optimizer: (a) in case of 2-qubit Hamiltonian we used unrestricted maximum number of
iterations and the Ry variational form with depth 1, (b) in case of 4-qubit Hamiltonian the maximum
number of iterations was set to 400 and we used the Ry form with depth 2. The red line represents
the physical ground-state energy (−1.86712 Hartree) and the light-red background represents the
chemical accuracy (±0.0015 Hartree).

Our first observation is that the quality of calibration of recent experimental quantum
processors changes frequently. Not only that, it significantly influences the convergence,
as we demonstrate in Figure 6. There, we visualize the convergence of 1000 trials with the
same settings, using calibration data from different dates, showing results differing by 10%.

Second, we observe that for these small circuits, the effect of measurement error is
more significant than the gate errors. As we study this further in Figure 7 for the 4-qubit
Hamiltonian (3), we find that readout errors still affect the convergence more, but the
effect is less pronounced. In Figure 7a we use the 2-qubit, 1-round Ry variational form,
which requires 4 single-qubit gates + 1 CNOT, and up to 2 Pauli operators for readout.
For Figure 7b, we recall results presented in Figure 5, and choose the 4-qubit, 2-round
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Ry variational form, which requires 12 single-qubit gates + 6 CNOTs, and up to 2 Pauli
operators for readout. The number of gates (circuit width × depth), and thus gate errors,
grows faster than the number of estimation terms, which still scales with the circuit width.
Thus, we expect that the effect of readout error will become less prominent for larger
Hamiltonians compared to the gate errors. Moreover, we can also implement various
readout error mitigating strategies—e.g., avoiding systematic bias by using bit flips before
the final measurements.

3.4. Convergence of VQE on Real Quantum Hardware

Finally, in this subsection, we look at how the convergence predicted by the noisy simu-
lator corresponds to convergence on real quantum hardware. For this, we performed an ex-
perimental runs on the ibm_lagos quantum processor, with maxiter = 75 and shots = 1024,
and compared it to noisy simulation results with the same parameter settings. To mitigate
the readout errors we performed a simple mitigation routine described at the beginning
of this Section. In Figure 8, we observe that in fact the predictions agree fairly well with
practice. Further, we tested our hypothesis that the discovered states are very close to opti-
mal ones, but their energies have to be evaluated more precisely. To this end we calculated
their energies using 40,000 shots on the ibm_lagos quantum processor (40,000 shots result in
≈0.5% error in energy calculations) as well as using a statevector simulator. In Figure 8, we
can see that both of these techniques decrease the spread of the data points. However, only
the statevector simulator consistently evaluates energies within the chemical accuracy from
the exact ground-state value. This only shows that evaluating the energies using a large
number of shots still suffers from hardware errors, which are not present when using the
statevector simulator. We conclude that a simple VQE implementation on real quantum
hardware does not consistently find the minimum energy within the chemical accuracy.
Nevertheless, using both error-mitigation and precise energy readouts, one can obtain a
trustworthy result, taking the lowest of the precisely evaluated energies.

Figure 8. A comparison of results obtained with a noisy quantum simulator with error mitigation
(orange points and box plot), with real runs of the ibm_lagos quantum processor (blue points). The
energies of real runs were subsequently recalculated with greater precission using 40,000 shots of
the ibm_lagos quantum processor (grey points). Finally, we recalculate their energies also with a
statevector simulator (red diamonds). The red line represents the physical ground-state energy
(−1.86712 Hartree) and the light-red background represents the chemical accuracy (±0.0015 Hartree).
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4. Conclusions

In this work, we provided quantum chemistry calculations with the variational quan-
tum eigensolver on real quantum hardware. We analyzed the influence of different types
of errors on the convergence of VQE. We divided them into several categories and studied
them separately to understand their impact and to find ways of avoiding them, while using
our resources efficiently. For this, we used noiseless and noisy classical simulations, as well
as publicly available superconducting quantum processors.

The errors resulting from the probabilistic nature of quantum mechanics significantly
differ from the hardware errors. While the statistical error increases the spread of VQE
outcomes around the optimum, gate and readout errors not only influence the spread of
the outcomes, but often prevent the VQE from finding the optimum altogether.

If we could use noiseless hardware, the stochastic errors could be mitigated by in-
creasing the number of shots, and obtaining precise energy estimates. This turns out not
to be that important in the intermediate steps of iterative algorithm, but crucial at the
end. Even with smaller numbers of shots per iteration, our optimization was able to find
near-optimal states. However, to rule out unphysical results (energies below the actual
minimum energy), and also to avoid overestimating the energy, we must invest shots into
the final, precise readout. We learned that this approach can significantly reduce the overall
cost (gate evaluations) for VQE, which is important, while access to real devices (and large
runs) is limited, as well as time consuming.

Second, it is crucial to search for efficient encodings and good trial-state ansatzes
(hardware, and problem-motivated). It saves on both gate evaluations, as well as on
optimization complexity, reducing the number of required parameters to search over. We
have demonstrated this in the comparison of the 4-qubit and 2-qubit Hamiltonians, and two
types of ansatzes, with varying depths/numbers of parameters, for the same molecular
hydrogen problem.

Finally, real devices’ parametrization changes with time, and it is crucial to choose
to run your experiments at times when they are calibrated well. Moreover, the current
levels of noise are prohibitive, and add up so that the final results do not straightforwardly
reach the desired chemical precision. To avoid this, error mitigation must be used, for the
readouts (which contribute a surprising amount of error) as well as inside of the circuit.
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Abbreviations
The following abbreviations are used in this manuscript:

VQE Variational Quantum Eigensolver
STO-3G Slater-type Orbital basis set with each orbital expanded into 3 Gaussian functions.
6-31G A double-zeta basis set, which uses six primitive Gaussians to describe each core

atomic orbital. Further, each valence orbital is described by two basis functions.
The first one is composed of a linear combination of 3 primitive Gaussian functions
and the other one is composed of a single primitive Gaussian function.

SPSA Simultaneous Perturbation Stochastic Approximation

Appendix A. Convergence to Local Minima

In this Appendix, we go beyond energy minimization and ask: are we finding the
correct (ground) state? Our analysis above is primarily focused on identifying the impact
of different types of noise and errors that are currently commonly occurring in physical
realizations of superconducting quantum processors. We have purposely chosen the H2
molecule as a material system of our case study because the ground state of H2 is well
known. In fact, it is a frequent textbook example in quantum chemistry and, therefore, it
is rather straightforward to show the impact of noise. Importantly, there are two implicit
underlying assumptions of our analysis. First, we expect the minimization procedure
within our methodology to aim solely at the ground state. Second, we assume that all the
obtained values, covering a wide energy range, are indeed ground-state-related solutions
that differ from the known exact ground-state energy only due to the noise. These two
aspects are mutually related and the validity of our assumptions sensitively depends on
both the minimizing method and the studied Hamiltonian. Had the noise-related range of
energies been wider than the energy separation to the next higher-energy eigenvalue(s),
and had this excited-state eigenvalue been found by the minimization procedure, yet
another “source of errors” would have affected our analysis. This error type would be
methodological, rather than noise related. We address this issue below and show that the
analysis focused on only the eigenvalues, i.e., energies, is insufficient. Note that while
estimating the final energy, we performed many measurements, and thus obtained a list of
(significant) probabilities. This is not a full tomography, which would be prohibitive for
large-scale systems. We only estimate the expectation values of Pauli operators present
in the Hamiltonian. In our case, we estimate probabilities for computational basis states
to estimate expectation values of Pauli Z operators, while estimating Pauli X operators
on two of the qubits forces us to carry out measurements on a rotated basis. We will now
study how to utilize the resulting vectors of probabilities to distinguish different classes of
the states produced by VQE.

Figure A1 shows our results for the 4-qubit Hamiltonian (3) in an energy range of
(−1.9,−1.1) Hartree. We can notice a set of clearly outlying values above the energy of
−1.3 Hartree. They can be identified in a very straightforward manner because they are
separated from the main set of ground-state-related energies by quite a wide energy range
that is free of other data points.
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To discern what these outlying energies represent we next evaluate higher-energy
eigenvalues of the studied qubit Hamiltonians of H2. The eigenvalues of the 4-qubit
Hamiltonian of H2 molecule, as determined using classical techniques, are as follows:

(−1.867,−1.262,−1.262,−1.242,−1.242,−1.242,−1.160,

−1.160,−0.881,−0.465,−0.465,−0.341,−0.211, 0, 0.227).

Their inspection reveals that while the ground-state energy of H2 is very well separated
from the other higher-energy eigenvalues, there are several eigenvalues in the energy range
of (−1.3,−1.1) Hartree, albeit some of them degenerated. A challenge that we face is to tell
(i) those cases that are noise-related to the ground-state energy from (ii) those that are (again
noise-related) to the other eigenvalues. In what follows we propose to distinguish between
sets of values corresponding to different eigenvalues by applying a suitable similarity index
to the measured probabilities of different basis states.

Figure A1. Ground-state energies of the H2 molecule from 200 calculations on a noise-less simulator,
using the 4-qubit Hamiltonian (3).

Before we start discussing similarity measures, it is worth noting a few facts related
to the measured probabilities of basis states. They are sets of non-negative real numbers
smaller or equal to one. The number of elements in each set is equal to n = 2q, where q is
the number of qubits, and the sum of all elements in each set of probabilities equals to one.
As discussed above, the measured sets of probabilities are multiplied by values of integrals
within the qubit Hamiltonian to evaluate the energies.

Our analysis of similarities of vectors of measured probabilities below includes two
different measures. The first one is the Jaccard-Tanimoto (J-T) index, also known as the
Jaccard similarity coefficient. It is used for gauging the similarity and diversity of sample
sets. It was developed by Paul Jaccard [62] and independently formulated again by T.
Tanimoto [63]. The Jaccard-Tanimoto index of two sets X and Y is defined in general as the
ratio of intersection of the two sets over their union J − T(X, Y) = |X ∩ Y|/|X ∪ Y|. For
two vectors {xi}, {yi} with all components non-negative (xi ≥ 0, yi ≥ 0) and the same
length (i = 1, ..., n) it is evaluated as J − T({xi}, {yi}) = ∑i min(xi, yi)/ ∑i max(xi, yi).
The maximum similarity is characterized by the J-T index equal to one, while very low
similarity by the J-T index equal to zero. The very many applications of J-T index include,
e.g., various forms of image analysis or identification of words that are mistyped by the
users of numerous computer and cell-phone/smart-phone applications.

The second measure is the scalar (inner) product of the vectors representing the set of
measured probabilities. It is worth noting that while the vectors of measured probabilities
have the sum of components equal to one, their length in a vector sense is in general not
equal to one. The length of such a vector is equal to one only when one of the basis states
has the probability equal to one and all others have the probability equal to zero. It is also
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the maximum length in the vector sense. For any other distribution of probabilities the
length is lower than one. The other extreme case with the shortest length of the vector
has all n basis states with the same probability, equal to 1/n length, and the length of this
vector is 1/

√
n. Therefore, all the probability vectors are normalized before we evaluate

their scalar product in our analysis.
As individual additive parts of the Hamiltonian can be divided into two groups with

each requiring a different topology of the quantum circuit, we have evaluated similarities
as obtained for two sets of 200 vectors of measured probabilities that we below call circuit
0 (all qubits measured in the computational basis) and circuit 1 (qubits 1 and 3 measured
in the computational basis and qubits 0 and 2 measured in the X basis). Figure A2 shows
the values of both the Jaccard-Tanimoto (J-T) similarity index (Figure A2a,b) and scalar
product (Figure A2c,d) for both the circuit 0 (Figure A2a,c) and circuit 1 (Figure A2b,d).
The values plotted for each vector in each set were determined as averaged values over 200
J-T/scalar-product similarities of a given vector and all 200 vectors in each set.

Figure A2. Comparison of similarities of vectors of measured probabilities as functions of energies.
The plotted values are averaged ones using all 200 values and evaluated using either the Jaccard-
Tanimoto (J-T) similarity index (parts (a,b)) and scalar product (parts (c,d)) for both the circuit 0 (parts
(a,c)) and circuit 1 (parts (b,d)).

Figure A2 shows that the averaged similarity values are decreasing with increasing
energy from its ground-state value. Without noise, the probability vector of circuit 0 has
the |1100〉 basis state with probability close to 1 and the other basis states have probability
close to 0. From the 200 calculations, 188 of them, i.e., 94% , exhibit variations of this
scenario and these results cover energies up to −1.7 Hartree. The J-T similarity index
values (see Figure A2a) show a weakly decreasing trend with increasing energy. In contrast,
the averaged scalar product of all of these 188 probability vectors has nearly identical value
(see Figure A2c). As another extreme, about 5% of vectors of probabilities have very low
averaged J-T similarity value close to zero and the energies from the range between −1.3
and −1.2 Hartree. These we, therefore, identify as excited states because their vectors of
probabilities are very different from the case when the |1110〉 basis state has the probability
close to one. The remaining 1% cases plotted in Figure A2a,c are characterized by energies
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and similarity index values that are in between the region close to the ground state on one
hand and that of excited states on the other hand. We believe that these are essentially
erroneous calculations in which the SPSA algorithm failed to converge to a local minimum.

The above mentioned percentages (94% states similar to the ground state, 5% similar
to the excited states and 1% erroneous states) explain the actual value of the averaged
similarity index plotted in Figure A2. As 94% vectors of probability vectors are related to
the ground state, they are mutually similar and contribute with values close to one. Their
averaged similarity index is lower than one because it is reduced by their medium similarity
to the erroneous states (1% of contributions into the sum) and nearly zero similarity value
with the excited states (another 5% of contributions). Complementarily, the excited states
have nearly zero similarity index with 94% of all probability vectors as well as erroneous
states and, therefore, their averaged similarity index is close to zero. Quite a similar
situation is that of the intermediate values of the erroneous states that are similar to both
the ground-state related states as well as the excited states.

The situation is more complicated in the case of circuit 1 (see Figure A2b,d) when the
measurements of the ground-state result in outcomes (|0100〉, |0110〉, |1100〉 and |1110〉)
with rather similar probabilities (they differ by about 1/16). The J-T similarity index
performs quite similarly (see Figure A2b) as in the case of circuit 0 (see Figure A2a) but
some of the excited states show significant non-zero values (up to 0.4). This trend is a lot
more pronounced in the case of scalar product (see Figure A2d) when the values can reach
as high as 0.74.

While future studies focused on similarity analysis in other systems are critically
needed, a few general conclusions can be drawn. First, the similarity analysis of vectors of
measured probabilities can be very fruitful when assessing the computed energies. The
similarities seem to be able to tell cases that are just noisy-variants of the ground state from
those that are (i) related to other eigenvalues of higher-energy excited states or even (ii)
plainly erroneous cases. Second, the two tested similarity measures, the Jaccard-Tanimoto
(J-T) similarity index and the scalar product, perform much better when the ground-state
and/or excited states are associated with the situation when one of the basis states has
probability close to 1 while the others have it equal to 0. It would be thus advantageous to
develop methods associating the eigenvalues with these cases. Third, while the similarity
index based on the scalar product identifies states related to the ground state by noise a lot
more clearly than the J-T index, it tends to overrate the similarity of the excited and plain
erroneous states. Therefore, the J-T similarity index seems to better capture continuously
varying levels of similarity of different states. Fourth, we have analyzed averaged similarity
measures based on the similarity between each vector of probabilities with respect to all
other such vectors in our data set. Our analysis does not profit from the fact that we can
estimate the vector of probabilities related to the ground state (it has the lowest energy) and
determine the similarity with respect to this particular state. As the VQE can be applied to
determine also the excited states, the same procedure with determination of the similarity
analysis can be applied also to the excited states and the their noise-related states can be
more identified. Lastly, when an eigenvalue is associated with the probability vector where
one of the basis states has the probability equal to one and others zero, all other vectors that
are noise-related to it (and that have probabilities redistributed elsewhere due to the nose
and errors), can be used for determination for effective error rates and reversely applied for
correcting for these errors.

Appendix B. Data Tables

Let us now present the data behind the figures in the main text. First, in Table A1,
we list the median ground-state energies and the percentages of data falling into chemical
precision range (with and without precise recalculation of energies), for various settings
of the number of shots and maxiter = 1000. This is followed by Tables A2 and A3 in
which we elaborete in more detail on energy values obtainable by various shots and
maxiter settings. Then, in Table A4, we list the results underlying Figure 5, comparing
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state preparation ansatzes for 2- and 4-qubit computations. Further, in Table A5, we list the
results highlighting the variability of actual hardware when performing runs on different
dates, plotted in Figure 7. Finally, in Table A6 we show energies underlying the real runs
presented in Figure 8.

Table A1. Summary of the medians of 1000 optimized ground-state energies and the percentage
of outcomes that were found within chemical precision of exact energy (−1.86712± 0.0015 Ha) for
different settings of shots parameter and maxiter = 1000. Additionally, in the middle two columns,
the final energy is the direct outcome of the SPSA algorithm and the last two columns show the
recalculation using the statevector simulator. The Ry variational ansatz was used. The error margin
of 3 percent was estimated based on the standard deviation of 1000 identically distributed trials.
These data are the basis for Figure 2.

Simulator Shots Median [Ha] % Recalculation
Median [Ha] %

qasm_simulator

512 −1.86637 10.5± 3 −1.86675 93.8± 3
1024 −1.86723 14.8± 3 −1.86693 98.5± 3
2048 −1.86667 21.1± 3 −1.86703 99.1± 3
4096 −1.86705 28.7± 3 −1.86707 99.0± 3
8192 −1.86729 38.9± 3 −1.86710 99.4± 3

statevector_simulator − −1.86712 99.1± 3 − −

Table A2. Summary of the medians of 1000 optimized ground-state energies and the percentage
of outcomes that were found within chemical precision of exact energy (−1.86712± 0.0015 Ha) for
different settings for the maximum number of iterations (maxiter) and number of shots. The Ry

variational ansatz was used. The error margin of 3 percent was estimated based on the standard
deviation of 1000 identically distributed trials. These data are the basis for Figure 3.

Settings shots Median [Ha] %

SPSA(maxiter = 50)

512 −1.86119 8.6± 3
1024 −1.86258 11.4± 3
4096 −1.86475 20.7± 3
8192 −1.86544 29.9± 3

SPSA(maxiter = 75)

512 −1.86276 9.1± 3
1024 −1.86439 12.6± 3
4096 −1.86559 24.9± 3
8192 −1.86601 34.2± 3

SPSA(maxiter = 100)

512 −1.86419 9.4± 3
1024 −1.86530 13.5± 3
4096 −1.86607 25.9± 3
8192 −1.86644 38.1± 3

SPSA(maxiter = 125)

512 −1.86486 9.3± 3
1024 −1.86524 13.6± 3
4096 −1.86631 27.0± 3
8192 −1.86656 37.5± 3

SPSA(maxiter = 150)

512 −1.86461 9.3± 3
1024 −1.86593 14.3± 3
4096 −1.86613 28.8± 3
8192 −1.86637 36.9± 3

SPSA(maxiter = 200)

512 −1.86634 11.3± 3
1024 −1.86575 14.3± 3
4096 −1.86652 28.7± 3
8192 −1.86653 36.5± 3
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Table A3. Summary of the medians of 1000 optimized ground-state energies and the percentage
of outcomes that were found within chemical precision of exact energy (−1.86712± 0.0015 Ha) for
different settings for the maximum number of iterations (maxiter) and number of shots. The Ry

variational ansatz was used. An error margin of 3 percent was estimated based on the standard
deviation of 1000 identically distributed trials. The rightmost two columns are the recalculation of
obtained energies using the statevector simulator. These data are the basis for Figure 4.

Settings Shots Median [Ha] % Recalculation
Median [Ha] %

SPSA(maxiter = 50) 512 −1.86101 7.0± 3 −1.86349 25.5± 3
1024 −1.86190 10.8± 3 −1.86520 41.4± 3

SPSA(maxiter = 75) 512 −1.86369 9.7± 3 −1.86511 38.7± 3
1024 −1.86420 11.7± 3 −1.86594 57.4± 3

SPSA(maxiter = 100) 512 −1.86472 9.7± 3 −1.86560 49.4± 3
1024 −1.86458 13.9± 3 −1.86627 64.5± 3

Table A4. A comparison of various settings of quantum circuits for 2-qubit and 4-qubit Hamiltonians
of H2. The RyRz and Ry variational forms accompanied by linear entanglement with different
depths of circuit and numbers of parameters used. In the case of the 2-qubit Hamiltonian, we used
an unrestricted maximum number of iterations of the SPSA optimizer, and in the case of 4-qubit
Hamiltonian, the maxiter was set to 400. Columns labeled % represent the percentage of the runs
that ended within chemical accuracy (−1.86712± 0.0015 Ha) of the optimum. The error margin of 3
percent was estimated based on the standard deviation of 1000 identically distributed trials. These
data are the basis for Figure 5.

2-Qubit Hamiltonian H2
Form Depth (Parameters) Median [Ha] %

Ry 3 (8) −1.86713 31.2± 3
RyRz 2 (12) −1.86664 30.7± 3

Ry 2 (6) −1.86709 32.4± 3
RyRz 1 (8) −1.86594 25.8± 3

Ry 1 (4) −1.86705 28.7± 3

4-qubit Hamiltonian H2
Form Depth (Parameters) Median [Ha] %

Ry 5 (24) −1.86331 18.1± 3
RyRz 2 (24) −1.86070 12.5± 3

Ry 2 (12) −1.86361 17.9± 3
RyRz 1 (16) −1.84560 0.0

Ry 1 (8) −1.84591 0.0



Nanomaterials 2022, 12, 243 20 of 22

Table A5. A comparison of results from different dates and different noise models built from a real
quantum processor, ibmq_santiago. The number of shots was set to 4096. The calculations were
performed using both the RyRz and Ry variational forms. The classical optimization method SPSA
was used, for 2-qubit system the maxiter was unrestricted and for 4-qubit system, the maxiter was set
to 400. The last column represents the percentage of the runs that ended within chemical accuracy
(−1.86712± 0.0015 Ha) of the optimum. The error margin of 3 percent was estimated based on the
standard deviation of 1000 identically distributed trials. These data are the basis for Figures 6 and 7.

Simulator
NoiseModel Qubits Date Ry Form RyRz Form

Median [Ha] % Median [Ha] %

gate errors 2 14 December 2020 −1.85819 3.3± 3 −1.85719 2.4± 3
14 May 2021 −1.85947 5.3± 3

4 14 December 2020 −1.79786 0.0 −1.77738 0.0

readout
errors

2 14 December 2020 −1.80617 0.0 −1.80510 0.0
14 May 2021 −1.82060 0.0

4 14 December 2020 −1.78270 0.0 −1.76214 0.0

all errors 2 14 December 2020 −1.79816 0.0 −1.79646 0.0
14 May 2021 −1.81879 0.0

4 14 December 2020 −1.70967 0.0 −1.68760 0.0

Table A6. Energy values obtained by ibm_lagos with various final energy evaluations. These data are
the basis for Figure 8.

ibm_lagos Statevector
Simulatorshots = 1024 shots = 40,000

−1.85075 Ha −1.85688 Ha −1.86588 Ha
−1.86237 Ha −1.86035 Ha −1.86558 Ha
−1.81998 Ha −1.82370 Ha −1.86560 Ha
−1.82088 Ha −1.82312 Ha −1.85678 Ha
−1.84165 Ha −1.83561 Ha −1.86488 Ha
−1.82453 Ha −1.83271 Ha −1.86456 Ha
−1.85601 Ha −1.86479 Ha −1.86569 Ha
−1.87990 Ha −1.86107 Ha −1.86605 Ha
−1.84045 Ha −1.81550 Ha −1.86504 Ha
−1.86599 Ha −1.82214 Ha −1.86554 Ha
−1.78271 Ha −1.84946 Ha −1.86099 Ha
−1.82068 Ha −1.83412 Ha −1.86482 Ha
−1.83439 Ha −1.82281 Ha −1.85480 Ha
−1.80671 Ha −1.83176 Ha −1.86270 Ha
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