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Abstract: Controlling the permittivity of dielectric composites is critical for numerous applications
dealing with matter/electromagnetic radiation interaction. In this study, we have prepared polymer
composites, based on a silicone elastomer matrix and Tuball carbon nanotubes (CNT) via a simple
preparation procedure. The as-prepared composites demonstrated record-high dielectric permittivity
both in the low-frequency range (102–107 Hz) and in the X-band (8.2–12.4 GHz), significantly exceed-
ing the literature data for such types of composite materials at similar CNT content. Thus, with the
2 wt% filler loading, the permittivity values reach 360 at 106 Hz and >26 in the entire X-band. In
similar literature, even the use of conductive polymer hosts and various highly conductive additives
had not resulted in such high permittivity values. We attribute this phenomenon to specific structural
features of the used Tuball nanotubes, namely their length and ability to form in the polymer matrix
percolating network in the form of neuron-shaped clusters. The low cost and large production vol-
umes of Tuball nanotubes, as well as the ease of the composite preparation procedure open the doors
for production of cost-efficient, low weight and flexible composites with superior high permittivity.

Keywords: carbon nanotubes; dielectric polymer composites; permittivity

1. Introduction

Controlling dielectric permittivity of polymer composites is critical for thin-film
transistors [1], photovoltaic devices [2] and more broadly for materials aimed at absorp-
tion/reflection of electromagnetic radiation, especially in the X-band [3–6]. The most
commonly used polymer matrices are silicon rubber [7–15], epoxy resin [16–20], polyvinyli-
dene fluoride (PVDF) [21–24], and thermo-polyurethane (TPU) [25,26]. Correspondingly,
the most broadly used conductive fillers are carbon nanotubes (CNTs), metal particles and
graphene derivatives [4–28]. Among the fillers for this aim, CNTs are of special interest
since they possess high aspect ratio, high electrical conductivity and superior mechanical
strength [29]. In the literature, there are more papers on the use of multi-walled car-
bon nanotubes (MWCNTs) [6–10,13–17,21–24] rather than single-walled carbon nanotubes
(SWCNT) [30–34]. This is because MWCNTs are more available, significantly cheaper and
can be more easily and uniformly distributed in the polymer matrices.

Among all the SWCNTs commercially available on the market, nanotubes sold under
the brand Tuball manufactured by OCSiAl are of particular interest [33–35]. This is because
they are currently manufactured at a tonnage scale and are offered at the cheapest price. A
structural feature of these nanotubes is their large diameter (1.4–2.2 nm), compared to other
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SWCNTs such as HiPCo, CoMoCat, etc., and very large length [36]. Such unique features
make them attractive as fillers [37,38] and additives to polymers and concrete [39].

The two-component composites, in which a dielectric polymer host contains only
CNTs as a conductive filler, exhibit relatively low dielectric permittivity values (ε′) even
in the low-frequency range [7,9,11–15]. Higher dielectric permittivity values are normally
achieved using either a conductive polymer host [22–24] or/and special additives [31]. The
maximum permittivity value was achieved in [21] with PVDF matrix and modified CNTs;
at the 3.5 wt% CNT content, the resulting composite exhibiting permittivity values of about
250 at 104 Hz.

In the X-band, for the two-component systems made of epoxy resin and MWCNTs, in
most studies, the reported permittivity values do not exceed 13 [18,26,40]. The higher value
of ε′ > 20 was obtained when using a higher MWCNT content (5 wt%) [26]. To the best
of our knowledge, the highest reported value of ε′ = 23 at 3% CNT content was attained
when using MWCNTs and a polar dielectric matrix, such as PVDF [41]. Alternative ways to
increase the dielectric permittivity include addition of a third highly conductive component
such as noble metals [6,42], which increases the cost of the final material. At the same
time, for the two-component composites, consisting of a non-polar dielectric matrix and
SWCNTs as conductive filler, high dielectric permittivity values have not been reported yet.

In this study, for the first time, we report the dielectric properties of the silicone
elastomer-based composites reinforced with Tuball SWCNTs. The composites demonstrate
tremendously high dielectric permittivity values both in the low-frequency range and in
the X-band. Importantly, such values were obtained using affordable components by a
simple preparation method without high-cost additives.

2. Experimental
2.1. Materials

The SWCNTs were of the Tuball brand manufactured by OCSiAl (Luxembourg)
(01RW03.N1, batch no. 819); SWCNTs were purified by the manufacturer. According
to the manufacturer, the content of nanotubes was ≥93% and the content of metallic im-
purities was <1%. The ToolDecor T 20–137, a two-part molding silicone elastomer, was
supplied from Wacker (Munchen, Germany); it consists of two components, ToolDecor T
20–1 Base (Part A) and Catalyst T 37 Hardener (Part B).

Methylene chloride was purchased from Tatkhimprodukt LLC (Kazan, Russia) and
used without additional purification.

2.2. Characterization

Raman spectra of nanotubes were acquired from the nanotube films using an ARS-3000
Raman microscope (NanoScanTechnologies, Russia) with the 532 nm excitation laser. The
scanning electron microscopy (SEM) images were acquired with a Merlin field-emission
high resolution scanning electron microscope (Carl Zeiss, Oberkochen, Germany) at accel-
erating voltage of incident electrons of 5 kV and current probe of 300 pA.

2.3. Preparation of Polymer Composites

To prepare reinforced composites, nanotubes in precalculated quantities were dis-
persed in CH2Cl2 by sonication with a tip sonicator Sonic-Vibra 750 (Sonics, Newtown, CT,
USA) for 1 h at 30% amplitude. Methylene chloride was chosen as a solvent, because it
can dissolve silicone and has a low boiling point, facilitating its subsequent evaporation.
Then the resulting dispersion of nanotubes was mixed with part A of the silicone elastomer
and agitated manually with a glass rod until homogeneous condition. Next, the mixture
was mildly sonicated for 30 min at 20% amplitude. After that, the as-obtained paste was
heated in a water bath at T = 60–70 ◦C with manual agitation until complete evaporation of
CH2Cl2. The resulting paste was thoroughly mixed with part B in a weight ratio of 100A:4B
and placed into silicone molds. The samples were cured for 12 h at room temperature. As a
result of these operations, samples of composites in the form of disks were obtained: for
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the low-frequency measurements, the disks were fabricated with a diameter of 29.0 mm
and a thickness of 3.5 mm; for the high-frequency measurements, the disks were fabricated
with a diameter of 29.0 mm and a thickness of 7 mm.

2.4. Electrical Measurements

The permittivity and loss values for the low-frequency range were calculated from
the capacitance, measured with the Novocontrol BDS Concept-80 impedance analyzer,
(Novocontrol Technologies GmbH & Co. KG, Montabaur, Germany) with the automatic
temperature control provided by the QUATRO cryo-system (the temperature uncertainty
is ±0.5 ◦C). A sample was placed between two gold-plated electrodes of the capacitor.
The capacitor was attached to the thermostated testing head. The measurements were
conducted in the frequency range of 0.1 Hz–10 MHz. The data for the ultra-high frequency
(UHF) range (0.1–70 GHz) were measured with the PNA-X Network Analyzer N5247A
(Agilent Technologies, Santa Clara, CA, USA). Samples in the form of disks with a diameter
of 29 mm and a thickness of 7 mm were placed at the end of a coaxial measuring probe
(Performance Probe) with a diameter of 10 mm. When measuring on the PNA-X Agilent
N5247A, the results were recorded using the Agilent 85070 built-in licensed software
package (Santa Clara, CA, USA). The temperature was set at 25 ◦C. The processing of the
experimental data was carried out with the WinFit software [43].

3. Results and Discussion

The used Tuball CNTs were characterized by SEM and Raman spectroscopy (Figure 1).
The SEM images (Figure 1a) reveal that nanotubes exist mainly in the form of thick bundles
consisting of tens and hundreds of individual nanotubes. According to the higher magni-
fication SEM and TEM images [38], the primary bundles with diameters of 5–10 nm are
assembled into secondary and even tertiary bundles with diameters of up to 50 nm. The
existence of Tuball nanotubes in the form of bundles is a consequence of their longer length
compared to other commercially available SWCNTs, such as HiPCo, CoMoCat, etc. [36].
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Figure 1. Characterization of as-received Tuball SWCNTs. (a,c) SEM images at different magnification.
(b) TEM image. (d) Raman spectrum of CNTs. Tangential mode. The inset is the radial breathing
mode. The spectra were acquired with the 532 nm excitation laser.



Nanomaterials 2022, 12, 3538 4 of 11

The Raman spectrum is typical for SWCNTs. In addition to the two-component G-
band, there is a small D-band in the vicinity of ~1336 cm−1 (Figure 1b), which shows
the presence of defects in the crystal lattice. The D-peak intensity is slightly higher than
that in the as-received SWCNTs. Some additional defects were introduced during the
sonication of the CNT dispersions. Radial breathing mode (RBM) is sensitive to the
nanotube diameter [44,45] and coincides with the literature data for Tuball CNTs. The
provided characteristics (Figure 1) are sufficient for the purposes of this study. For a more
detailed description of the used CNTs, we refer to our previous publication [35].

Figure 2 shows the real (ε′) and imaginary (ε”) parts of the complex permittivity of
the composites with different filling fractions as a function of frequency. Real permittivity
values in the range of 0.1–300 Hz are not shown in Figure 2, and are not considered in the ap-
proximation of the curves since the material in this frequency range is very sensitive to me-
chanical deformations that arise upon its contact with the electrodes of the measuring capac-
itor. The full range dielectric spectra are shown in the Supplementary Materials, Figure S1.

Nanomaterials 2022, 12, x FOR PEER REVIEW 5 of 12 
 

 

 
Figure 2. Frequency dependences of the (a) real and (b) imaginary parts of the complex permittivity 
for composites with different filler contents. 

In general, an increase in the CNT content leads to an increase in the dielectric per-
mittivity in the whole tested frequency range. The composites can be divided into three 
groups according to the proximity of the permittivity values: 
(A) Group I—composites with a filler content of 0.1–0.5%; 
(B) Group II—composites with a filler content of 1 and 1.5%; 
(C) Group III—composites with a filler content of 2 and 3%. 

For the composite with a filler content of 0.1%, ε′ practically does not change over the 
entire frequency range. For the composites with a filler content of 0.25% and 0.5%, a 
smooth increase in ε′ in the range of 1 × 107–3 × 102 Hz is observed without reaching a 
plateau at the low frequency end. For the Group II composites with a filler content of 1–
1.5%, the growth of ε′ values is observed in the range of 1 × 105–1 × 107 Hz, followed by a 
plateau below 5 × 104 Hz with ε′ values around 280. Finally, for the Group III composites, 
a smooth increase in the ε′ values is observed in the range of 3 × 105–1 × 107 Hz with a 
plateau starting at 2.5 × 105 Hz with ε′ values reaching 470 at 1 × 104 Hz. 

The imaginary parts of the complex permittivity (Figure 2b) specify the dielectric 
losses. In the tested frequency range, no loss peak is registered for the composite with a 
filler content of 0.1%. For the 0.25% sample, a broad peak in the range of 3 × 106–1 × 106 Hz 
is observed. For the composite with a 0.5% CNT content, a broad peak is centered at 1.4 × 
105 Hz. The increase in the filler content leads to the shift of the loss peak position to the 
higher frequency region. Thus, for the 1% content, the loss peak is at 1.6 × 106 Hz, for 2% 
content, the peak is at 6 × 106 Hz, and for 3% content, the peak is located above 1 × 107 Hz. 
In the curves of the composites with 3% CNT content, only the left shoulder of the loss 
peak is visible in the entire frequency range. The peak of the dielectric losses is originated 
by the polarization delay with an increase in the frequency of external electric field, and 
is normally indicative of so-called dipolar relaxation [46]. 

Table 1 compares the published literature data with the values of the dielectric per-
mittivity obtained in this study [14,15,21–24,31]. According to the presented data, the com-
posites prepared in this work significantly outperform the known literature data for the 
polymer/carbon-nanotubes systems with the same CNT content. Importantly, the attained 
permittivity values are much higher than the values reported in studies [14,15] on similar 
systems made from silicon elastomer matrix and multi-wall carbon nanotubes. Even the 
use of conductive matrices such as PVDF [21–24], the modification of nanotubes [21], and 
addition of polyaniline (PANI) [31] do not afford such high values of ε′, as we attain in 
this study. 

Normally, permittivity increases with increasing the conductive filler fraction. Sub-
sequently, at very high CNT content (>7%), expectedly higher permittivity values have 

Figure 2. Frequency dependences of the (a) real and (b) imaginary parts of the complex permittivity
for composites with different filler contents.

In general, an increase in the CNT content leads to an increase in the dielectric per-
mittivity in the whole tested frequency range. The composites can be divided into three
groups according to the proximity of the permittivity values:

(A) Group I—composites with a filler content of 0.1–0.5%;
(B) Group II—composites with a filler content of 1 and 1.5%;
(C) Group III—composites with a filler content of 2 and 3%.

For the composite with a filler content of 0.1%, ε′ practically does not change over
the entire frequency range. For the composites with a filler content of 0.25% and 0.5%, a
smooth increase in ε′ in the range of 1 × 107–3 × 102 Hz is observed without reaching
a plateau at the low frequency end. For the Group II composites with a filler content of
1–1.5%, the growth of ε′ values is observed in the range of 1 × 105–1 × 107 Hz, followed by
a plateau below 5 × 104 Hz with ε′ values around 280. Finally, for the Group III composites,
a smooth increase in the ε′ values is observed in the range of 3 × 105–1 × 107 Hz with a
plateau starting at 2.5 × 105 Hz with ε′ values reaching 470 at 1 × 104 Hz.

The imaginary parts of the complex permittivity (Figure 2b) specify the dielectric losses.
In the tested frequency range, no loss peak is registered for the composite with a filler
content of 0.1%. For the 0.25% sample, a broad peak in the range of 3 × 106–1 × 106 Hz
is observed. For the composite with a 0.5% CNT content, a broad peak is centered at
1.4 × 105 Hz. The increase in the filler content leads to the shift of the loss peak position
to the higher frequency region. Thus, for the 1% content, the loss peak is at 1.6 × 106 Hz,
for 2% content, the peak is at 6 × 106 Hz, and for 3% content, the peak is located above
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1 × 107 Hz. In the curves of the composites with 3% CNT content, only the left shoulder
of the loss peak is visible in the entire frequency range. The peak of the dielectric losses is
originated by the polarization delay with an increase in the frequency of external electric
field, and is normally indicative of so-called dipolar relaxation [46].

Table 1 compares the published literature data with the values of the dielectric per-
mittivity obtained in this study [14,15,21–24,31]. According to the presented data, the
composites prepared in this work significantly outperform the known literature data for
the polymer/carbon-nanotubes systems with the same CNT content. Importantly, the
attained permittivity values are much higher than the values reported in studies [14,15] on
similar systems made from silicon elastomer matrix and multi-wall carbon nanotubes.
Even the use of conductive matrices such as PVDF [21–24], the modification of nan-
otubes [21], and addition of polyaniline (PANI) [31] do not afford such high values of
ε′, as we attain in this study.

Table 1. The literature data on the permittivity of different polymer composites, comprising CNTs as
a conductive filler, in the frequency range of 104–106 Hz.

Polymer Host/Filler CNT (wt%) ε′ at 104 Hz ε′ at 106 Hz Ref.

PDMS/MWCNTs 3 ~4.5 ~4.3 [14]
Silicon rubber/MWCNTs 2.5 ~4.5 ~4.4 [15]

PVDF/functionalized
MWCNTs 3.5 ~250 ~200 [21]

PVDF/MWCNTs 3.7 160 ~100 [22]
PVDF/MWCNTs 2 ~225 ~50 [23]
PVDF/MWCNTs 4 ~30 ~25 [24]

TPU-PANI/SWCNTs 0.5 ~100 ~80 [31]
Silicon rubber/SWCNTs 2 ~450 ~360 This work

Normally, permittivity increases with increasing the conductive filler fraction. Subse-
quently, at very high CNT content (>7%), expectedly higher permittivity values have been
reported in literature. However, for the CNT content range, tested in this wok (1–3%), we
are reporting the record high values (Table 1).

Such a high permittivity values must be related to the special structural features
of these CNTs. Namely, due to their length, Tuball CNTs form bundles, and do not
easily unbundle even with prolonged high power sonication [35,36]. After unbundling
they tend to quickly rebundle, if are not stabilized by surfactants or by other means.
Respectively, in the composites, these CNTs would exist in the form of bundles. In addition
to bundles, in polymers, CNTs form aggregates, consisting of many bundles. To investigate
the structure of our composites, we used optical microscopy. Figure 3 represents optical
microphotographs of the liquid CNT/silicon elastomer formulations with different CNT
contents taken before the formulations have been cured. It is clear that, even at the 0.25%
CNT content, the CNT bundles are joined into clusters, which are well visible in the fully
transparent silicon elastomer. The shape of the clusters resemble neurons with the tails of
the CNT bundles sticking out from the main cluster body. With increasing the CNT content,
not only the number, but also the size of the clusters increase. The size of the clusters vary
from 20 µm through 200 µm.
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Figure 3. Optical microphotographs of liquid CNT/silicon elastomer formulations with different
CNT content: 0.25% (a), 0.5% (b), 1.0% (c), and 2.0% (d). The scale bar is the same for all the four
images. The red-line circles on (a,b) show the largest CNT clusters, present in the sample.

The sample regions containing isolated clusters of nanotubes form conductive inclu-
sions, randomly distributed in the polymer matrix. According to the knowledge in the field,
the pertinent physics behind the polarization mechanism in composite materials remains
poorly understood [46]. Considering the structure of the composite, namely the size of the
CNT clusters and their distribution, as well as the presence of the loss peaks on the imagi-
nary part functions (Figure 2b), the registered phenomenon might be least contradictorily
explained in the terms of the Maxwell-Wagner polarization [20,22,24,33,46,47]. The larger
the size of the clusters and their number, the larger the interface with the polymer matrix.
Respectively, the higher charge can be accumulated at the interface. Such polarization in
the larger clusters will fully manifest at lower frequencies.

To extract additional relaxation parameters, the measured dielectric spectra were approx-
imated by the superposition of the Cole-Cole function [48] and the Jonsher parameter [46]
according to the following equation:

ε∗(ω) = ε′(ω)− iε′′ (ω) = ε∞ +
∆ε

1 + (iωτ)α + B(iω)n−1 + i
σ0

ε0ω
(1)

where ε′(ω) and ε”(ω) are the real and the imaginary parts of the complex permittivity;
i is the imaginary unit; ∆ε = εs − ε∞, εs is the static dielectric permittivity; ε∞ is the
permittivity at high frequency; ω is the cyclic frequency, ∆ε, τ, α are the magnitudes of the
dielectric strength, relaxation time, and Cole-Cole broadening parameter, respectively; B
is the magnitude of the Jonscher correction; 0 < n ≤ 1 is the Jonscher parameter; σ0 is the
DC-conductivity; ε0 = 8.85 × 10−12 F/m is the permittivity of vacuum. The approximation
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of the dielectric spectrum by Equation (1) for a sample with a filler content of 1% is
shown in Figure S2.

Figure 4a shows that the DC-conductivity σ0 smoothly increases with increasing the
filler content in the composites that is in accordance with the literature values [7]. The
dependence of the relaxation times on the filler concentration in the samples is shown in
Figure 4b. In general, relaxation time decreases with an increase in the filler concentration.
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Figure 5 shows the frequency dependence of dielectric permittivity of the same mate-
rials in the X-band region. The original dielectric spectra of the composites in the whole
UHF region are presented in the SI section (Figure S3). There is no significant change in
the dielectric permittivity with frequency within the 8–12 GHz range (Figure 5a). Expect-
edly, composites with a higher filler content have higher ε′ values. Based on the attained
permittivity, the tested materials can be again divided into three groups with close ε′ values:

I composites with filler content of 0.1–1%;
II composite with filler content of 1.5%;
III composites with filler content of 2–3%.
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Comparison of our data with the published literature data in the X-band is presented in
Table 2. Again, the permittivity values registered in this work notably exceed the literature
data [18,26,40,41]. Even the use of the polar polymer host, such as PVDF [41], does not
enable the values, attained in our study. At the same time, the values of the imaginary part
of the dielectric permittivity, registered in this study (Figure 5b), are among the lowest in
the literature [49].

Table 2. The literature data for the permittivity (ε′) of different composites made from nanotubes and
polymer matrix in the X-band.

Polymer Host/Filler CNT Loading Fraction, % ε′ Ref.

Epoxy resin/MWCNTs 1 ~4.75 [18]
TPU/MWCNTs 3 ~13 [26]

Epoxy resin/MWCNTs 2 3.0 [40]
PVDF/MWCNTs 3 ~23 [41]
Silicone/SWCNTs 2 ~27 This work
Silicone/SWCNTs 3 ~30 This work

Figure 6a presents an approximation of the real and imaginary parts of the complex
permittivity for a sample with a nanotube content of 2%. The spectra were approximated
by the Cole-Cole function with the Jonsher parameter as was shown above.
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Figure 6. Approximation of the dielectric spectra for a sample with a nanotube content of 2% in
the UHF region. (a) The empty black squares are the real part, and the empty red squares are the
imaginary part of the complex permittivity. Blue and light blue lines are fitting functions for the real
and imaginary parts of the spectrum, respectively; red and green lines are Cole-Cole functions for the
real and imaginary parts of the spectrum, respectively; violet and brown lines are Jonsher corrections
for the real and imaginary parts of the spectrum, respectively. (b) Dependence of the static dielectric
permittivity on the filler content. (c) The function of the relaxation time on the filler content in the
UHF region.

In contrast to the low-frequency spectra (Figures 2 and 4), no signs of DC-conductivity
are observed in the UHF region, since the processes characteristic of DC-conductivity do
not have time to occur during this short time intervals. Apparently, the periods of the
field oscillations are rather short, and relaxation processes might reflect the polarization
occurring inside the conducting CNT bundle. We hypothesize that the size of the CNT bun-
dles of the Tuball nanotubes is the main factor, responsible for the record high permittivity
values in the X-band.

Figure 6b shows the dependence of the static dielectric permittivity (εs) on the filler
content in the UHF region. The εs values were obtained by approximating the dielectric
spectra using the Cole-Cole equation [46,48]. In the range of 0.1–1%, the dielectric per-
mittivity changes insignificantly with the filler content. After 1%, a sharp increase in εs is
observed, followed by a plateau after >2%.
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Figure 6c represents the function of the relaxation time τ on the filler content in the
UHF region. The values of τ insignificantly change with increasing the filler content; that
they have the same order of magnitude as opposed to the situation in the low-frequency
region in which they differ ~105 times in the tested range of the filler contents (Figure 4b).

Apparently, there must be a difference in the polarization mechanisms in the two
tested frequency regions. At low frequencies, high permittivity can be explained by the
Maxwell-Wagner polarization with possible contribution of the charge transfer by hopping
electrons through thin polymer layers. However, at high frequencies, we most likely face
another polarization mechanism.

4. Conclusions

In this study, polymer composites have been prepared by incorporating the Tuball
single-walled carbon nanotubes into a silicone matrix via a simple cost-efficient prepara-
tion procedure. The registered dielectric permittivity values in the low-frequency range
(3 × 102−107 Hz) and in the X-band significantly exceed the previously published litera-
ture data for the similar systems at similar CNT content. Even the use of polar polymer
hosts and various highly conductive additives in the literature had not resulted in such
high dielectric permittivity values. The high permittivity values registered in this study
are the consequence of the specific features of the Tuball nanotubes, namely their high
length and ability to join into long bundles, forming percolative clusters. The polarization
mechanism in the two tested frequency ranges is suggested to be different.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12193538/s1, Figure S1: Frequency dependences of the real
(a) and imaginary (b) parts of the complex permittivity for composites with different filler contents in
the low-frequency region; Figure S2: Approximation of the dielectric spectrum by the Equation (1)
for a sample with a filler content of 1%, (a) real part, and (b) imaginary part. The violet line is
the fitting function; the green line is the Johnsher parameter; the brown line is DC-conductivity;
the red line is the Cole-Cole function; Figure S3: in the ultra-high frequency region. Frequency
dependences of the real (a) and imaginary (b) parts of the complex permittivity for composites with
different filler contents.
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