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Abstract: In this study, 8% hydrogen (H2) in argon (Ar) and carbon dioxide (CO2) gas nanobubbles
was produced at 10, 30, and 50 vol.% of ethanol aqueous solution by the high-speed agitation method
with gas. They became stable for a long period (for instance, 20 days), having a high negative zeta
potential (−40 to −50 mV) at alkaline near pH 9, especially for 10 vol.% of ethanol aqueous solution.
The extended Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory was used to evaluate the
nanobubble stability. When the nanobubble in ethanol alkaline aqueous solution changed to an acidic
pH of around 5, the zeta potential of nanobubbles was almost zero and the decrease in the number of
nanobubbles was identified by the particle trajectory method (Nano site). The collapsed nanobubbles
at zero charge were detected thanks to the presence of few free radicals using G-CYPMPO spin trap
reagent in electron spin resonance (ESR) spectroscopy. The free radicals produced were superoxide
anions at collapsed 8%H2 in Ar nanobubbles and hydroxyl radicals at collapsed CO2 nanobubbles.
On the other hand, the collapse of mixed CO2 and H2 in Ar nanobubble showed no free radicals. The
possible presence of long-term stable nanobubbles and the absence of free radicals for mixed H2 and
CO2 nanobubble would be useful to understand the beverage quality.

Keywords: nanobubble stability; free radical; carbon dioxide; hydrogen; ethanol aqueous solution;
extended DLVO theory

1. Introduction

There have been many reports on bulk nanobubbles or nanoparticles in ethanol
aqueous solution. In this research, the object of nanobubbles in ethanol solution was
hydrogen in argon and carbon dioxide gas nanobubbles. However, there are some reports
on the exsistence of imputities in bulk ethanol nanobubbles. Therefore, they were first
introduced and then the other reports on the stability of nanobubbles in ethanol were
discussed.

The structure and properties of ethanol aqueous solutions were reported in the liter-
ature [1–4]. For nanobubble production in ethanol aqueous solution, some works have
reported existing impurities. Rak and Sedlák, 2020 showed the existence of hydrophobic
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impurities in mixtures [5]. Alheshibri and Craig, 2019 reported that the ethanol–water
mixture was found to produce only positively buoyant ethanol and water particles, with
a mean density of 0.91 ± 0.01 g/cm3. Resonant mass measurements suggested that sus-
pended ethanol and water particles produced by mixing water and organic solvent had a
higher density than a bubble, but smaller than ambient water [6]. The bulk nanobubbles
adsorb impurities and concentrate them on their interfaces with bubbles [7]. The nucle-
ation dynamics during the water–ethanol–water exchange was reported as follows: within
4 min after the exchange, the bubbles nucleated and formed a stable population, and the
tracer particles concentrated near the nanobubbles as a result of Brownian motion [8]. The
low concentration nanobubble at 108/mL was produced from saturated CO2 at 1 atm.
The solutions scattered light for a long period (days) after mixing, and scattering objects
originated from water-insoluble impurities in 20 vol.% ethanol [9]. A small amount of hy-
drophobic material was dissolved in the commercial ethanol, and the hydrophobic organic
nanodroplets in the alcohol–water substitution method were often misunderstood to be
nanobubbles [10].

Jadiv and Barigou, 2020 reported that, in a water and ethanol mixture, the nano- mate-
rials generated by hydrodynamic cavitation and ultrasound cavitation were not ethanol
droplets, and the amount of dissolved gas directly affected the number and stability of
nanobubbles generated [11]. The maximum value in the adsorption isotherm of ethanol is
expected to form a monolayer of ethanol [12]. The direct arrangement of ethanol molecules
can be induced by these interfaces owing to the amphiphilic properties of ethanol molecules
and the stabilization of bulk nanobubbles [13,14]. Tan et al., 2021 reported the surface and
bulk nanobubbles, and they were thermodynamically stable [15]. Chen et al., 2021 reported
that, in the air bubble composition in the ethanol aqueous solution, ethanol molecules were
preferentially oriented at the ethanal–water interface, and their orientation apparently did
not vary with alcohol concentration, while water molecules were arranged to maximize
the hydrogen bonding between the oriented alcohol and the adjacent water molecules [16].
When the ethanol was added to water, the ethanol dissolved rapidly, and the dissolved air
in ethanol diffused slowly. Therefore, the local supersaturation of air in the solution formed
tiny bubbles [13,17]. Chen et al., 2021 described that the observed “colloidal particles” in
their ethanol–water solution prepared by a controllable bulk mixing method were nanobub-
bles rather than contaminant particles [16]. There are many models for nanobubbles;
however, the charge stabilization model can provide reasonable and consistent explana-
tions for the three properties (i.e., 100 to 1000 nm radii, the strict maximum limit for the
bubble size, and the increase in implied radius with the ionic concentration) claimed by
the dynamic light scattering (DLS) experiments [18]. Although ethanol is important for the
formation of nanobubbles, the addition of excess ethanol higher than 20 vol.% may cause
the nanobubbles to disappear. This result is consistent with the change in the long-range
hydrophobic force with ethanol contents [19]. The long-range attraction between hydropho-
bic surfaces is due to bridging of sub-micron bubbles. Sun et al., 2021 suggested that it
is impossible to judge whether the nanoparticles are nanobubbles according to a single
condition. Thus, researchers should combine multiple physical properties (i.e., volume
change, density, zeta potential, and refractive index of nanoparticles) to verify the presence
of nanobubbles. In addition, a better understanding of interface theory can help researchers
to distinguish them. It is suggested that the growth or contraction of bulk nanobubbles can
change the surface tension, which can be altered by the interfacial adsorption of pollutants.
Therefore, the most important thing is to avoid the interference of pollutants [20].

Hydroxyl radical production is well-known for the Fenton reaction [21], while nanobub-
bles in a solution that does not contain ferrous ions are discussed. First, Takahashi et al.,
2007 reported on the hydroxyl radical (·OH) generation from collapsing microbubbles [22],
and his group then reported that ·OH was produced in both cases of air (oxygen microbub-
bles and nitrogen microbubbles) in the acidic condition at pH 2 and 3 [23]. Moreover,
the microbubbles on ozonized water indicated the production of ·OH by the collapse of
the microbubbles [24]. In 2021, they reported that ·OH was generated from the collaps-
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ing microbubbles under strongly acidic conditions without any dynamic stimulus such
as ultrasound or a large pressure difference [25]. Liu et al., 2016 reported that ·OH and
superoxide ion (·O2

−) can be produced in an aqueous solution with bulk nanobubbles, and
investigated the germination processes for plant seeds [26]. The ·OH could be generated
directly from bursting nanobubbles or simple hypoxic sediment/water oxygenation [27].

On the other hand, the free radical could not be generated by the self-collapse of air
micro/nano bubbles in pure water produced by fiber membrane filter, and the ·OH peak
was observed with a weak supersonic wave [28]. The results of the numerical simulations
suggested that no ·OH was produced from a dissolving nanobubble. It was suggested that
the signals reported experimentally did not originate in ·OH, but rather in H2O2 produced
during hydrodynamic cavitation in the production of bulk nanobubbles [26]. The radical
production by ultrasonic wave irradiation becomes more important to produce the radicals,
especially ·OH in water, by comparing no irradiation and irradiation [29]. Fujita et al., 2021
reported the ·OH scavenging and the ·O2 diminishing by mixing the CO2 nanobubbles after
hydrogen nanobubble blowing in water and alcohol aqueous solution [30]. As described
above, the ethanol and water solutions containing nanobubbles have various characteristics
and there is a possibility to produce the free radicals. Soda drinks with carbon dioxide need
long stability and the prevention of free radical production in consideration of our health.

In this study, the characteristics of hydrogen in argon and carbon dioxide nanobubbles
in ethanol aqueous solution were investigated from the point of view of stability for 20 days
of nanobubbles according to the surface charge on bubbles and radical production by
controlling the bubble surface charge to near zero by changing pH and with the application
of small ultrasonic wave and ultraviolet irradiation. When the absolute value of zeta
potential of nanobubbles is low, there is a possibility of the collapse of nanobubbles by
Brownian motion and the production of the free radical. The presence or absence of the
free radical is useful to know the beverage quality, among others.

2. Materials and Methods
2.1. Materials

Deionized (DI) water with a resistivity of 18.2 MΩ·cm prepared by the Classic Wa-
ter Purification System from Hitech instruments CO., Ltd. (Shanghai, China) was used.
Ethanol with a purity higher than 99.7% produced by Guangdong Guanghua Sci-Tech
Co., Ltd., Guangzhou, Guangdong, China was used. The ethanol percentages of ethanol
aqueous solution mixtures were 0, 10, 30, and 50 vol%. The gases of 8% H2 in Ar and CO2
were supplied from a tank produced by Guangdong Huate Gas Co., Ltd., Guangzhou,
Guangdong, China. The pH adjusters of ethanol aqueous solution were sodium hydroxide
(NaOH) aqueous solution (Guangdong Guanghua Sci-Tech Co., Ltd., Guangzhou, Guang-
dong, China) and hydrochloric acid (HCl) aqueous solution (Chengdu Chron Chemicals
Co., Ltd., Qionglai, China). The solubility of H2 gas [31] and CO2 gas [32] in ethanol was
about 100 times in H2 and 10 times in CO2 larger than those gases in water.

2.2. Methods
2.2.1. Nanobubble Preparation and Measurements

The nanobubbles were prepared using mechanical high-speed cavitation equipment
(self-made equipment), as shown in Figure 1. The gases of 8% in Ar and CO2 were fed from
the gas tank through the gas inlet, and the propeller mixing speed was 20,000 rpm using
a 7.2 cm diameter of the blade. The gas mixture nanobubbles were prepared by initially
blowing 8% H2 in Ar gas and then CO2 gas.
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There are several bulk nanobubble preparation methods, such as the utilization of high-
speed cavitation, pressure difference with circulation, ultrasonic wave, and passing ultrafine
pores [33,34]. In this study, the equipment shown in Figure 1 was utilized to produce a large
amount of nanobubbles in liquid in a fast manner. There are some methods to measure the
nanobubble size; for example, dynamic light scattering (DLS), particle trajectory, resonant
mass, and laser diffraction methods [34]. In particular, it was convenient to measure the
particle/bubble size distribution by the DLS and particle trajectory methods discussed in
previous studies of this group [35]. In this study, the nanobubble size distribution was
measured by the DLS system (NanoBook Omni, Brookhaven Instruments, Holtsville, NY,
USA). The nanobubble number density was obtained through outsourcing from NanoSight,
NS300, Malvern (Worcestershire, UK). The zeta potential values were measured through the
micro-electrophoresis method by the phase analysis light scattering method (NanoBrook
Omni, Brookhaven Instruments, Holstville, NY, USA.).

2.2.2. Radical Preparation and Measurement by ESR

The solution pH was adjusted to pH 9 for the three kinds of nanobubbles (i.e., 8%
H2 in Ar, CO2, and a mixture of CO2 after 8% H2 in Ar) in ethanol aqueous solutions,
and they were kept for 20 days. After 20 days, the pH of ethanol aqueous solutions was
decreased to pH 5 by adding HCl aqueous solution, and the solutions were set in the
ultrasonic wave vessel (SIBATA SCIENTIFIC TECHNOLOGY, Tokyo, Japan, SU, 40 kHz,
500 W) for 30 s; then, rapidly, the radicals were measured. The produced radicals were
measured by the following procedure. A spin-trapping reagent, sc-5-(5,5-dimethyl-2-oxo-
1,3,2-dioxapho-sphinan-2-yl)-5 methyl-1-pyrroline N-oxide (G-CYPMPO)24, was used
by adding its solution. G-CYPMPO could spin-trap ·OH in UV (4 W, OHM ELECTRIC
INC., Tokyo, Japan) illuminated condition and ·O2

− [36–38]. A JEOL JES-TE25X ESR
spectrometer (Tokyo, Japan) was used to obtain ESR spectra of free radicals of ·OH and
·O2
−. The measured peaks produced by nanobubble collapse were compared with eight

kinds of peak positions of standard ·OH and ·O2
−.

3. Results and Discussion
3.1. Determination of Diameter of Nanobubbles

The stability of nanobubbles in water was reported in the literature [35], and there are
reports on the stabilization of bubbles by ion adsorption [39]. The nanobubbles displaying
a higher absolute zeta potential value showed a good stability and constant nanobubble
diameter for a long period. On the other hand, with a low zeta potential value, the
nanobubble size quickly increased and disappeared. The zeta potentials of 8% H2 in Ar,
CO2, and the mixture of 8% H2 in Ar and CO2 gas nanobubbles in water as a function of
pH are shown in Figure 2 [35], where the isoelectric point (IEP) is in between 5 and 6. As
shown in Figure 2, in the ethanol aqueous solution of less than 50 vol%, the zeta potentials
of nanobubbles are also close to zero at pH 5. To maintain the stability of nanobubbles, the
pH of ethanol aqueous solution containing nanobubbles can be adjusted to assign higher
absolute zeta potential values on the bubble surface, for instance, at alkaline pH 9 or acidic
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pH 3. In this experiment, pH 9 was selected to examine the stability of bubbles and fits
with the water quality standard pH (from 6.5 to 9.5 in EU directive [40]). The nanobubble
stability was also evaluated by extended DLVO theory calculation, which will be discussed
in the following Section 3.3.
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Figure 2. Zeta potential as a function of pH for 8% H2 in Ar, CO2, and a mixture of 8% H2 in Ar and
CO2 gas nanobubble in water [35].

When CO2 nanobubbles are added in 8% H2 in Ar nanobubbles containing aqueous
solution, the CO2 solubility is high in aqueous solution and HCO3

− ion is produced
according to the acidity constant. The HCO3

− ions are adsorbed on the positively charged
bubbles. While in the alkaline region, CO3

2− ion is also produced according to equilibrium
constant; however, anions are not adsorbed on the negatively charged bubbles. This agreed
with the CO2 solubility phenomena explained in the literature [35].

The nanobubble mean diameters at pH 9 after 1 and 20 days are shown in Figure 3. The
diameters of 8% H2 in Ar nanobubbles in ethanol aqueous solutions with various ethanol
vol.% in the first day by controlling pH 9 are small and do not change significantly (between
300 and 750 nm). On the other hand, CO2 and CO2 after 8% H2 in Ar had noticeably large
diameters at 50 vol.% ethanol aqueous solution (2000–3500 nm). The CO2 nanobubbles
undergo mass loss at a higher pH, corresponding to the mass transfer process owing
to the concentration gradient at the surrounding nanobubbles, and their mean diameter
decreased [41]. Figure 3 shows that the CO2 diameter decreased after 20 days, in 0 vol.%
(from 1300 to 600 nm) and 50 vol.% ethanol (from 3500 to 2200 nm). The nanobubble size at
the CO2 after 8% H2 in Ar was larger at 10 and 30 vol% ethanol on the first day (1300 nm)
than at 20 days (250–600 nm). It can be explained by Ostwald ripening [42], increasing
the nanobubble size, and the size decreased after 20 days. After 20 days, the three kinds
of nanobubble mean diameters existed from 300 to 600 nm in 10 and 30 vol% ethanol
aqueous solution.
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3.2. Effect of Ethanol Ratio in Zeta Potential and pH of Nanobubbles

Zeta potential and pH for 8% H2 in Ar nanobubble solution as a function of ethanol
percentage in ethanol aqueous solution mixture after 1 and 20 days are shown in Figure 4.
The natural pH of nanobubble solutions was around pH 6 to 7 after 1 and 20 days. Once
the solution pH was adjusted to pH 9 by adding NaOH aqueous solution after the first
day; it decreased to pH around 8 after 20 days, and the absolute value of the negative zeta
potential decreased. The hydrogen solubility in ethanol is explained by Henry’s law [31].
The pH solutions at around pH 8 were adjusted to 5 by adding HCl aqueous solution. The
zeta potential of 8% H2 in Ar nanobubbles at pH 5 was positive of a few mV, regardless of
ethanol percentage. In particular, the zeta potential deviation was the largest (between −45
and 5 mV) at 10 vol% ethanol aqueous solution during the above-mentioned conditioning
procedures. Thus, the radical production by 8% H2 in Ar nanobubbles in 10 vol% ethanol
aqueous solution was investigated by changing the pH from 9 to 5 after 20 days, and the
results will be discussed in Section 3.5.
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Zeta potential and pH of CO2 nanobubble solution as a function of ethanol percentage
in ethanol aqueous solution mixtures after 1 and 20 days are shown in Figure 5. The natural
pH of nanobubble solutions was around pH 4 to 5 after 1 and 20 days. Once the solution
pH was adjusted to pH 9 by adding NaOH aqueous solution on the first day, the solution
pH increased to between 9 and 10 after 20 days, and the absolute value of negative zeta
potential increased 5 to 10 mV at 10 to 30 vol% ethanol aqueous solution. Our results
agreed with the literature. The pH of the aqueous solution containing CO2 gas nanobubbles
slightly increased after several days compared with the pH under the initial condition [35].
Dalmolin et al. [32] showed that the CO2 solubility in ethanol aqueous solution increased
by increasing the ethanol mole fraction and pressure and decreasing the temperature.
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The pH of solutions with pH around 8 were adjusted to pH 5 by adding HCl aqueous
solution. The zeta potential of CO2 nanobubbles at pH 5 was a few negative mV. In
particular, the zeta potential deviation was the largest (between −45 and 5 mV) at 10 vol%
ethanol aqueous solution during the above-mentioned conditioning procedures. This can
be explained by the bubble collapse. Therefore, the radical production by CO2 nanobubbles
in 10 vol% ethanol aqueous solution was investigated by changing the pH from 9 to 5 after
20 days, and the results will be discussed in Section 3.5.

Zeta potential and pH of the mixture of CO2 and 8% H2 in Ar nanobubble solution as
a function of ethanol percentage in ethanol aqueous solution mixtures after 1 and 20 days
are shown in Figure 6. The natural pH of nanobubble solutions was around pH 5 to 6 after
1 and 20 days. On the other hand, once the solution pH was adjusted to pH 9 by adding
NaOH aqueous solution on the first day, the solution pH increased to between 9 and 9.5
after 20 days, and the absolute value of negative zeta potential increased from 10 to 30 vol.%
ethanol aqueous solution (−40 to −50 mV).
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The pH of the solutions at around pH 9 were adjusted to pH 5 by adding HCl aqueous
solution. The zeta potential of nanobubbles at pH 5 was slightly positive (i.e., about
5 mV), regardless of ethanol percentage. In particular, the zeta potential deviation was
the largest (between −50 and 5 mV) at 10 vol% of ethanol aqueous solution during the
above-mentioned conditioning procedures, similar to other results shown in Figures 4
and 5. The radical production by CO2 and 8% H2 in Ar nanobubbles in ethanol aqueous
solution was investigated by changing the pH from 9 to 5 after 20 days, and the results will
be discussed in Section 3.5.

The three kinds of well stabilized nanobubbles (8%H2 in Ar, CO2, and CO2 after 8%H2
in Ar) at pH 9 in the 10 vol.% ethanol solution displayed decreases in the zeta potential to
near zero when adjusting pH to 5, and during such pH adjustment, there was a possibility
to produce the radicals originated from the nanobubble collapse. This point will be further
discussed in the following Section 3.3 (nanobubble stability), Section 3.4 (nanobubble
number), and Section 3.5 (radical production).

3.3. Nanobubble Stability Evaluation Using Extended DLVO Theory

Among many kinds of stabilization models for nanobubbles, Tan et al., 2021 suggested
that the charge stabilization model can provide reasonable and consistent explanations [15].

In this study, bubble stabilization was evaluated by the extended DLVO theory using
our experimental results of bubble size (Figure 3) and zeta potential (Figures 4–6). Two
bubble interactions can be expressed by extended DLVO theory [35,43,44]. Here, the
extended DLVO theory is utilized as qualitative analysis. When two same radii (a) of
nanobubbles are set at the surface-to-surface distance (h) between them in the ethanol
aqueous solution, the total potential energy (VT) can be the sum of van der Waals interaction
energy (VA), hydrophobic interaction energy (VH), and the electrostatic interaction energy
(VR). VT is described in Equations (1) and (2), normalized by the absolute temperature (T)
and Boltzmann constant (kB).

V T
kBT

=
VA + VH + VR

kBT
(1)

VA + VH = −A + K
6

[
2a2

h(4a + h)
+

2a2

(2a + h)2 + ln

{
h(4a + h)

(2a + h)2

}]
(2)

where the Hamaker constant is A and hydrophobic constant is K.
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The Hamaker constant A for air in water (air-water-air value) is 3.7 × 10−20 J [45].
As the Hamaker constant A is proportional to the surface tension of solvent, 2.2 × 10−20,
1.7 × 10−20, and 1.4× 10−20 J were used as A for air in 10, 30, and 50 vol.% ethanol aqueous
solution, respectively. Hydrophobic constant K was estimated at 10−17 J in the absence of
salt and 10−19 J in a 1 mM NaCl aqueous solution [44]. In a 1 M ethanol aqueous solution,
K is about 3 to 7 × 10−17 J, which is 3 to 7 times larger than K in water [46]. In this article,
at 10 vol.% ethanol aqueous solution at pH 9 and 0.01 mM, 1 × 10−17 J was used as K.

When the surface charge of nanobubbles is Ψ, κ is the Debye–Hückel parameter;
εr and εo are relative permeability and space permeability, respectively; and VR is shown in
Equations (3) and (4).

VR = πεrεoaψ2
[

ln
1 + exp(−κh)
1− exp(−κh)

+ ln{1− exp(−2κh)}
]

(3)

κ =

√
2πz2e2

εrεokT
(4)

where n is the concentration of anions or cations in the solution and is equal to 1000 NAC
(NA is the Avogadro’s number and C is concentration in mol/L), z is the valence of ion,
e is the electron charge, and the thickness of the electric double layer of the nanobubble is
Debye length = 1/κ.

The total potential energy based on electrostatic interaction energy, van der Waals
interaction energy, and hydrophobic interaction energy as a function of the bubble distance
at pH 9 and pH 5 of three kinds of gas nanobubbles (i.e., 8%H2 in Ar, CO2, and CO2 after
8%H2 in Ar)) is shown in Figure 7. The total potential energy barriers at pH 9 of three types
of nanobubbles exist with a high negative zeta potential. The various potential energies in
the −38, −45, and −50 mV zeta potential of 8% H2 in Ar, CO2, and CO2 after 8% H2 in Ar
nanobubbles at pH 9 are shown (A, B, C) in Figure 7, respectively. The extended DLVO
theory was utilized as qualitative explanation between the bubble’s stability in this paper.
The retardation in van der Waals potential can be estimated at least at a longer separation
distance than about 15 nm according to Israelachvili, 1985 [47]. Between hydrophobic
surfaces, very-long-range attraction can be observed in Figure 7, as also reported for
separation [48].

The long-distance hydrophobic forces are evident. In contrast, the total potential is
larger than 20 kBT at more than 100 nm distance and maintains the stability of bubbles
owing to the strong repulsion explained by high electrostatic interaction energy. The
maximum total potential energy VT 15 kBT would be the boundary to determine coagulation
or dispersion [49]. The total potential energy barrier appeared at 8% H2 in Ar, CO2, and
CO2 and 8% H2 in Ar nanobubbles at 10 vol.% ethanol aqueous solution at pH 9 (Figure 7).
On the other hand, at pH 5, the absolute zeta potential value becomes less than 5 mV for
three kinds of gas nanobubbles and total potential energy barrier disappeared owing to
negligible electrostatic repulsion (VR, Figure 7). Therefore, at pH 5, nanobubbles would
break owing to the low bubble surface charge, and thus make larger bubbles by bubble
coalescence. Zhang et al., 2011 suggested that a higher than 20 vol.% ethanol solution may
remove the nanobubbles and cause them to disappear, and is related to the long-range
hydrophobic force with ethanol contents [18]. At 50 vol.% ethanol aqueous solution, the
zeta potentials for three kinds of nanobubbles initially controlled at pH 9 were about
−10 mV after 20 days, and bubble size was large—around 2000 nm—as shown in Figure 3,
and not stable.
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between two nanobubbles at pH 9 and pH 5 of three kinds of gas nanobubbles in 10 vol.% ethanol
aqueous solution.

3.4. Number of Nanobubbles

The nanobubble numbers for three kinds of gas (8% H2 in Ar, CO2, and CO2 after 8%
H2 in Ar) in 10 vol.% ethanol aqueous solution mixtures were investigated at pH 9 and pH
5 by nano site after 20 days, and the results are shown in Figure 8. The nanobubble number
decreases from pH 9 to pH 5 for each nanobubble solution. In particular, the nanobubble
number of 8%H2 in Ar decreased the largest from 4 × 108 to 1 × 108 bubbles/mL. As



Nanomaterials 2022, 12, 237 11 of 15

the nanobubble number decreased from pH 9 to pH 5, the nanobubbles became larger
by their coalescence and were broken. When the nanobubbles were broken, there was a
possibility to produce radicals. Takahashi et al., 2021, reported that ·OH was generated
from the collapsing microbubbles, including oxygen with 2 vol% ozone in 1 mM FeSO4
aqueous solution under strongly acidic conditions without ultrasound or a large pressure
difference [25]. The following Section 3.5 will report and discuss the experimental results
on radical observation as a function of solution pH.
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Figure 8. Nanobubble numbers at pH 9 and pH 5 for 8% H2 in Ar, CO2, and CO2 after 8% H2 in Ar
in 10 vol.% ethanol aqueous solution mixture after 20 days.

3.5. Radical Observation by Changing the pH

Figure 9 shows the two standard data points (i.e., superoxide anion on the top, hy-
droxyl radical on the bottom) and three data points from our gas bubble solutions (i.e., 8%
H2 in Ar, CO2, and CO2 after 8% H2 in Ar). The ·O2

− and ·OH and standard eight peaks by
spin trap reagent G-CYPMPO appear under different magnetic fields [38]. They are plotted
in the top and bottom of Figure 9, respectively. The peaks appearing of 8% H2 with Ar, CO2,
and the mixture of CO2 and 8% H2 with Ar nanobubbles in 10% ethanol aqueous solutions
are plotted as the second, third, and fourth curves from the top in Figure 9, respectively. The
peaks corresponding ·O2

− and ·OH− are marked by blue and red circles, respectively. In
this experiment, small peaks were observed in each position owing to smaller nanobubble
numbers after 20 days passed.

Radical observation by changing the solution pH from 9 to 5 of three kinds of gas
nanobubbles in 10 vol.% ethanol aqueous solution mixture is shown in Figure 9. The pH of
the 8% H2 in Ar nanobubbles by changing to 5 (second data point from the top) showed a
small amount of superoxide anion peaks. The reaction is considered as Equation (5):

2H2O + H2 → ·O2
− + 3H2 (5)

The CO2 nanobubbles, by changing to pH 5 (third data point from the top), showed a
small amount of hydroxyl radical peaks. The reaction is shown as follows:

2OH− + CO2 → ·OH + HCO3
− (6)
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On the other hand, the mixture of CO2 and 8% H2 in Ar (fourth data point from the
top) showed neither ·O2 nor ·OH peaks.

2H2O + H2 → ·O2
− + 3H2 → 2·OH + 2H2 (7)

2·OH + 2H2 + 2CO2 → 2·CO3H + 2H2 → 2H2CO3 +H2 (8)

When the acid was added to the nanobubble solution, 8% H2 in Ar nanobubble
solution produces ·O2

−, while the CO2 nanobubble solution produced ·OH. On the other
hand, the gas mixture (8% H2 in Ar and CO2) nanobubbles were prepared by 8% H2 in Ar
gas blowing followed by CO2 gas blowing. At first, the reaction in Equation (7) occurred,
and then the reaction in Equation (8) occurred and reduced the radicals. This reaction
agreed with the literature. The existing ·OH and ·O2

− scavenging was reported by blowing
CO2 nanobubbles after blowing H2 nanobubbles [30].
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H2 in Ar, CO2, and CO2 after 8% H2 in Ar) in 10 vol.% ethanol aqueous solution mixture.

The formation of a monolayer by ethanol [12] and the arrangement of ethanol molecules
on interfaces stabilize the bulk nanobubbles [13,14]. The water molecules were arranged
to maximize the hydrogen bonding between the oriented ethanol and the adjacent water
molecules [16]. Our model of nanobubble increases with coagulation by changing pH
from 9 to 5; therefore, the bubble becomes easily breakable, and the production of radicals
is shown in Figure 10. Here, the weak ultrasonic wave and ultraviolet light are irradi-
ated. There is a report that the ·OH peak was observed with a weak supersonic wave [28].
Moreover, ·OH was generated from the collapsing microbubbles under strongly acidic
conditions without any dynamic stimulus such as ultrasound [25]. The CO2 nanobubbles
after 8% H2 in Ar nanobubbles can exist in 10 vol.% ethanol aqueous solution mixture at
pH 9 for a long period such as 20 days (Figure 3). The alkaline 10 vol.% ethanol aqueous
solution with CO2 nanobubbles after 8% H2 in Ar nanobubble did not show noticeable free
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radicals by changing the pH to acidic (i.e., pH 5). The phenomena studied and discussed in
this article would be useful to prepare a soda alcohol beverage, among others.
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Figure 10. Model of nanobubble breakage by changing pH from 9 to 5 and the production of radicals
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4. Conclusions

The 8% hydrogen (H2) in argon (Ar) and carbon dioxide (CO2) gas nanobubbles with
ethanol were produced at 10, 30, and 50 vol.% ethanol aqueous solution by the high speed
agitation method with gas injection, and the main findings were as follows:

• The prepared nanobubbles were stable for 20 days owing to a high negative zeta
potential at alkaline pH 9.

• When the pH of ethanol alkaline aqueous solution with nanobubbles was adjusted
to acidic at around pH 5, the zeta potential of nanobubbles was almost zero. The
numbers of nanobubble decreased at almost zero charge (pH 5) were identified by
measuring their numbers using the particle trajectory method (Nano site).

• The extended Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory was used to
evaluate the nanobubble stability (repulsion between bubbles) in alkaline conditions,
and its instability (attraction between bubbles) in acidic conditions.

The collapsed nanobubbles at zero charge generated slight free radicals detected using
G-CYPMPO spin trap reagent in electron spin resonance (ESR) spectroscopy. The produced
free radicals were superoxide anions at collapsed 8% H2 in Ar nanobubbles and hydroxyl
radicals at collapsed CO2 nanobubbles. On the other hand, the collapsed mixed CO2 and
H2 in Ar nanobubbles showed no free radicals.

Based on this study, a schematic model of nanobubble breakage and the production of
radicals by changing solution pH was proposed. These phenomena and their understand-
ing would be useful to formulate healthy beverages, for example.
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