
Citation: An, H.D.; Lee, S.H.; Park, J.;

Min, S.R.; Kim, G.U.; Yoon, Y.J.; Seo,

J.H.; Cho, M.S.; Jang, J.; Bae, J.-H.;

et al. Design of a Capacitorless

DRAM Based on a

Polycrystalline-Silicon Dual-Gate

MOSFET with a Fin-Shaped

Structure. Nanomaterials 2022, 12,

3526. https://doi.org/10.3390/

nano12193526

Academic Editor: Antonio

Di Bartolomeo

Received: 21 August 2022

Accepted: 6 October 2022

Published: 9 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

Design of a Capacitorless DRAM Based on a
Polycrystalline-Silicon Dual-Gate MOSFET with a
Fin-Shaped Structure
Hee Dae An 1, Sang Ho Lee 1 , Jin Park 1, So Ra Min 1, Geon Uk Kim 1, Young Jun Yoon 2 , Jae Hwa Seo 3,
Min Su Cho 4, Jaewon Jang 1 , Jin-Hyuk Bae 1 , Sin-Hyung Lee 1 and In Man Kang 1,*

1 School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea
2 Korea Multi-Purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongju 38180, Korea
3 Power Semiconductor Research Center, Korea Electrotechnology Research Institute, Changwon 51543, Korea
4 DB HiTek, RF/Mixed Signal Development Team, Eumseong 27605, Korea
* Correspondence: imkang@ee.knu.ac.kr

Abstract: In this study, a capacitorless one-transistor dynamic random-access memory (1T-DRAM)
cell based on a polycrystalline silicon dual-gate metal-oxide-semiconductor field-effect transistor
with a fin-shaped structure was optimized and analyzed using technology computer-aided design
simulation. The proposed 1T-DRAM demonstrated improved memory characteristics owing to the
adoption of the fin-shaped structure on the side of gate 2. This was because the holes generated during
the program operation were collected on the side of gate 2, allowing an expansion of the area where
the holes were stored using the fin-shaped structure. Therefore, compared with other previously
reported 1T-DRAM structures, the fin-shaped structure has a relatively high retention time due to the
increased hole storage area. The proposed 1T-DRAM cell exhibited a sensing margin of 2.51 µA/µm
and retention time of 598 ms at T = 358 K. The proposed 1T-DRAM has high retention time and chip
density, so there is a possibility that it will replace DRAM installed in various applications such as
PCs, mobile phones, and servers in the future.

Keywords: dual-gate; grain boundary; polycrystalline silicon; 1T-DRAM; metal-oxide-semiconductor
field-effect transistor; sensing margin; retention time

1. Introduction

Dynamic random access memory (DRAM) has been employed as a memory element
for decades and is one of the key components of electronic devices [1,2]. This is because hat
conventional DRAM has one transistor–one capacitance, simple configuration, high chip
density, and low power consumption. In recent years, miniaturization of electronic devices
has necessitated the use of small cells; however, it is extremely difficult to reduce the size
of capacitors. To address this concern, various structures such as 3D storage capacitors,
cylindrical vertical array transistors, and trench cell capacitors have been proposed [3–5].
However, such structures complicate manufacturing processes. Therefore, a one-transistor
(1T)-DRAM that can achieve a high chip density by eliminating the need for a capacitor,
which is the basic hurdle in reducing the size of a DRAM cell, has been proposed. However,
planar 1T-DRAM still exhibits poor retention time. Therefore, various structures and
methods for improving the memory characteristic have been investigated [6–17].

The primary concept of 1T-DRAM involves the implementation of memory characteris-
tics using floating body effects with a silicon-on-insulator (SOI) structure [18–20]. However,
the SOI technology is expensive, and its mass production is limited. Nevertheless, cost
issues can be overcome by using a polycrystalline silicon (poly-Si)-based SOI-like structure.
In addition, poly-Si-based 1T-DRAM can be combined with the technologies used in 3D
NAND manufacturing to increase chip density.
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In this paper, we proposed a novel 1T-DRAM based on a poly-Si dual-gate metal-oxide-
semiconductor field-effect transistor (MOSFET) with a fin-shaped structure. The proposed
device adopts a fin-shaped structure to improve the memory characteristics and can be
3D-stacked using poly-Si, which can increase the chip density. During program operation,
holes are generated by band-to-band tunneling (BTBT) between gates 1 and 2 in the body
region, and these holes are stored on the side of gate 2. Therefore, a fin-shaped structure
is adopted on the side of gate 2 to expand the storage space and improve the retention
time. In addition, the advantage of the fin-shaped structure is that the retention time can be
improved without changing the size of the device. Furthermore, we optimize the storage
region length, storage region height, and body thickness, which are important geometric
parameters for memory characteristics, and achieve high retention times. Furthermore, to
improve the accuracy of the simulation, a study is conducted assuming the existence of a
single grain boundary (GB) at the center of the body region.

2. Device Structure and Simulation Method

Figure 1a shows a cross-sectional view of the proposed poly-Si dual-gate MOSFET-
based 1T-DRAM with a fin-shaped structure. Gate 1 was used for the conventional MOSFET
and programming operations. Gate 2 was used to perform the program, erase, and hold
operations. The work functions of gate 1 (WFG1) and gate 2 (WFG2) are 4.85 eV and 5.3 eV,
respectively. Note that poly-Si and Ni were employed as electrode materials for gates 1
and 2, respectively [21,22]. The proposed device was designed with a fin-shaped structure
to increase the storage area where holes accumulated and to improve the retention time.
Figure 1b is a simple circuit diagram of 1T-DRAM, and the capacitor is removed from the
DRAM circuit diagram.
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Figure 1. (a) Cross-sectional view of the proposed poly-Si dual-gate MOSFET based 1T-DRAM with
a fin-shaped structure. (b) Simplified circuit diagram of 1T-DRAM.

Figure 2 shows the key fabrication steps of the proposed 1T-DRAM based on a poly-Si
dual-gate MOSFET with a fin-shaped structure crystallized via excimer laser crystallization
consisting of a total of 11 steps [23]. First, metal is deposited on an oxidized silicon wafer,
and then dry etching is performed to form a bottom gate electrode. Second, after depositing
SiO2 serving as a spacer, dry etching of the SiO2 in the bottom gate electrode area is carried
out. Third, HfO2, the gate dielectric, is deposited and etched. Fourth, a-Si is deposited
using LPCVD. Fifth, excimer laser irradiation is performed to convert a-Si to poly-Si. Sixth,
etching of poly-Si is performed to make a fin shape. Seventh, HfO2 and metal are deposited
and etched to form the top gate electrode. Eighth, ion implantation is performed to form the
n-type source and drain. Ninth, SiO2 is deposited for insulation between the gate electrode
and the source and drain electrodes. Tenth, the source and drain metal is deposited. Finally,
after removing SiO2 from the top of the electrode, SiO2 is deposited for passivation [23].
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Figure 2. Key fabrication steps of proposed 1T-DRAM based on a poly-Si dual-gate MOSFET with a
fin-shaped structure crystallized via excimer laser crystallization [23].

The gate length (Lg) and gate dielectric (HfO2) thickness (Tox) were 100 and 3 nm,
respectively. The doping concentrations in the source, body, and drain regions were
1 × 1020 (n-type), 1 × 1018 (p-type), and 1 × 1020 (n-type), respectively. The relevant pa-
rameters of the proposed device are presented in Table 1. Note that in the proposed device,
geometric parameters, including the storage region length (Lst), storage region height (Hst),
and body thickness (Tbody), significantly affect memory characteristics. Therefore, we used
the aforementioned three variables for optimization. For high accuracy, simulations such as
the Fermi–Dirac statistical model, Shockley–Read–Hall (SRH) recombination model, non-
local BTBT model, Auger recombination model, trap-assisted tunneling model, quantum
confinement effect, and the doping-dependent and field-dependent mobility models were
considered. In addition, the GB present in poly-Si was also adopted. To apply the interface
trap of GB, the reported experimental results of 1T-DRAM [24] were borrowed. The de-
vice design and analysis were performed using the Sentaurus technology computer-aided
design (TCAD) tool.

Table 1. Device parameters of proposed 1T-DRAM used for simulation.

Parameter Values

Gate length (Lg) 100 nm
Body thickness (Tbody) 5–20 nm

Storage region length (Lst) 10–80 nm
Storage region height (Hst) 10–30 nm

Gate dielectric (HfO2) thickness (Tox) 3 nm
Source and Drain doping concentration n-type, 1 × 1020 cm−3

Body doping concentration p-type, 1 × 1018 cm−3

Gate 1 work-function (WFG1) 4.85 eV
Gate 2 work-function (WFG2) 5.3 eV

3. Results and Discussion

Figure 3 shows the transfer characteristics of the proposed 1T-DRAM cell at different
temperatures of 300 K and 358 K. Note that the threshold voltage (Vth) of the proposed
device was 1.05 V and 0.99 V at temperatures of 300 K and 358 K, respectively. Vth was
obtained at ID = 10−7 A/µm. When the temperature increased from 300 K to 358 K, the
off-current increased because carrier generation was accelerated by the high temperature.
In addition, because the carrier density increased the recombination rate, the retention
time decreased.
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Figure 3. Transfer characteristics of proposed 1T-DRAM cell at different temperatures of 300 K and
358 K.

Figure 4a shows the transient characteristics of the proposed 1T-DRAM cell at 358 K.
The sensing margin is defined as the difference between the read “1” current and read
“0” current. The sensing margin of the proposed device was 15.1 µA/µm at T = 358 K.
The operation mechanism of the 1T-DRAM consists of program, erase, read, and hold
operations. The program operation uses the BTBT mechanism to generate holes on the side
of gate 2 in the body area. During the erase operation, a negative bias is applied to the
drain and the potential barrier disappears; thus, the holes accumulated on the side of gate
2 in the body region move to the drain region. The bias conditions for the operation of the
1T-DRAM are summarized in Table 2. Figure 4b shows the variation in the read currents
for the “1” and “0” states at different temperatures of 300 K and 358 K. Conventionally, the
retention time is defined as the time elapsed until the initial sensing margin reaches 50%.
The retention times of the proposed 1T-DRAM were 1.48 s and 123 ms at temperatures of
300 K and 358 K, respectively. As shown in Figure 3, increasing the temperature increased
the carrier density and recombination rate and decreased the retention time.

Table 2. Operating bias scheme for memory performance.

Write “1”
(Program)

Write “0”
(Erase) Read Hold

Gate 1 voltage (VGS1) 2.0 V 0.0 V 1.2 V 0.0 V
Gate 2 voltage (VGS2) −1.7 V 0.5 V 0.0 V −0.2 V
Drain voltage (VDS) 0.0 V −0.5 V 0.5 V 0.0 V
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Figure 5a,b show that BTBT vertically occurs between gates 1 and 2 in the body region
during the program operation. When the program operation is used as a BTBT mechanism,
it demonstrates the advantage of a lower power consumption than the impact ionization
mechanism. Figure 5b shows an energy band diagram when a positive voltage of 2.0 V is
applied to gate 1 and a negative voltage of −1.7 is applied to gate 2. The voltages applied
to gates 1 and 2 cause band bending and BTBT. Therefore, electrons in the valence band
tunnel into the conduction band, and holes are created on the side of gate 2. Because the
high work function of gate 2 forms a potential well, the generated holes accumulate on side
of gate 2 in the body region.
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Figure 5. (a) Contour map of BTBT rate and (b) energy band diagram of the proposed 1T-DRAM cell
in program operation (energy band is extracted 10 nm away from source–channel junction).

Figure 6a,b show the contour map of the hole density and energy band diagram of the
proposed 1T-DRAM cell in states “1” and “0”, respectively. Note that state “1” indicates
that the holes generated by BTBT after the program operation accumulate in the body area.
State “0” implies a state wherein the holes further generated after the erasing operation
disappear. Figure 6a shows that the hole densities in the body region on the side of gate
2 corresponding to states “1” and “0” are significantly different. Figure 6b shows the
difference in the hole density with an energy band diagram. Note that the additionally
generated holes lower the energy barrier, similar to when a positive voltage is applied to
the body region.
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Figure 7a,b show the contour map of the electron density and energy band diagram
of the proposed 1T-DRAM cell in the read “1” and read “0” operations. Note that a read
operation is performed via the conventional MOSFET operation. Figure 7a shows that
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the electron density corresponding to read “1” is higher than that corresponding to read
“0”, the inversion layer is formed on the side of gate 1 in the body region, and a current
flows. Figure 7b shows the effect of the electron potential in the body region depending
on the presence or absence of excess holes in the storage region. The generated hole acts
as if a positive voltage is applied to the body region, and when read “1” is operated, the
energy barrier in the body region is lowered and a high current flows. Because the current
changes depending on the presence of excess holes, it is possible to distinguish between
data “1” and “0”. The difference between read “1” current and read “0” current is defined
as a sensing margin in 1T-DRAM.
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Figure 7. (a) Contour map of electron density and (b) energy band diagram of proposed 1T-DRAM
cell in read states “1” and “0” (energy band is extracted at 3 nm above gate 1 oxide).

Figure 8a shows the contour maps of the SRH recombination rate for the proposed
1T-DRAM with different Lst in the hold state “1” operation. As shown in Figure 5a,
BTBT vertically occurs between gates 1 and 2 in the body region during program operation.
Moreover, in Figure 5a, the circular dotted line indicates the region where BTBT is generated,
and as Lst becomes longer, the area where BTBT occurs becomes smaller. Therefore, it
can be seen from Figure 8a that as Lst increases, the BTBT rate decreases and the SRH
recombination rate decreases because fewer holes are generated. Furthermore, when Lst
is 70 nm, SRH recombination transforms into SRH generation at the source–channel and
channel–drain junctions, and in Figure 8b, the current corresponding to read “1” increases
with the hold time and becomes unstable. Therefore, for all the optimization processes
considered in this study, the point with the longest retention time under the condition that
the current corresponding to read “1” does not increase is considered as the optimization
point. In other words, SRH generation does not occur at the source–channel and channel–
drain junctions. Moreover, because the read “1” and “0” current rapidly increases with
time by SRH generation, the retention time is rapidly reduced at Lst = 80 nm. In Figure 8c,
as Lst becomes longer, the region where BTBT occurs becomes smaller, indicating that fewer
holes are generated, and the sensing margin decreases. Furthermore, it is shown that the
SRH recombination rate decreases, and the retention time increases as fewer holes are
generated. When Lst is 60 nm, the current corresponding to read “1” does not increase with
the hold time, and the retention time is the highest; therefore, this value was selected as the
optimization point. The proposed device with an Lst of 60 nm obtained a sensing margin of
4.25 µA/µm and a retention time of 410 ms at T = 358 K.
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Figure 9a shows the contour maps of the SRH recombination rate for the proposed
1T-DRAM with different Hst values in the hold state “1” operation. As mentioned earlier,
during program operation, BTBT occurs in the circular dotted line area in Figure 5a.
However, a small amount of BTBT also occurs between the fin-shaped gates 1 and 2. As
Hst increases, less tunneling occurs because the distance between gates 1 and 2 increases
in the fin-shaped region. Therefore, as shown in Figure 9a, as Hst increases, the BTBT
rate decreases, and the number of generated holes decreases, so the SRH recombination
rate decreases. Figure 9b shows the current corresponding to read “1”, and the number
of holes created depending on the increase of Hst decreases and the current decreases. In
the end, similar to the above-mentioned Lst optimization process, when Hst is 30 nm, the
current corresponding to read “1” increases with time due to SRH generation and becomes
unstable. Figure 9c shows the sensing margin and retention time of the proposed 1T-DRAM
cell as a function of Hst. As Hst increases, fewer holes are generated, and sensing margin
gradually decreases. Conversely, the retention time increases because the stored holes can
be retained longer by the reduced SRH recombination rate. Notably, the proposed device
with an Hst of 25 nm obtained a sensing margin of 2.51 µA/µm and a retention time of
598 ms at T = 358 K.
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Figure 10a shows the contour maps of the SRH recombination rate for the proposed
1T-DRAM with different Tbody values in the hold state “1” operation. Since BTBT vertically
occurs between gates 1 and 2 in the body region, as the Tbody becomes thicker, less BTBT
occurs and fewer holes are created, so the SRH rate decreases. Conversely, as shown in
Figure 10a, the thinner the Tbody, the more BTBT is generated, and the more holes are
created, so the SRH rate is high throughout the body region. Figure 10b shows read “1”
current of the proposed 1T-DRAM with different Tbody. Similar to the above-mentioned
Lst optimization process, when Tbody is 11 nm, the current corresponding to read “1”
increases with time due to SRH generation and becomes unstable. Figure 10c shows
the sensing margin and retention time for the proposed 1T-DRAM cell as functions of
Tbody. Since electrons are accumulated in the inversion channel on the side of gate 1 and
holes are accumulated on the side of gate 2, when Tbody becomes thinner than a certain
thickness, electrons and holes meet and recombination occurs, reducing sensing margin.
In addition, when Tbody becomes thicker than a specific thickness, the sensing margin
decreases because the BTBT rate decreases in the program operation. For our device, the
final optimized parameters were Lst = 60 nm, Hst = 25 nm, and Tbody = 10 nm. Table 3
summarizes previously reported sensing margin and retention times for various 1T-DRAM
cells. As can be inferred, the 1T-DRAM cell proposed in this paper exhibits excellent
memory characteristics at T = 358 K compared with other device.

Table 3. Memory performance of various 1T-DRAM-related papers.

No Reference Sensing Margin [µA/µm] Retention Time [ms]

1 [25] 5.4 68
2 [26] 28.7 79
3 [27] 0.15 320
4 [28] 52.3 11.2
5 [29] 11.7 64.2
6 [30] 6.16 131
7 [31] 6.58 340.1
8 This work 2.51 598
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4. Conclusions

In this study, a novel 1T-DRAM based on a poly-Si dual-gate MOSFET with a fin-
shaped structure was optimized and analyzed using a TCAD simulation. In the proposed
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device, a negative bias is applied to gate 2 during the hold operation to prevent the
holes generated in the program operation from escaping. In addition, by using a fin-type
structure, the length of the gate 2 side is geographically increased to expand the area where
the hole is stored. Therefore, the proposed 1T-DRAM has improved memory characteristics
as a result of which the hole storage area is expanded compared with the planar dual-gate
MOSFET-based 1T-DRAM of the same channel length. The storage region length, storage
region height, and body thickness have a great influence on the memory characteristics
because they affect the number of holes created by BTBT during the program operation.
Therefore, the optimized parameters were Lst = 60 nm, Hst = 25 nm, and Tbody = 10 nm,
and a high retention time of 598 ms was obtained at T = 358 K. In conclusion, the proposed
novel 1T-DRAM demonstrates potential to replace conventional 1T-1C DRAM because it
possesses a high retention time and can increase the chip density.
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