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Abstract: Ag has the lowest electrical resistivity among all metals, and at the same time, the best
optical properties in the visible and near-IR spectral range; it is therefore the most widely employed
material for thin-metal-film-based transparent conductors. In this work, an ultra-thin transparent
silver film electrode with aluminum as seed layer was prepared by a resistive thermal evaporation
technique. Using a range of electrical, optical and surface morphology techniques, it can be noted that
the presence of the thin layer of aluminum changes the growth kinetics (nucleation and evolution) of
the thermal evaporation of Ag, leading to silver films with smooth surface morphology and high
electrical conductivity, and the threshold thickness of the silver film is reduced. It is inferred that the
aluminum layer showed a good infiltration effect on the ultra-thin silver film, by analyzing the trans-
mittance spectrum, sheet resistance and surface morphology. Moreover, the average transmittance of
silver film with 10 nm is 40% in the 400–2500 nm band, whereas the sheet resistance is 13 Ω sq−1. A
series of experiments show that the introduction of Al seed layer has certain effect on improving the
properties of transparent conductive silver films. Then, a new method for deposition of 1 nm Al seed
layer was proposed; that is, the 1 nm aluminum infiltrated layer is divided into two or more layers,
and the average transmittance of silver film with 5 nm is 60% in the 400–2500 nm band, whereas the
sheet resistance does not exceed 100 Ω sq−1.

Keywords: ultra-thin silver film; infiltration layer; transparent electrode

1. Introduction

The ideal transparent electrode requires high optical transmittance and low sheet
resistance. High flexibility is also a critical and indispensable component of emerging
flexible optoelectronic devices. Flexible transparent electrodes are in significant demand in
applications including solar cells [1], light-emitting diodes [2–4], curved surface screens,
touch panels [5] and other optoelectronic devices. Indium tin oxide (ITO) is the conven-
tional selection and most widely used for the transparent electrode because of its high
visible transmittance and electrical conductivity. However, the low abundance of the in-
dium element on earth is a limiting factor of this material. In addition, its applications
in emerging flexible optoelectronic devices are significantly hindered by both the poor
mechanical flexibility and the high annealing temperature needed to reduce its resistivity.
Recently, several other transparent conductive materials have been developed to address
these issues. For instance, doped metal oxides, thin metals, conducting polymers, and
nanomaterials (including carbon nanotubes, graphene, and metal nanowires) [6], etc., have
gradually become effective substitutes for ITO film. Metal thin film is an ideal material
for transparent electrodes because of its simple preparation process, low cost, excellent
mechanical flexibility and uniform photoelectric properties. In addition, compared with
the ITO film, the transmittance of silver metal film is relatively poor, but it is featured with
good conductivity and flexibility, and the silver resources are more abundant than the
indium resource [7].
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A much thinner Ag layer is necessary for higher transmittance, but it is well known
that Ag grows in the Volmer–Weber mode on glass substrates [8]. The conductivity of silver
films will increase with increased thickness, but the permeability of silver films will be
affected if the thickness is too thick. Therefore, it is necessary to introduce a seed layer to
reduce the threshold thickness of the film and change the growth mode of the silver film,
so that the silver film can be continuous at a lower thickness.

Numerous metals from the periodic table have been used as a seed layer, such as
Nickel(Ni) [9], Copper(Cu) [10], and Gold(Au) [11]. Stefaniuk et al. studied the effect of
Ge, Ni and Ti as wetting layers on the resistivity of silver films [12]. Wang et al. provided
an effective method for preparing transparent silver electrodes and found that a small
amount of oxygen doping can improve the optical and electrical properties of silver films [1].
Logeeswaran et al. studied the effect of a metal Ge infiltration layer on the morphology of
silver films on glass substrates by comparing silver films with and without a Ge infiltration
layer [13]. Lv Jing et al. from Fujian Normal University studied the effect of copper
and aluminum as infiltration layers of silver films on the thermal stability and resistivity
of 20 nm silver films [14]. Through thermal evaporation technology and doping with
different elements, Xue Weining from Zhejiang University successfully grew aluminum–
silver-doped films with a smooth surface and good thermal stability [15]. At present, there
are two main methods for infiltrating silver films with metals. One is to prepare silver films
by doping other metals with silver [16], and the other is to infiltrate silver films directly as
seed layers to reduce the threshold thickness (the thickness at which the films begin to grow
continuously) of the silver films [17]. The doping ratio of silver-doped films is difficult to
control, and the process is complicated. There are relatively few studies on the preparation
of transparent conductive silver films directly using aluminum as the infiltration layer, and
the existing studies on ultra-thin silver transparent conductive films mainly focus on the
transparency and conductivity in the range of visible light band.

In this work, first, the thermal evaporation technique was used to prepare ultrathin
silver transparent conductive film, and then, based on the silver film transmittance, sheet
resistance and SEM image measurement and analysis, the effect of aluminum as a seed
layer on the photoelectric properties of silver films on a K9 glass substrate was studied.
The optimal infiltrating thickness of the aluminum layer was determined, and silver films
with different thickness were prepared. The optical and electrical properties of ultrathin
transparent silver conductive films in the 400–2500 nm band were studied.

2. Model and Experiment
2.1. Model of Thin Metal Film Growth

Metal film growth on a substrate generally follows several stages in a sequence, namely
nucleation, coalescence, and thickness growth [18]. Depending on the strength of surface
energy of the substrate (γs), surface energy of the metal (γm), and metal/substrate interface
energy (γm/s), there are three nucleation modes [19]. (i) Frank–van der Merwe mode (layer
by layer growth): layers of material grow on top of one another. The interaction between
adjacent substrate atoms and metal adatoms is stronger than that between adjacent metal
adatoms. (ii) Volmer–Weber mode (island growth): isolated 3D metallic islands form on the
substrate. The interaction between adjacent metal adatoms is stronger than that between
metal adatoms and substrate atoms. (iii) Stranski–Krastanov mode (layer plus island
growth): one or two monolayers of material form first, followed by individual islands on
top. This is a situation between (i) and (ii), and involves a change of interaction energies
between these atoms. The surface energies of metal film deposition are shown in Figure 1.
Young′s equation is satisfied between the surface energies at equilibrium [20] Equation (1).

γs = γm/s + γm cos θ (1)
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Figure 1. Schematic diagram of surface energy during metal film deposition. 
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When the interface between the film and the substrate is zero, the film growth
is the ideal lamellar growth, in the island-like growth pattern θ > 0, indicating that
γs < γm/s + γm [21]. The adhesion energy Eadh is the energy to separate the metal/substrate
interface in a vacuum and can be expressed as [22].

Eadh = γm + γs − γm/s (2)

According to Equation (2), when Eadh < 2γm, the initial phase of film growth is island
growth. According to the Eadh and γm values of different metals on a SiO2 substrate, gold
(Au), silver (Ag) and copper (Cu) all have Eadh < 2γm values, while aluminum has a higher
adhesion energy [23]. The growth of these metal films (e.g., Ag, Au, and Cu) typically
follows the Volmer–Weber mode, and isolated metallic islands, instead of continuous
metallic layers, are formed on the substrate in the early stage of film growth [24]. In
addition, from the point of view of dynamics, Bauer points out that islands tend to grow
on the thermodynamic model of the case. If the film has a large enough force between the
atoms and the substrate to bind the atoms on the surface of the substrate. The diffusion film
on the surface of the substrate may also be in accordance with the island growth pattern,
showing that the reaction between the film and the substrate will also impact on the thin
film growth mode [25]. By observing the surface morphology of Ag films with different
thicknesses on a ZnO film surface, Yun verified that Ag grows on the oxide surface in
accordance with the island pattern. At the same time, the observation results also show that
with the decrease in the core density and cluster density during the growth process, the
clustering of film clusters becomes the key factor affecting the morphology of the film [20].

Therefore, the initial growth of gold, silver and copper metal films follows the island
growth pattern, and finally, the islands are connected to form a film, resulting in a greater
threshold thickness of the silver film. In order to obtain a transparent conductive film
with good performance, it is necessary to overcome the island growth mode and reduce
the threshold thickness of the film. Therefore, aluminum can be used as the seed layer
to reduce the threshold thickness of the silver film and prepare a transparent conductive
silver film with good performance. In addition, the infiltration effect of the Al seed layer
was further improved by changing its infiltration mode.

2.2. Experiment

For the experiments, K9 glass with a diameter of 25 mm and a thickness of 2 mm was
selected as the substrate. The substrate samples were cleaned to remove contamination and
improve film quality and uniformity. This was achieved with multiple sonicated solvent
rinses in acetone and isopropyl alcohol, and drying with pressurized nitrogen (99.99%).
The aluminum and silver films were prepared with a high vacuum resistance evaporation
coating machine manufactured by Tekono Technology Co., Ltd, Beijing, China. The device
has two evaporation boats, but only one evaporation power supply, to be switched to
deposit aluminum and silver. During the preparation process, the background vacuum was
5.0 × 10−3 Pa. The schematic diagram of the equipment is shown in Figure 2. Deposition
rates for the thermal evaporation processes were monitored using quartz crystal oscillators.
The film thickness was set in advance, the current was turned on for preheating, and
the rotation speed of the substrate was set to 10 r/min. Then, the baffle was opened for
the preparation of aluminum and silver. The evaporation current was between 90 A and
120 A, the deposition rate of aluminum was 1 Å/s, and the deposition rate of silver was
3 Å/s. In the preparation process, the quartz crystal vibration film thickness meter of the
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equipment was used to monitor the film thickness. Before the experiment, the tool factor
of the quartz crystal vibration film thickness monitor was calibrated using a MultiMode8
scanning probe microscope (Bruker, Billerica, MA, USA); that is, a thick film was prepared,
and the thickness of the step was measured with the scanning probe microscope through a
step made of high-temperature tape on the silicon substrate. The ratio between the actual
thickness of the experimentally prepared film and the thickness set on the equipment
during the experiment is the specific value of the tool factor. After determining the specific
value of the tool factor, a series of experiments were carried out.
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2.3. Thin Film Characterization

After the preparation of a thin silver film infiltrated with an extreme aluminum seed
layer by heat evaporation, a series of characterizations of the film were carried out directly to
prevent oxidation of the film from affecting its effect. The wavelength range of 400–2500 nm
was measured with a U-3501 UV-visible spectrophotometer manufactured by Hitachi; and
the surface morphology of the films was measured using a SU8010 cold-field-emission
scanning electron microscope (Carl Zeiss AG, Oberkochen, Germany) to compare films
of different thicknesses; the images were obtained with in-lens and SE2 detectors. The
electrical properties were measured by a ST2558B-F01 film linear four-probe test platform
produced by Lattice Electronics Co., Ltd, Suzhou, China.

3. Results and Discussion
3.1. Preparation of Single Layer Silver Film

Firstly, we prepared a single layer silver film on a K9 glass substrate. When the
thickness of the silver film is thinner, the transmittance is higher, and decreases as the
thickness of the silver film increases. Although the transmittance of 5 nm and 8 nm silver
films is higher, there is no square resistance, and the silver films are not conductive. With
increased thickness, the transmittance of 15 nm and 25 nm silver films is low, but the
square resistance is good, at around 10 Ω sq−1. The transmittance curves and surface
morphology of silver films with different thicknesses are shown in Figure 3. From the
transmittance curve, it can be seen that when the silver film is too thin, its sheet resistance
value is too high, and conversely, when the silver film is too thick, its transmittance is too
low. Therefore, it is necessary to improve the transmittance of the silver film while ensuring
good sheet resistance. As can be seen from the SEM image, when the silver film is thin, it is
obviously granular. As the thickness increases, the particles gradually become larger, from
island film to layer film, and finally form a massive silver film. In other words, the silver
film without a seed layer cannot achieve a transparent conductive effect. Therefore, it is
necessary to introduce a seed layer to reduce the threshold thickness of the silver film, so
that it can achieve higher transmittance and better sheet resistance at a lower thickness,
which can meet the requirements of transparent conductive films.
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3.2. Optimization of Seed Layer Thickness

The thickness range of aluminum seed layer was determined by reading relevant
literature and conducting exploratory experiments in the early stage. Aluminum films of
1 nm and 2 nm were prepared on a K9 glass substrate and used as the seed layer of silver
film. After plating silver films of different thickness on the seed layer, it was found that the
infiltration effect of a 2 nm aluminum seed layer on the silver film was not obvious; that
is, compared with the single layer silver film, the performance of the silver film was not
greatly improved. Sheet resistance can be measured in silver films with 1 nm Al seed layer,
indicating that the silver film is relatively continuous. Then, the thickness around 1 nm of
the aluminum seed layer was refined and studied. The following figure shows the sheet
resistance curves of the silver film with a 0.8 nm, 1 nm and 1.2 nm aluminum seed layer,
respectively, for 8 nm and 10 nm silver film.

Figure 4 shows the sheet resistance diagram with error bar, comparing the influence
of different aluminum seed layers on the sheet resistance of silver film [26]. As can be
ascertained from Figure 4, the 1 nm-thick aluminum seed layer relative to the 0.8 and
1.2 nm aluminum seed layer has good electrical conductivity, suggesting that silver film
with a 1 nm aluminum seed layer is more continuous. In other words, the silver film with
1 nm aluminum seed layer has a better conductivity, and this conclusion can be obtained
for both 8 nm and 10 nm silver films. To further verify the infiltration effect of the 1 nm
aluminum seed layer on the silver film, a cold-field emission scanning electron microscopy
(SEM) test was performed on the silver film with different thickness of the aluminum seed
layer. The test results are shown in the following figure (Figure 5). The effect of the 1 nm
aluminum seed layer on the silver film can be clearly seen in the figure.
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3.3. Optimization of Silver Film Thickness

After determining the optimal thickness of the aluminum seed layer, silver films with
different thickness were plated on a 1 nm aluminum seed layer by the same process to study
the optical and electrical properties. Figure 6a shows the transmittance curves of silver
films with different thicknesses on a 1 nm aluminum seed layer in the band of 400–2500 nm
measured by spectrophotometer, and the transmittance in the figure does not take into
account backside reflection. Figure 6b shows the sheet resistance error bars of silver films
with different thicknesses on a 1 nm aluminum seed layer measured by linear four-probe
test platform [26].
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Figure 6. (a) Transmittance curves of silver films with different thickness on the surface of a 1 nm
aluminum seed layer; (b) the sheet resistance curve of silver film with different thickness on an
aluminum seed layer.

The dispersion characteristics of very thin silver films vary with film thickness, while
the dispersion characteristics of continuous Ag films are very small [27]. It can be seen
in Figure 6a that when the silver films are thin, the transmittance of the silver films at
7 nm is relatively high, and this increases with the change in wavelength, which is mainly
caused by the dispersion. When the thickness of silver film is above 8 nm, the transmittance
decreases as the silver film thickness increases. The electrical characteristics are tested by
the thin-film linear four-probe test bench. The maximum resistance value that can be tested
by this instrument is 4.48 × 1036 Ω sq−1, and the sheet resistance value of the single-layer
10 nm silver film tested is 4.48 × 1036 Ω sq−1; that is, the conductivity is almost zero. It
can be seen from the sheet resistance curve that the sheet resistance of the silver film with
an aluminum seed layer is significantly improved with the increase in the thickness of the
silver film. The transmittance of the 7 nm-thick silver film is higher; that is, the film is not
continuous enough, resulting in a larger sheet resistance. When the thickness of the silver
film reaches 10 nm, the sheet resistance can reach about 13 Ω sq−1.
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Figure 7 shows the surface morphology images of silver films with different thickness
on a 1 nm aluminum seed layer measured by cold-field emission scanning electron mi-
croscopy. It can be clearly observed from the figure that the silver films with thicknesses
less than 10 nm have obvious furrows and do not form relatively continuous films. When
the thickness reaches 10 nm, the number of furrows decreases, and the furrows begin to
connect to form a relatively continuous film. With the increase in the silver film thickness,
the silver film larger than 10 nm has become significantly continuous, and the sheet resis-
tance decreases with the increase in the silver film thickness, but the transmittance will
be affected. By comparing the 10 nm silver film with a 1 nm aluminum seed layer as an
infiltration layer and the 10 nm silver film without an aluminum seed layer, it can be seen
that the folds of the silver film without an aluminum seed layer are significantly increased,
while the silver film with a seed layer is more continuous, and the infiltration effect of the
aluminum seed layer can be compared.
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seed layer. (f) SEM images of silver film with 10 nm on K9 substrate.

3.4. Optimization of Preparation Method for Aluminum Seed Layer

From the previous experimental results, it can be seen that the introduction of an
aluminum seed layer can change the growth mode of silver film, reduce the threshold
thickness of silver film, and improve the surface morphology of silver film, so that the
silver film has a low sheet resistance on the premise of maintaining a high transmittance.
The introduction of an aluminum seed layer has a certain infiltration effect on the silver
film, and although the conductivity is good, the transmittance needs to be improved. Then,
we proposed a new method to prepare the seed layer; that is, on the basis of the 1 nm
aluminum seed layer obtained in the previous example, the aluminum seed layer and silver
film were deposited layer by layer to approximately achieve a state of mixed evaporation.
This can make the seed layer play the role of infiltration better, as shown in Figure 8.
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As can be seen in Figure 8, the 1 nm aluminum seed layer was deposited into two layers.
First, the 0.5 nm aluminum seed layer was deposited on the glass substrate, then the 0.5 nm
silver film was deposited, then the 0.5 nm aluminum seed layer was deposited, and finally,
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silver film of different thickness was deposited on this base. Previously, we also tried
to divide the 1 nm aluminum seed layer into three or four layers for deposition, but the
experimental results show that the deposition effect of two layers is more obvious, and the
process of two layers is relatively simple and convenient.

The transmittance curves of silver films with different thicknesses, after the aluminum
seed layer was deposited separately, are shown below, where the sheet resistance values
are also indicated. It can also be seen from the transmittance curve in Figure 9 that the
transmittance gradually decreases with the increase in the thickness of the silver film.
However, compared with the silver film with the 1 nm aluminum seed layer directly
deposited before, the effect of separating the aluminum seed layer is more obvious, and
the highest transmittance can reach about 60%, with the sheet resistance being less than
100 Ω sq−1. The transmittance of very thin silver films prepared by this method is improved,
but the sheet resistance is not much reduced. This conclusion can be further verified by the
SEM image.
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Figure 9. The transmittance curve of transmittance as a function of wavelength for alternating
deposition of Al seed layer and Ag film.

As shown in Figure 10, the aluminum seed layer and the silver film are alternately
deposited. The thickness of the last layer of silver film is constantly changing. It can be
seen from the figure that as the thickness of the last layer of silver film increases, the silver
film is obviously more continuous. Although there are obvious gullies, it can be seen that
the silver film is obviously connected to one piece. This is also the reason for the high
transmittance and low sheet resistance.
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4. Conclusions

In this work, through measurement of the transmittance, sheet resistance and SEM
imaging of the experimentally prepared ultra-thin silver conductive film, it can be con-
cluded that the silver film with the aluminum seed layer is significantly more continuous
than the silver film without aluminum seed layer; that is, the introduction of an aluminum
seed layer can make the silver film continuous at a lower thickness. Furthermore, the
continuous threshold thickness of the silver film is reduced. Aluminum has a better affinity
with glass substrates than silver. The optimal thickness of aluminum as a seed layer is
1 nm, and the transmittance of 10 nm-thick silver film can reach about 40% in the band of
400–2500 nm, and the minimum square resistance can reach 13 Ω sq−1. After that, by chang-
ing the infiltration mode of the aluminum seed layer and depositing it alternately with
silver film, thinner transparent conductive silver film can be obtained. The transmittance of
5 nm silver film can reach about 60% in the band of 400–2500 nm, and the sheet resistance
value can reach 90 Ω sq−1 at the lowest. The results showed that alternating deposition
could play a better role in the infiltration of the aluminum seed layer, and the infiltration
effect was better than that of using 1 nm aluminum directly as the infiltration layer.
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