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Abstract: Biochar/nano-zero-valent iron (BC-nZVI) composites are currently of great interest as an
efficient remediation material for contaminated soil, but their potential to remediate Cr-contaminated
soils and effect on soil microecology is unclear. The purpose of this study was to investigate the
effect of BC-nZVI composites on the removal of Cr(VI) from soil, and indigenous microbial diversity
and community composition. The results showed that after 15 days of remediation with 10 g/kg of
BC-nZVI, 86.55% of Cr(VI) was removed from the soil. The remediation of the Cr-contaminated soil
with BC-nZVI resulted in a significant increase in OTUs and α-diversity index, and even a significant
increase in the abundance and diversity of indigenous bacteria and unique bacterial species in the
community by reducing the toxic concentration of Cr, changing soil properties, and providing habitat
for survival. These results confirm that BC-nZVI is effective in removing Cr(VI) and stabilizing Cr in
soil with no significant adverse effects on soil quality or soil microorganisms.

Keywords: soil remediation; hexavalent chromium; biochar; nanoscale zero-valent iron; soil
microecology

1. Introduction

A large number of chromium-containing wastes are currently discharged into water
bodies and soil, causing serious pollution [1,2]. Chromium (Cr) pollutants are highly toxic,
carcinogenic, and can directly or indirectly endanger people’s health through the food
chain [3,4]. Therefore, the harmless treatment of Cr and its pollution management have
attracted widespread attention [5].

Conversion of Cr(VI) to Cr(III) and formation of stable compounds in soils are widely
used remediation methods with the advantages of high treatment efficiency and low cost [6].
Iron-based composites, which are highly reducible and environmentally friendly, have been
widely used for the remediation of Cr(VI)-contaminated soils. Singh et al. [7] documented
that the addition of 0.10 g/L nZVI to a Cr-contaminated soil from a tannery in Kanpur,
India, resulted in complete reduction in Cr(VI) within 120 min. However, the application
of nZVI is largely limited by its tendency to agglomerate and passivate, and its tendency
to agglomerate particles in the soil limits its dispersibility and may cause soil slumping.
Biochar (BC) with its porous structure and rich functional groups (Shaaban et al., 2018),
can not only enhance the performance of nZVI, but also improve the soil texture and
fertility. Su et al. [8,9] used BC-loaded nZVI (BC-nZVI) for the in situ remediation of Cr(VI)-
contaminated soil. Compared to nZVI alone, BC-nZVI had better results for reducing the
leachability and phytotoxicity of Cr(VI). Wan et al. [10] prepared a maize straw BC-loaded
nZVI composite (MSBnZVI) with pH gradients that ranged from 4.0–8.0, and achieved a
removal efficiency of 99%.
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As nZVI and BC-nZVI have received increasing attention in soil remediation, the
impact of application on the biodiversity of indigenous soil microorganisms should also
be taken into account [11,12]. Indigenous microorganisms play an irreplaceable role in the
biogeochemical cycling of the soil sphere [13]. For example, soil microorganisms play a
key role in the transformation of Fe (Fe cycle) and the fate of Cr in the soil (Cr cycle). In
addition, exogenous substances, such as nZVI and Cr alter the structure of the microbial
community and, to some extent, influence the cycling of important elemental substances
in the soil [14]. Biochar can generally increase soil bacterial abundance and improve their
structure and communities in the soil. In contrast, the addition of nZVI inevitably affects
soil ecology and may cause potential harm to indigenous microorganisms [15,16]. It has
been shown that nZVI addition significantly alters the structure and composition of soil
bacterial communities [17,18]. Anza et al. [19] documented that soil contaminants reduce
microbial biomass and activity and that nZVI application negatively affects the micro-
bial load of contaminated soil, but not uncontaminated soil. The authors concluded that
microbial populations in contaminated soils were more sensitive to nZVI than those in
uncontaminated soils. Recent studies have shown that BC can provide nutrients for soil mi-
crobial colonization and reduces the detrimental effects of nZVI on soil microorganisms [20].
However, relatively few reports have been published on the ecological effects of BC-nZVI
on soil microorganisms during the remediation of Cr-contaminated soils. Therefore, it is
important to study the remediation effect of BC-nZVI composites and the impact on the
microbial ecology of Cr-contaminated soils to contribute to a comprehensive assessment of
soil safety and ecosystem restoration functions.

In view of the above facts, the main objectives of this study were: (i) To prepare
ramie biochar (BC), nZVI, and BC-nZVI to investigate the effects of different materials
with different dosage and remediation times on the removal efficiency of Cr(VI) from
soil, to explore the remediation factors, and to study the mechanism of morphological
transformation of Cr in soil; (ii) to examine the effects of the reaction materials on soil
texture, mainly by measuring soil pH and dissolved organic carbon; (iii) to investigate
the mechanism of the effect of materials on microbial effects, to analyze the diversity and
abundance of indigenous microorganisms, and to clarify the effect of synthetic materials
on changes in the structure of indigenous microbial communities.

2. Materials and Methods
2.1. Chemicals and Materials

The chemicals were of analytical grade or higher and purchased from the Shanghai
Guoyao reagent group, Shanghai, China. Ultrapure water (resistivity ≥ 18.25 MΩ·cm) was
used in all the experiments. The preparation and characterization of ramie biochar (RBC600,
biochar prepared at a pyrolysis temperature of 600 ◦C), nano-zero-valent iron (nZVI), and
nano-zero-valent iron supported by ramie biochar (BC-nZVI) have been explained in our
previous study [21].

2.2. Soil Used in the Experiment

Soil samples (0–20 cm) were collected from a field (E 30◦6′59.017′′, N 114◦10′16.403′′)
located in Jiangxia District, Wuhan City, Hubei Province, China. The soil in this area has
been cultivated for a long period of time and can be regarded as the typical representative
of farmland. After manual removal of visible plant residues and roots, the soil samples
were air-dried and ground to pass through a 2-mm sieve.

According to China’s soil environmental quality for agricultural land standard (GB
15618–2018), the Cr threshold level in soil is considered toxic with 350 mg/kg. The soil
used in the present study was not Cr-contaminated, and therefore, we artificially spiked the
soil with Cr to simulate Cr-contaminated soil. To prepare the Cr-spiked soil, 1 kg of pristine
soil was added into 1 L solution of K2Cr2O7 (500 mg/L) and vigorously homogenized with
ultrasonic treatment and continuous stirring for 30 min. Thereafter, the soil was air-dried
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and stabilized for 3 months prior to use in the experiment. The concentration of Cr in
spiked soil before use in experiments was: Total Cr = 406.4 mg/kg; Cr(VI) = 76.25 mg/kg.

2.3. Soil Incubation Experiment

Three different remediation materials (RBC600, nZVI, and BC-nZVI) and five different
dosing rates (1, 3, 5, 7, and 10 g/kg) were tested for the removal of Cr(VI). A total of
eight treatments were designed for this experiment: (i) Soil without any additive (CK), (ii)
RBC600, 10 g/kg (T1), (iii) nZVI, 10 g/kg (T2), (iv) BC-nZVI, 1 g/kg (T3), (v) BC-nZVI,
3 g/kg (T4), (vi) BC-nZVI, 5 g/kg (T5), (vii) BC-nZVI, 7 g/kg (T6), and (viii) BC-nZVI,
10 g/kg (T7). Three replicates were set up for each treatment and 50 g of air-dried soil
and the corresponding material were packed into 300 mL plastic beakers and mixed well.
The soil moisture content was maintained at 60% during incubation. The tops of the
beakers were covered with porous plastic wrap to ensure ventilation and to minimize water
evaporation. All of the beakers were placed in an electric incubator (ZXSD-B1430, Shanghai,
China) at 25 ± 0.5 ◦C in the dark. The soil was sampled for analysis on days 1, 7, and 15.

2.4. Analysis of Soil Cr

Soil samples collected on days 1, 7, and 15 were air-dried, crushed, and passed through
a 0.15 mm sieve in the laboratory. Determination of Cr(VI) was carried out according to
a method described by Tan et al. [22]. The species of Cr in the soil were evaluated by
sequential Tessier extraction methods [23]. All of the above extracts were filtered through a
0.45-mm membrane and analyzed using the Flame atomic absorption spectrophotometer
(AAS700, PerkinElmer, Waltham, MA, USA).

2.5. Soil Physicochemical Analysis

The soil pH was determined using a pH meter (PB-10, Beijing, China) at a soil:ultrapure
water ratio of 1:2.5 (w/v) [24]. The DOC of the soil was analyzed using a Vario TOC/TN
Analyzer (Elementar, Hanau, Germany) as described by Shaaban et al. [25]. The cation
exchange capacity of the soil was measured using an UV Spectrophotometer (UV-8000,
Shanghai, China) by the hexamine cobalt trichloride spectrophotometric method [26].
Bioavailable Cr and Fe were determined by the DTPA extraction method.

2.6. Soil Microbial Analysis

The soil samples were sent to Shanghai Paisano Biotechnology Co., Ltd. (Shang-
hai, China). for genomic DNA extraction, purification, and sequencing. The partial
sequences of 16S rRNA genes, including V3-V4 high variant region genes were am-
plified using universal primer (5′ACTCCTACGGGAGGCAGCA-3′) and reverse primer
(5′GGACTACHVGGGTWTCTAAT-3′) amplification conditions: 98 ◦C, 2 min (initial denat-
uration); 98 ◦C, 15 s; 55 ◦C, 30 s; 72 ◦C, 30 s (for 25–27 cycles); 72 ◦C, 5 min (final extension).

2.7. Statistical Analysis

One-way ANOVA was used to analyze the data for the significance of differences. The
sequences obtained from gene sequencing were assigned to each operational taxonomic
unit (OTU) by 97% similarity, and the species abundance and diversity of the soil bacterial
community were analyzed by dilution curves, Shannon, Coverage, Chao1, and other indices.
Wayne diagrams, relative abundance analysis of dominant species, and principal coordinate
analysis were used to reveal the changing patterns of bacterial community composition
and structure. Bio-Rad CFX Manager software was used for statistical analysis.

3. Results
3.1. Remediation Effect of Cr(VI) in Soil

The effect of the eight treatments on the remediation of Cr(VI) in soil at different times
is shown in Figure 1. One day after remediation, the stabilization of Cr(VI) in the soil of
treatments CK and T1–T7 was 11.32%, 13.73%, 27.31%, 27.68%, 30.13%, 35.24%, 46.58%,
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and 58.25%, respectively. After 7 days of restoration, the stabilization of Cr(VI) in the soil
of treatments CK and T1–T7 was 20.41%, 42.95%, 52.03%, 39.26%, 46.58%, 57.89%, 69.35%,
and 78.60%, respectively. After the 15th day of soil sampling, the immobilized Cr(VI) in the
soil increased to 26.39%, 50.64%, 60.63%, 51.81%, 63.16%, 69.61%, 80.55%, and 86.55% for
the eight treatments, i.e., CK and T1–T7, respectively.
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Figure 1. Effect of different times and treatments on the remediation of hexavalent chromium in
soil (different capital letters represent significant differences between different times of the same
treatment, different lowercase letters represent significant differences between different treatments at
the same time, p < 0.05). (Soil without any additive (CK), RBC600, 10 g/kg (T1), nZVI, 10 g/kg (T2),
BC-nZVI, 1 g/kg (T3), BC-nZVI, 3 g/kg (T4), BC-nZVI, 5 g/kg (T5), BC-nZVI, 7 g/kg (T6), BC-nZVI,
10 g/kg (T7)).

These results showed that a remediation time of 15 days was sufficient to achieve good
remediation results, and the best remediation effect was achieved at an application rate of
10 g/kg.

3.2. The Speciation of Cr in the Soil

Studies have shown that the risk of heavy metal contamination in soils is not only
related to the total amount of heavy metals, but also closely linked to their fugitive form. The
form of deposition directly influences the transport and transformation processes of heavy
metals [27], which in turn determines their biological effectiveness. The environmental
activity and effectiveness vary considerably between the different forms present [28].
Among them, the exchangeable state is easily transportable and bioavailable; the stability
of the carbonate bound state is related to soil pH, and a decrease in pH may lead to the
release of heavy metals; the organic bound and Fe-Mn oxidized states are more stable than
the first two and are mainly influenced by pH and Eh; the residue state is the most stable
and is not easily released or bioavailable [29]. The environmental activity of soil heavy
metal fugitive forms is as follows: Exchangeable > carbonate bound > Fe-Mn oxidized >
organic bound > residue [30], and vice versa for environmental risk.

To further understand the remediation mechanism, we used a sequential extraction
procedure (SEP) to examine the morphological changes in Cr, a heavy metal, in the soil
after CK, RBC600, nZVI, and BC-nZVI treatments. Although the true morphology of
Cr in the soil cannot be accurately characterized in the ratio between the various forms
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of Cr under different treatments, curing is beneficial to the analysis of the interaction
between remediator materials and heavy metals and can be analyzed. As can be seen in
Figure 2, Cr in CK was mainly present in the exchangeable (16.16%), carbonate bound
(7.35%), organic bound (39.67%), Fe-Mn oxidized (24.05%), and residue (12.77%) states.
The RBC600-treated soil, i.e., T1, had 11.85% exchangeable, 5.07% carbonate bound, 49.45%
organic bound, 20.86% Fe-Mn oxidized, and 12.77% residue states. Compared to the change
in Cr morphology in CK, the exchangeable state in T1 decreased by 4.31% and the organic
bound state increased by 9.78%. This is probably due to the fact that the surface of RBC600
is rich in oxygen-containing functional groups and complexes with Cr(III) to produce the
organic bound state, which is one of the important mechanisms by which BC can remediate
Cr contamination in soil.
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Figure 2. Effect of compound type on the distribution of chromium species in soil. (Soil without any
additive (CK), RBC600, 10 g/kg (T1), nZVI, 10 g/kg (T2), BC-nZVI, 10 g/kg (T7)).

The nZVI-remediated soil, T2, had 7.88% exchangeable, 3.18% carbonate bound, 26.54%
organic bound, 49.27% Fe-Mn oxidized, and 13.13% residue states. Compared to CK, the
exchangeable state in T2 decreased by 8.28% and the Fe-Mn oxidized state increased by
28.41%. This is mainly due to the adsorption of Cr ions from the soil on the surface of
the nZVI particles after the nZVI remediation, which complexes and precipitates with the
surface Fe oxides as well as Fe hydroxides to form trivalent Cr-Fe hydroxides [31]. After
the BC-nZVI remediation, the exchangeable state disappeared completely from the soil,
i.e., T7, with 2.38% carbonate bound, 28.91% organic bound, 53.19% Fe-Mn oxidized, and
15.52% residue states. It can be found that almost all of the exchangeable state in T7 was
transformed into Fe-Mn oxidized and residue states, in which the Fe-Mn oxidized state
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increased by 29.14% and the residue state increased by 2.75% compared to CK, which is
mainly attributed to the synergistic effect of RBC600 and nZVI, and also indicates that
BC-nZVI can immobilize the Cr in the soil more effectively.

3.3. Effect of BC-nZVI on Cr-Contaminated Soil Microorganisms
3.3.1. Soil Bacterial Community Diversity Analysis

There are many microorganisms present in soils and they play a key role in maintaining
the ecological balance of the system. At the same time, the sensitivity of soil microbial
communities to external factors or anthropogenic disturbances can be used as a good
indicator of soil ecological risk and health [32]. Research on soil microbial community
diversity, changes in community structure, and succession patterns during soil remediation
can reveal the mechanism of action of BC-nZVI reduction in the remediation of Cr(VI)-
contaminated soil from a microscopic perspective.

A total of 920,494 valid sequences and 519,286 high quality sequences were obtained
by high-throughput sequencing of a total of eight soil samples from three groups, S, CK,
and T7, which could be classified into 3980–7829 OTUs at 97% similarity level. As shown
in Figure 3a, the dilution curves of all three groups of samples tended to be flat, indicating
that the amount of data were reasonable and reliable, the sequencing depth of the samples
met the requirements, and could complete the response of soil microbial community [33].
Moreover, it can be seen that the T7 group had the largest number of OTUs and the highest
species richness, which can indicate that BC-nZVI had no toxic side effects and even
promoted the metabolism of indigenous microorganisms to some extent.

The Venn diagram enables the number of co-occurring and individual species to be
counted between groups of samples, thus providing a more visual representation of the
composition and similarity of OTUs as well as an overlap of the flora under different
conditions, which reflects the distribution and changes in community structure under
different stresses [34]. In Figure 3b,c, the total number of OTUs for the three groups of
samples, S, CK, and T7, were 4318, 3980, and 7829, respectively. Of these, 295 OTUs were
detected jointly, indicating that some microorganisms were always present in different
treatments; the number of OTUs unique to each group of samples was 3653, 3189, and 6912,
respectively, which indicates that different treatments produced their appropriate unique
strains. The T7 treatment showed higher OTUs compared to S and CK, indicating that
BC-nZVI contributes to the development of soil biodiversity, improvement of soil structure,
and maintenance of soil fertility.

Heavy metals are important factors affecting microbial communities in the soil en-
vironment [35,36], and these effects are usually reflected in the abundance and diversity
of microbial communities [37]. The abundance and diversity of microbial communities
can be reflected by the α-diversity index, which includes abundance, diversity, and homo-
geneity, e.g., Chao1 [38], Shannon [39], Simpson [40], and Pielou [41], etc. The α-diversity
indicators for each group of samples are shown in Table S1. From the data in the table, it
can be seen that the Chao1 and Observed species indices of the samples in T7 treatment
were significantly higher than those of S and CK (p < 0.05), and the greater the Chao1
and Observed species indices, the higher the richness of the community. Therefore, the
T7 community contained the greatest number of OTUs and the greatest richness of the
community. For the Simpson index value, the larger the Simpson index value, the lower
the community diversity, and the larger the Shannon value, the higher the community
diversity, which indicates that T7 has the highest community diversity. The higher the
Pielou evenness index, the more homogeneous the community, thereby the T7 treatment
has the most homogeneous community.
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3.3.2. Soil Bacterial Community Structure Analysis

Soil microorganisms can alter the composition and structure of the corresponding
microbial communities, and the analysis of soil microbial community composition can
assess the response mechanisms associated with Cr fixation via BC-nZVI and provide a
more detailed picture of its possible impact on the soil microbial community.

The abundance of microbial communities in soil samples at the phylum level varied
as shown in Figure S2a, with Firmicutes, Actinobacteria, and Proteobacteria as the domi-
nant phylum (relative abundance > 1%). In the S and T7 treatments, Firmicutes was the
most dominant group with relative abundances of 89.33% and 90.37%, respectively. In
contrast, in the CK treatment, the first dominant phylum was Actinobacteria, with a relative
abundance of 49.49%, and the next dominant phylum consisted of Firmicutes (27.81%) and
Proteobacteria (21.64%), respectively. Therefore, the composition of the bacterial commu-
nities of the three groups was essentially similar at the phylum level, but the abundance
distribution had some variability, especially in the CK group. This further confirms that
BC-nZVI did not have a detrimental effect on soil microbiology. Figure S2b shows the
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changes in the relative abundance of soil microorganisms at the phylum level, combined
with the changes in taxonomy at the phylum level to further reveal the effect of BC-nZVI
on microbial composition. It can be seen that Bacilli, Actinobacteria, and Clostridia are the
dominant phyla (relative abundance > 1%) in the three groups, all of which are reported to
have Cr(VI)-reducing functions. It was found that the community structure and abundance
distribution at the phylum level were very similar to those at the phylum level, with Bacilli
as the most dominant group in the S and T7 groups, with relative abundances of 87.14% and
82.08%, respectively. In the CK group, the first dominant group was Actinobacteria with a
relative abundance of 49.23%, while the second dominant group consisted of Bacilli (25.20%)
and Alphaproteobacteria (25.20%). It can be seen that the proportion of Clostridia (7.73%)
in T7 increased compared to both S (2.09%) and CK (2.52%), which is mainly caused by the
addition of BC-nZVI. In addition, earlier studies reported the identification of Clostridia
as heterotrophic Fe(III)-reducing bacteria [42]. Therefore, the increase in Clostridium may
favor the elimination of the nZVI passivation layer, and thus allow for a better reaction
with Cr contaminants.

To reveal more deeply the structural variability of the microbial communities in
the different groups of samples, we analyzed them at the taxonomic level of the genus,
and the variation at the genus level was more evident in the samples of each treatment
group, with the composition of the dominant communities (relative abundance > 1%)
shown in Figure 4. The dominant genera in the Group S samples were Bacillus (73.86%),
Micromonospora (4.82%), Fictibacillus (3.52%), Baia (3.39%), Lysinibacillus (1.50%), and
Risungbinella (1.11%), most of which are both Cr(VI)-tolerant and Cr(VI)-reducing bacteria.
In the CK group compared to the S group, Bacillus decreased sharply to 2.65% and Mi-
cromonospora (24.81%) increased as the first dominant genus and typical metal-reducing
bacterial genus [43]; Fictibacillus (19.57%) was the second dominant genus and it was
reported that (Fictibacillus, 19.57%) was the next dominant genus, which was reported to
be able to resist and reduce Cr(VI) [44]. In addition, four new dominant genera, Phenylobac-
terium (8.98%), Pseudomonas (6.85%), Paenibacillus (1.28%), and Mesorhizobium (1.45%)
were added. In the T7 treatment, Paenibacillus (24.23%) was overwhelmingly dominant
in the samples. Of note, the T7 group was not only highest in abundance and diversity of
microbial communities, but also the presence of dominant groups was not found in other
samples, such as Hungangia (7.85%), Effusibacillus (2.44%), Cohnella (9.77%), and Paenis-
porosarcina (2.60%), indicating that BC-nZVI reduced the environmental stress caused by
Cr pollution and restored soil microbial diversity.

Principal coordinate analysis (PCoA analysis) is one of the most classical methods of
unconstrained ranking analysis [45]. PCoA takes sample distances as a whole into account
and can be used to study similarities or differences in the community composition of soil
sample species. Therefore, to further understand the differences in bacterial community
structure under different treatments, principal coordinates were analyzed at the OTUs
level for each group of samples. As shown in Figure 5, the variance explained by the first
principal component (PCoA1) and the second principal component (PCoA2) were 37%
and 35.8%, respectively. Each point in the graph represents a sample, the different colors
represent the grouping of the samples and the distance between the points represents
the degree of variation in the microbial communities of the samples. Here, the greater
the distance, the greater the variation in the microbial communities between the samples.
Therefore, it can be seen that the soil samples from different groups are clearly separated
and far apart from each other, indicating that the different treatments made the bacterial
communities in the soil very different and that the structure of the bacterial communities
changed significantly.
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To further compare species composition differences between samples and to achieve a
demonstration of trends in species abundance distribution across samples, species compo-
sition analysis was carried out using a species abundance clustering heatmap. As shown in
Figure 6, the cladistic analysis of the heat map visualizes the phylogenetic relationship of
OTUs between the samples, and the heat map shows the clustering tree for the different
treatments, with the distances of the branches and the distances of the clusters in the cluster
analysis representing the variability in the bacterial structure of the samples. It can be
seen that there are significant differences in microbial structure between the S, CK, and T7
treatments, which is consistent with the results of relative abundance and with the PCoA
conclusions.
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3.4. Effects of BC-nZVI on Soil Chemical Properties

Soil is a complex non-homogeneous mixture [13], and the mobility of Cr in soil is
closely related to soil texture, soil microorganisms, and other environmental factors [46].
To investigate the changes in soil properties before and after BC-nZVI remediation, the pH,
DOC, CEC, and effective state Fe and effective state Cr of the original contaminated soil (S),
the control treatment (CK), and the Cr-contaminated soil (T7) after BC-nZVI remediation
were measured in this experiment and are shown in Figure 7 and Figure S1, respectively.
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Soil pH is an important factor affecting the biological effectiveness of heavy metals in
soil [26]. After the treatment, the pH of the three soils, S, CK, and T7, was 6.84, 6.66, and
6.84, respectively. The increase in soil pH of 0.18 in T7 compared to the control treatment
may be due to the reduction reaction of iron decay with Cr(VI), during which H+ was
consumed, resulting in an increase in OH- [47]. Moreover, it may be due to the release of
alkaline salts to the soil by RBC600 resulting from the release of alkaline salts to the soil by
RBC600 [48]. Soil organic carbon is one of the indicators of soil fertility and can complex
soil heavy metals, and its active component DOC is an important indicator [49]. The DOC
contents of the three soils, S, CK, and T7, were 101.2, 204.5, and 200.1 mg/kg, respectively.
The soil DOC contents of both CK and T7 were twice as high as those of S. The increased
DOC in CK may be due to the proliferative, locally intensive activity of soil microorganisms.
The increase in DOC in T7 may be due to the increased aromatization and humification of
soil after the addition of RBC in BC-nZVI to the soil, resulting in an increase in soil DOC
content. The CEC represents the sorption capacity of soil colloids for various cations and is
a non-negligible parameter affecting the stability of heavy metals in soil. The CEC of the
three soils, S, CK, and T7, was 218.05, 236.03, and 213.66 cmol+/kg, respectively. Compared
to the control treatment, the soil CEC value of T7 was reduced by 22.37, probably due to
the low activity of nZVI after the reaction which allowed the release of Fe2+ to be limited,
thus exhibiting a lower cation exchange. Fe is one of the major elements in soil and the
increase in effective Fe content has a positive effect on enhancing soil microorganisms [12]
with 1608.27, 806.51, and 4224.49 mg/kg of effective Fe found in the three soils S, CK, and
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T7, respectively. Therefore, T7 exhibited a higher Fe content, which was mainly due to the
release of excess Fe from nZVI during the remediation process. This was mainly due to the
release of excess Fe from nZVI during the remediation process, resulting in an increase in
Fe content in the soil.

Specifically, changes in soil pH, DOC, CEC, and effective iron content following the
application of BC-nZVI suggest that BC-nZVI can influence the ability of heavy metals to
bind to the soil by altering the physicochemical properties of the soil to reduce the effective
state of chromium in the soil (Figure S1).

4. Discussion

Soil microbial richness and diversity are considered to play a critical role in main-
taining stability in ecosystem productivity and function and in mitigating stresses and
disturbances [50], and changes in them may have important implications for soils [51].
Previous studies have used electrokinetic techniques, phytoremediation [52], microbial
remediation, and microbial dye batteries [53] to remediate chromium-contaminated soils,
and many of these methods have been undiscovered. In the present study, which enriched
chromium reducing bacteria in soil and indigenous microbial diversity counted by high-
throughput gene sequencing, we obtained the α-diversity index of bacterial communities
in chromium-contaminated soils (Table S1). Our approach identified conventional taxa that
were present in enrichment cultures (Figure 4), and revealed some rare CrRB community
taxa (e.g., Hungangia, Effusibacillus, Cohnella, Paenisporosarcina, etc.). In addition, many
“Unclassified” sequences were identified in this study, suggesting that these paddy soils
contain a quantity of unknown CrRB.

According to previous studies, Firmicutes, Actinobacteria, and Proteobacteria are
typically the dominant treatments among the CrRB communities in Cr-contaminated
soils [44,54–56]. Previously, it has been studied that Proteobacteria and Firmicutes were
also the dominant phyla in the gut, gonad, and hepatopancreas of female shrimp, while
Firmicutes, Actinobacteria, and Proteobacteria were also found in Colombian Caribbean
deep-sea sediments and found in the soil of the Lake Elton area. Meanwhile, members
of other phyla, such as Acidobacteria, Ascomycota and Basidiomycota, Chytridiomycota,
Chlorophyte, Omoarchaea, and Broadarchaea have been described in different chromium-
contaminated soils, and they may play a key role in C and N cycling. However, these taxa
are rarely classified as CrRBs, thus other unknown CrRB phyla may be the subject of future
research.

In the present study, Firmicutes, Actinobacteria, and Proteobacteria were dominant in
the soil, and there were certain differences in the relative abundance of these groups. In the
S and T7 groups, bacterial cell walls of Firmicutes contain a peptidoglycan layer and are
able to form budding spores under stressful conditions (e.g., lack of nutrients or presence
of contaminants), protecting the cells from environmental damage [57]. In the CK group,
the first dominant flora was Actinobacteria, and the second dominant flora were Firmicutes
and Proteobacteria. These results confirmed that BC-nZVI had no adverse effect on soil
microecology.

In addition, the increase in community richness and diversity in the T7 group was
mainly attributed to the incorporation of RBC600-nZVI, which reduces the invasive effects
of Cr [34], while changes in soil environmental conditions stimulated microbial growth and
activity [58–60]. Moreover, RBC600-nZVI provides some nutrients and survival habitat for
microorganisms [61–63].

It has been previously reported that the diversity of bacterial community is greatly
influenced by soil properties. In the present study, there were significant differences in the
available iron content in CK and T7 soils, and significant differences in the DOC content in
S and T7 soils, suggesting that the diversity of CrRB in chromium-contaminated soils was
affected by soil properties. The increase in DOC in T7 may be due to the increase in soil
aromatization and humification after RBC in BC-nZVI was added to the soil, resulting in
the increase in soil DOC content.
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The significant difference (p < 0.05) between the restoration effect of CK on day 15
compared to that on day 1 could be explained by the enrichment growth of indigenous
microorganisms during soil cultivation, where some of the Cr(VI) was reduced to Cr(III) by
the action of microorganisms with the Cr(VI) reducing ability or possibly by the reduction in
some organic matter that is still present in the soil itself [3,11,64]. Moreover, the remaining
treatments reached maximum Cr(VI) stabilization rates on day 15.

The stabilization of Cr(VI) by BC-nZVI (T7) was significantly higher (p < 0.05) than
RBC600 (T1) and nZVI (T2) at the same dosing rate. The possible reasons for this are that
BC reduces Cr(VI) through reactive treatments on its surface, disordered PAHs provide
π-electrons for Cr(VI) reduction, and compounds, such as -OH in phenols and alcohols are
oxidized as proton donors. In addition, the resulting C=O or -COOH can provide binding
sites for Cr(III) as a means to stabilize Cr(VI). The nZVI itself is magnetic and tends to
adsorb and agglomerate into large particles, reducing its own specific surface area. The
large particles of nZVI tend to react and passivate with substances in the environment due
to the more reactive surface layer, leading to unsatisfactory remediation results.

Moreover, the solid form of nZVI itself is difficult to migrate in soil pores and is
less mobile, making it difficult to reach the Cr(VI) adsorbed by the soil. The increased
stabilization of Cr(VI) by BC-nZVI may be due to the synergistic effect of RBC600 and
nZVI [4,17]. The presence of RBC600 improves the dispersion and stability, increasing the
specific surface area, and thus providing more sorption sites [18]. Furthermore, RBC600
enhanced the mobility of BC-nZVI in the soil, thus allowing for the reduction in more
Cr(VI). The effect of BC-nZVI (T3–T7) on the remediation of Cr in the soil increased with
the increasing dosage, which was due to the fact that the higher dose of BC-nZVI provided
more active sites [19].

5. Conclusions

This study showed that BC-nZVI at 10 g/kg was most effective at reducing 86.55%
of the Cr(VI) in the soil after 15 days of application, which is significantly higher than
the application of RBC600 (50.64%) and nZVI (60.63%). The exchangeable state in the
restored soil was almost entirely converted into the Fe-Mn oxidized and residue states.
High throughput sequencing results showed that BC-nZVI had no negative impact on soil
microorganisms and can even increase the abundance and diversity of indigenous bacteria
by reducing toxic effects of Cr, changing soil properties, and providing habitat for survival.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12193541/s1, Figure S1: Effect of RBC600-nZVI on the
effective state of chromium in soil. (Unactivated original contaminated soil (S), Soil without any
additive (CK), RBC600-nZVI 10 g/kg (T7); Figure S2: Relative abundance of bacterial communities in
soil samples at the phylum (a) and phylum (b) levels. (Unactivated original contaminated soil (S),
Soil without any additive (CK), RBC600-nZVI 10 g/kg (T7); Table S1: α-diversity index of bacterial
communities in chromium-contaminated soils.
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